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Robust Odometry using Sensor Consensus Analysis

Andrew W. Palmer and Navid Nourani-Vatani

Abstract— Odometry forms an important component of many
manned and autonomous systems. In the rail industry in
particular, having precise and robust odometry is crucial
for the correct operation of the Automatic Train Protection
systems that ensure the safety of high-speed trains in operation
around the world. Two problems commonly encountered in
such odometry systems are miscalibration of the wheel encoders
and slippage of the wheels under acceleration and braking,
resulting in incorrect velocity estimates. This paper introduces
an odometry system that addresses these problems. It comprises
of an Extended Kalman Filter that tracks the calibration of
the wheel encoders as state variables, and a measurement
pre-processing stage called Sensor Consensus Analysis (SCA)
that scales the uncertainty of a measurement based on how
consistent it is with the measurements from the other sensors.
SCA uses the statistical z-test to determine when an individual
measurement is inconsistent with the other measurements, and
scales the uncertainty until the z-test passes. This system is
demonstrated on data from German Intercity-Express high-
speed trains and it is shown to successfully deal with errors
due to miscalibration and wheel slip.

I. INTRODUCTION

Precise odometry is critical to the safe operation of many
manned and autonomous vehicles including autonomous
underground mining vehicles [1], planetary rovers [2], and
railways [3]. On-board odometry systems in the rail industry
play a crucial role in the Automatic Train Protection (ATP)
systems that prevent accidents due to speeding and collisions.
The necessity for robust and accurate odometry has increased
as trains travel ever faster and move towards semi- and
fully-autonomous operation. This paper investigates robust
odometry approaches that can deal with the numerous error
sources that commonly present themselves on rail vehicles.

A typical high-speed train, such as the Intercity-Express
(ICE) that is operated throughout much of Europe, regularly
travels at speeds of over 300km/hr, and uses a pair of
wheel encoders and a pair of Doppler radars to estimate its
velocity. In real-world operations, this sensor suite suffers
from multiple error sources. The wheel encoders are typically
mounted on driven and braked wheels, which frequently slip
for long periods (10’s of seconds) during acceleration and
braking. They also rely on accurate measurement of the
wheel diameter during maintenance to produce correct veloc-
ity measurements. In practice, the wheel diameter changes
over time due to temperature fluctuations and wear, and may
even be incorrectly measured in the first place. The Doppler
radars, while unaffected by wheel slip, are known to operate
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poorly when the track is covered by snow or ice [4]. They
are also inherently affected by the ground suface.

Examples of recorded sensor data complete with wheel
slip and miscalibrated wheel diameters are shown in Fig. 1.
In Fig. 1a, the wheels slipped during acceleration, while in
Fig. 1b both wheels slid1 during braking. Furthermore, wheel
encoder one is miscalibrated and consistently reports a higher
velocity than the other sensors when not slipping. Detecting
wheel slip in these examples is challenging, particularly as
the acceleration of the wheels due to slip is within the range
of possible accelerations of the train. Wheel slip is also chal-
lenging to deal with using sensor outlier detection methods
as it is not characterised by isolated anomalies, but rather
the measurements slowly diverge from the true state over a
period of time. Global Positioning System2 (GPS) can give
a slip-free speed measurement. However, GPS is particularly
unreliable in the rail domain due to the frequent presence of
tunnels, cuttings, bridges, and overhanging vegetation. This
is highlighted in Fig. 1c, where GPS signal is lost multiple
times for up to several minutes at a time.

This paper develops an odometry system that deals with
the above problems in two ways. Firstly, miscalibration of
the wheel encoders is handled by incorporating the wheel
diameters as states within an Extended Kalman Filter (EKF).
As a side benefit, this information can be used to auto-
matically signal when wheels require replacement due to
wear. Secondly, a sensor measurement pre-processing step,
called Sensor Consensus Analysis (SCA), is proposed for
dealing with untrustworthy sensor readings. SCA uses the
statistical z-test, along with a user-defined probability, to
scale the uncertainties of individual measurements during
periods when sensors produce readings that are inconsistent
with each other. Together, these methods will be shown to
produce odometry estimates that are robust to wheel slip and
miscalibration errors.

The rest of this paper is structured as follows: Section II
presents an overview of relevant literature on odometry,
along with a brief look at existing methods for dealing with
anomalous sensor measurements when performing filtering.
Section III outlines the proposed EKF formulation that in-
corporates the calibration of the wheel encoders as state vari-
ables. Following this, the measurement pre-processing step
using the proposed SCA algorithm is presented in Section IV.
Section V demonstrates the efficacy of the proposed methods
on data collected from ICE trains. Concluding remarks and
suggestions for future work are provided in Section VI.

1We will use the term slip to cover both cases of slipping and sliding.
2We use the term GPS as a generic term which covers all forms of Global

Navigation Satellite Systems (GNSS).
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(a) Wheels slipping during acceleration
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(b) Wheels sliding during braking
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(c) Frequenct loss of GPS signal

Fig. 1: Example measurement data from an ICE train in
situations with wheel slip and GPS signal loss. In all cases
wheel encoder 1 is miscalibrated and reads higher than the
reference (GPS) velocity during nominal operation.

II. BACKGROUND LITERATURE

Odometry for rail vehicles has received substantial at-
tention in the research community, with a particular focus
on methods for dealing with wheel slip. A largely heuristic
approach based on comparing accelerations and differences
in speeds was developed in [3] for determining when wheel
slip was occurring. This approach was compared against
fuzzy logic and neural network approaches in [5] and [6].
The authors noted that, while the fuzzy logic and neural
network approaches provided superior results to the heuristic
approach, the difficulty in formally verifying the safety of
these approaches hinders their adoption by industry. Their
heuristic approach was refined in [7] with the addition of
Inertial Measurement Units (IMUs) to aid in the detection
of wheel slip. Slipping wheels were detected by comparing
the acceleration of the wheel with the measured acceleration
from the IMU, with the affected measurements subsequently
discarded. While the above approaches produce good results,
they lack any measure quantifying the confidence or uncer-
tainty of the odometry estimate due to their heuristic nature.

Other work in this domain has focused on developing
sensing methods that are not affected by wheel slip. Bah
et al. [8] analysed a Visual Odometry (VO) system that used
only a front-facing video camera to estimate the speed of
the train by matching features between successive frames.
While the speed estimate using only two frames was quite
noisy, once averaged over several readings they found that it
was accurate to within approximately 3.7%. An eddy-current
sensor was developed in [9]. This type of sensor was used in
[4] to provide a slip-free velocity estimate as an input to a
map-based localization system. Another advantage of eddy-
current sensors over wheel encoders and Doppler radars is
that they can also be used to detect features in the railway,
such as switches, for use in localization algorithms. The
downside of using additional sensors such as IMUs, cameras,
and eddy-current sensors, is that retrofitting them to existing
trains is expensive, due not only to the large number of
trains in operation, but also the extensive safety certification
process required. Therefore, this paper investigates methods
of improving the odometry algorithm without requiring the
addition of new sensors.

Outside of the rail domain, common approaches for deal-
ing with wheel slip on robots and other vehicles include
detecting wheel slip using the motor current [10], machine
learning approaches [11], or a detailed dynamic model [12],
and using alternative sensing methods such as VO [2], [13]–
[15]. Combining VO with motion models that accurately
model the dynamic constraints of the vehicle yielded good
results in the above literature. Using dynamic constraints (by,
for example, using a constrained Kalman filter [16] to limit
the acceleration range of the state estimate) could provide
some benefit for railway applications. However, as previously
noted, the accelerations seen in the data due to wheel slip
are generally within the range of expected accelerations of
the trains, minimising the benefit of such an approach.

In practice, sensors are not perfect and can produce



anomalous readings for a multitude of reasons. Outlier rejec-
tion methods are commonly used to detect and remove such
measurements. A common approach for detecting outlier
measurements in Kalman filter based estimation systems is
through a chi-squared distribution test [17], also known as
the Mahalanobis distance or Normalized Innovation Squared
(NIS) [18], [19]. If a measurement fails the chi-squared
test against the current estimated state for a user-defined
probability threshold, the measurement is discarded. As
noted in [20], this approach can work well for isolated error
spikes, but does not work for long periods where the sensors
produce anomalous readings.

III. EXTENDED KALMAN FILTER

This section develops an EKF for tracking the state of the
train. The state, x, contains the distance driven, the velocity,
and acceleration of the train, along with calibration factors
for tracking changes in the wheel diameters used for deriving
velocity measurements from the wheel encoders:

x =


distance
velocity

acceleration
encoder 1 calibration
encoder 2 calibration

 . (1)

The state evolves according to the following linear model:

xk = F kxk−1 + Bkuk + wk, (2)

where F k is the state transition model, Bk is the control-
input model, uk is the control-input vector, and wk is the
process noise. For the state vector given in (1), the state
transition model used was

F k =


1 ∆t (∆t)2

2 0 0
0 1 ∆t 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3)

where ∆t is the time difference to the previous state.
The trains under consideration do not provide an interface

for reading the control inputs, so the control-input model and
vector were not required. The measurement model for radar
measurements is linear:

mk = Hkxk + vk, (4)

where mk is the measurement of the true state xk, Hk is
the observation model, and vk is the observation noise. The
observation model for radar measurements is simply

Hk =
[
0 1 0 0 0

]
, (5)

as the measurement from a Doppler radar is a direct
measurement of the velocity. For the wheel encoders, the
measurement function is a non-linear combination of the
states. For a measurement from encoder 1,

mk = h (xk) + vk (6)

=
[
xk,1

xk,3

]
+ vk, (7)

where xk,1 is the velocity from the state vector xk, and
xk,3 is the calibration factor for encoder 1. This observation
model is linearised around the current state to produce the
observation matrix

Hk =
[
0 1

xk,3
0 −xk,1

x2
k,3

0
]
. (8)

For a measurement from encoder 2, the observation matrix
is

Hk =
[
0 1

xk,4
0 0 −xk,1

x2
k,4

]
. (9)

Once these have been calculated, the filter can be run
to determine the state estimate, x̂k|k, and covariance, P k|k.
Since the state transition model is linear, the standard Kalman
Filter equations for the time update step can be used:

x̂k|k−1 = F kx̂k−1|k−1 + Bkuk, (10)

P k|k−1 = F kP k|k−1F
T
k + Qk, (11)

where Qk is the covariance matrix of the process noise. As
the observation model can be non-linear, the measurement
update equations are

Kk = P k|k−1H
T
k

(
HkP k|k−1H

T
k + Rk

)−1

, (12)

x̂k|k = x̂k|k−1 + Kk

(
mk − h

(
x̂k|k−1

))
, (13)

P k|k = (I −KkHk)P k|k−1, (14)

where Rk is the covariance matrix of the measurement noise.

IV. SENSOR CONSENSUS ANALYSIS

SCA is a pre-processing step that exploits the fact that,
in the scenario under consideration in this paper, multiple
sensors are used to measure the same physical quantity.
It scales the uncertainty of measurements from individual
sensors that are inconsistent with the measurements made at
the same time from the other sensors before they are incor-
porated into the filter, using a statistical z-test to determine
whether the uncertainty of a measurement should be scaled
or not. The idea behind this approach is that the sensor mea-
surements should have significantly overlapping probability
distributions when they are measuring the same underlying
distribution. When this is true, they should pass a z-test with
a high probability that the means of the distributions that
they are measuring are equal. A user specified probability is
used to determine the z-test value required as

zdesired = norminv
(

1− p

2

)
, (15)

where norminv returns the z-value required for the cumula-
tive distribution function of a standard normal distribution
to equal the probability p

2 , and zdesired ≥ 0. Note that the
user specified probability, p, is for a two-tailed test, which
is why it is halved when calculating the z-value. For any
pair of sensor measurements, the z-value corresponding to
the probability that the two measurements are of the same
population mean is calculated as

ztest =
|µ1 − µ2|√
(σ2

1 + σ2
2)
, (16)



Algorithm 1: Sensor consensus analysis
input : List of measurements, M , consensus

probability, p
result: List of scaling factors for each measurement, S

1 S = [1 for i ∈ {0, . . . ,length(M)−1];
2 N = M ;
3 while at least one pair of measurements in N do not

pass the consensus test with probability, p do
4 L = list of indexes of measurements in N with the

minimum consensus;
5 c = CalculateMinScale(L,N , p);
6 for i ∈ L do
7 S[i] = S[i]× c;
8 end
9 N = ScaleMeasurements(M ,S);

10 end

where µi and σ2
i are the mean and variance of the measure-

ment from sensor i respectively. If ztest > zdesired, then
the measurements are not of the same population mean at
a significance level p. When a measurement fails this test
(i.e., statistically it is measuring a different population or
quantity to the measurement being tested against), then the
proposed approach is to iteratively scale the uncertainty of
the measurements that are in consensus with the least number
of the other measurements until all measurements are in
consensus with each other.

The SCA algorithm is outlined in Algorithm 1. It takes
as input a list of the last received measurement from each
sensor, and the user specified probability threshold. In each
iteration, it calculates the minimum scaling factor required
for at least one of the measurements to be in consensus with
a measurement it was not previously in consensus with, and
updates the scaling factors of the measurements with the
minimum consensus. The uncertainty of each measurement
is then scaled in the ScaleMeasurements function by
multiplying its variance by the scaling factor for that mea-
surement, before starting the next iteration.

The CalculateMinScale function, shown in Algo-
rithm 2, calculates the minimum scaling factor required for
at least one of the measurements listed in L to pass the
consensus test with a measurement that it was not previously
in consensus with. If both measurements under consideration
are in the list L (i.e., they are in consensus with the
same number of measurements), then both measurements are
scaled. Consider two measurements i and j with means µi
and µj and variances σ2

i and σ2
j , and a desired z-value of

z. The scaling factor, s, when scaling both measurements is
calculated by

z =
|µi − µj |√
s
(
σ2
i + σ2

j

) . (17)

Algorithm 2: CalculateMinScale
input : List of measurements to scale, L, list of

measurements, N , desired probability, p
result: The minimum scaling factor, c

1 c =∞;
2 z = norminv

(
p
2

)
;

3 for i ∈ L do
4 for j ∈ {0, . . . ,length(N)−1} do
5 if N [i] is not in consensus with N [j] then
6 if j ∈ L then
7 s =CalcScaleBoth(N [i],N [j], z);
8 else
9 s =CalcScaleOne(N [i],N [j], z);

10 end
11 if s < c then
12 c = s;
13 end
14 end
15 end
16 end

Rearranging for s gives

s =
(µi − µj)2

z2
(
σ2
i + σ2

j

) . (18)

If measurement j is not in L, then only measurement i is
scaled when calculating the scaling factor:

z =
|µi − µj |√
sσ2
i + σ2

j

. (19)

Rearranging for s gives

s =

(
µi−µj

z

)2

− σ2
j

σ2
i

. (20)

Fig. 2 and 3 show two examples of SCA applied to a
set of four measurements from different sensors, using a
probability threshold of 0.2. In the first example, three of
the measurements are grouped together, resulting in the one
inconsistent measurement being scaled significantly. Since
measurements b, c and d were already in consensus with one
another, they do not receive as much scaling. In the second
example, there are two groups of paired measurements,
resulting in all measurements being scaled substantially.

V. RESULTS

The proposed methods were tested on data collected from
an ICE train operating in Germany, which was equipped
with two Doppler radars and two wheel encoders, each
reporting measurements at 5Hz. The wheel encoders report
the cumulative ticks during the measurement period. The
on-line wheel diameter calibration was first evaluated. As
can be seen in Fig. 4, the EKF successfully calibrates the
wheel encoders, aligning them with the Doppler radars. It is
important that the process noise of the calibration values are
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(b) Scaled measurements

Fig. 2: SCA example with 1 outlier measurement.
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(b) Scaled measurements

Fig. 3: SCA example with two groups of measurements.

TABLE I: Percentage of time that the GPS velocity was
within the n–σ bounds of the odometry

Calibration Pre-processing % within 1–σ % within 3–σ
No None 46.76% 98.03%
Yes None 92.14% 99.10%
Yes Mahalanobis 3 92.30% 99.83%
Yes SCA 0.5 93.81% 99.57%
Yes SCA 0.9 98.17% 99.98%

small to ensure that the calibration values are unaffected by
wheel slip. When the process noise of the calibration values
is too large, differences between the radar and wheel encoder
measurements are compensated for instantly, even during
wheel slip, which is undesirable as it effectively removes
the wheel encoders as an information source for the EKF.

Fig. 5 shows the behaviour of the filter with the various
measurement pre-processing approaches during an example
with two wheel slip events. In the first slip event, both wheels
experience different amounts of slip, while in the second they
experience almost exactly the same amount of slip. Without
any pre-processing (Fig. 5a), the odometry is significantly af-
fected by the wheel slip. Using a low Mahalanobis threshold
to remove outliers (Fig. 5b) yields a performance increase
over no pre-processing, but the resultant odometry is still
affected by the wheel slip. With a probability threshold of
0.5 (Fig. 5c), SCA almost entirely removes the effects of the
first wheel slip, but is ineffective for the second wheel slip.
Increasing the threshold to 0.9 (Fig. 5d) yields good perfor-
mance in both cases. The second wheel slip event in this
case highlights a desirable property of SCA—in this case,
there are two distinct groups of measurements, and, without
additional information, it is impossible to know which group
of measurements is correctly measuring the true velocity of
the train. As a result, SCA increases the uncertainty of all
measurements during the slip event, resulting in a corre-
sponding increase in the uncertainty of the odometry, without
significantly affecting the uncertainty outside of the wheel
slip event. The robustness of the proposed approach was
evaluated over 45 minutes of travel using the GPS velocity as
the reference velocity, with periods of poor satellite coverage
excluded. The percentage of time that the GPS velocity was
within the 1–σ and 3–σ bounds of the odometry for various
combinations of calibration and measurement pre-processing
is shown in Table I. While the increase in performance
of SCA over the Mahalanobis distance at the 3–σ level is
only 0.15%, such increases are critical for satisfying the
stringent Safety Integrity Level (SIL) requirements of high-
speed trains.

One of the situations that the odometry system must
commonly handle is the loss of the Doppler radars due to
snow and ice, and hence relying only on the wheel encoders
to calculate the velocity of the train. Results from such a
scenario when wheel slip occurs are presented in Fig. 6.
As can be seen, using the Mahalanobis distance to discard
outliers in this case results in the EKF closely following
one of the diverging sensors at the expense of the other. In
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(b) Results with calibration

Fig. 4: Successful calibration of the wheel diameter. The upper and lower bounds of the odometry estimate are µ± σ.
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(a) p = 0 (no outlier rejection)
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(c) p = 0.5

3940 3960 3980 4000 4020 4040 4060 4080
Time (s)

26

27

28

29

30

31

Ve
lo

ci
ty

 (m
/s

)

Velocity vs Time

Odometry
Lower Bound
Upper Bound
Encoder 1
Encoder 2
Radar 1
Radar 2

(d) p = 0.9

Fig. 5: Results on an example with two wheel slip events. The reference velocity, as given by GPS, can be seen in Fig. 1b.
The upper and lower bounds of the odometry estimate are µ± σ.
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Fig. 6: Results using only wheel encoders. The upper and
lower bounds of the odometry estimate are µ± σ.

comparison, the EKF using SCA has increased uncertainty
during times when the two sensors diverge, reflecting the
uncertainty over which sensor can be trusted.

VI. CONCLUSION

This paper investigated the problem of robust odometry in
the presence of wheel slip and calibration errors, particularly
for rail vehicles. Calibration errors were successfully dealt
with by incorporating the calibration as a state in an EKF.
Wheel slip and other measurement anomalies were handled
through a measurement pre-processing stage called Sensor
Consensus Analysis. This pre-processing stage inflated the
uncertainty of measurements deemed to be inconsistent with
the measurements from other sensors. The proposed ap-
proach was tested on data from German ICE trains, with the
benefit of the on-line calibration and SCA clearly demon-
strated. Ideas for future work include investigating whether
SCA can be used with the estimated state as an input (similar
to traditional outlier rejection methods), tracking accelera-
tions of the individual velocity sensors and using these as

additional inputs to SCA for determining consistency, and
incorporating a dynamic model of the vehicle, which includes
acceleration limits, into the EKF.
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