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Abstract— Efficient skill acquisition, representation, and on-
line adaptation to different scenarios has become of funda-
mental importance for assistive robotic applications. In the
past decade, dynamical systems (DS) have arisen as a flexible
and robust tool to represent learned skills and to generate
motion trajectories. This work presents a novel approach to
incrementally modify the dynamics of a generic autonomous
DS when new demonstrations of a task are provided. A control
input is learned from demonstrations to modify the trajectory
of the system while preserving the stability properties of the
reshaped DS. Learning is performed incrementally through
Gaussian process regression, increasing the robot’s knowledge
of the skill every time a new demonstration is provided. The
effectiveness of the proposed approach is demonstrated with
experiments on a publicly available dataset of complex motions.

I. INTRODUCTION

Future robots will have a tight interaction with humans
and they will need an increased versatility to rapidly adapt
their behaviour to dynamic and potentially unseen situations.
Having a fixed set of predefined skills is not sufficient to
execute everyday tasks in human populated environments.
Programming by Demonstrations (PbD) is a well-established
approach to rapidly teach new skills avoiding tedious pro-
gramming [1], [2]. In the PbD framework, the robot can learn
by observing the human behaviour (imitation learning) [3],
[4], or an expert user can directly guide the robot towards
the task execution (kinesthetic teaching) [5], [6].

Point-to-point motions, also called discrete movements,
are spatial motions ending at a specified target. Discrete
movements are of importance in several robotic applications,
e.g. in assembly tasks, and they can be combined to build
complex tasks [7]. Recent work in PbD [8]–[14] focuses
on representing discrete movements as stable dynamical
systems (DS), learned from human demonstrations. DS have
been proven to be flexible enough to accurately represent
complicated motions [11]–[13]. Moreover, robots driven by
stable DS are guaranteed to reach the desired position, and
can react in real-time to external perturbations, like changes
in the target position or unexpected obstacles [15]–[19]. DS
have been also used to learn impedance behaviors from
demonstrations [20], [21] and to refine learned behaviors
through reinforcement learning [22]–[24].

This work focuses on the incremental learning of point-to-
point motions represented as stable dynamical system, i.e. on
how to modify the robot’s behavior as novel demonstrations
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Fig. 1. Overview of the Reshaped Dynamical Systems (RDS) approach.

of the task are provided. In our framework, we assume that
a predefined skill is given in the form of a stable DS, the
so-called original system. The trajectories of the original DS
are modified by a reshaping control input, retrieved on-line
by means of Gaussian process regression [25]. The reshaping
action is learned incrementally from user demonstrations by
adding new points to the training set. To alleviate the problem
of the increasing computational time, a trajectory-based
sparsity criteria is introduced to reduce the amount of novel
points added to the training data. The reshaping controller
guarantees an accurate reproduction of the demonstrated task
without affecting the convergence properties of the original
DS. Our formulation does not require any prior knowledge
on the original DS and it applies to a wide class of non-
linear, autonomous systems. An overview of the proposed
Reshaped Dynamical Systems (RDS) is shown in Fig. 1.

The rest of the paper is organized as follows. Section II
presents an approach to modify the trajectory of a DS without
affecting its stability. The proposed incremental learning
algorithm is described in Section III. Section IV describes
the related works. RDS is evaluated on a public dataset and
compared with the state-of-the-art approaches [12], [26] in
Section V. Section VI concludes the paper.

II. DYNAMICAL SYSTEM RESHAPING

A. Problem definition

Assume that a robotic skill is encoded in a first-order DS

ẋ = f(x), (1)

where1 x, ẋ ∈ Rn are respectively the position and the veloc-
ity of the robot (in joint or Cartesian space), and f : Rn →

1We omit the time dependency of x to simplify the notation.



Rn is a continuous and continuously differentiable non-linear
function. A solution of (1), namely Φ(x0, t) ∈ Rn, is called
trajectory. Different initial conditions x0 generate different
trajectories. A point x̂ : f(x̂) = 0 ∈ Rn is an equilibrium
point. An equilibrium x̂ ∈ S ⊂ Rn is locally asymptotically
stable (LAS) if limt→+∞Φ(x0, t) = x̂,∀x0 ∈ S. If S =
Rn, x̂ is globally asymptotically stable (GAS) and it is the
only equilibrium of the DS.

Given a novel demonstration of the task, our goal is to
learn a control input that satisfies the following requirements:

1) The reshaped DS has the same GAS equilibrium of
ẋ = f(x).

2) The trajectories of the reshaped DS follow the given
demonstrations D.

3) The control input is incrementally updated as novel
demonstrations are given.

A control structure that satisfies requirement 1) is presented
in Sec. II-B. An approach to learn a control input that
satisfies 2) and 3) is presented in Sec. III.

B. Globally stable reshaping controller

In order to modify the trajectories of (1), one can exploit
a suitable control input u(x) ∈ Rn. Instead of considering
the general form of controlled DS ẋ = f(x,u), we as-
sume an additive and smooth (continuous and continuously
differentiable) control input, obtaining the controlled DS
ẋ = f(x) + u(x). In general, the controlled system is not
guaranteed to converge to the same equilibrium point x̂ of
(1). Hence, we exploit a clock signal to suppress the control
input u(x) after tf seconds, ensuring global convergence to
x̂. The resulting reshaped DS can be written as

ẋ = f(x) + su(x) (2a)
ṡ = α(ŝ− s) (2b)

where ŝ = 1 for t ≤ tf , ŝ = 0 for t > tf , and the
control input u(x) ∈ Rn is a continuous and continuously
differentiable function. The time tf > 0, after which ŝ = 0,
is a tunable parameter. The scalar gain α > 0 determines
how fast s reaches the desired value ŝ and it can be tuned
considering that, in practice, s = ŝ after 5/α seconds. In all
the experiments we choose α = 10 to have s = ŝ after 0.5 s.

The reshaped dynamics (2a)–(2b) is GAS if the original
DS (1) is GAS, as stated by the following theorem.

Theorem 1: Assume that the dynamical system ẋ =
f(x) in (1) has a GAS equilibrium x̂ ∈ Rn and that ŝ in (2b)
is ŝ = 0 for t > tf . Under these assumptions the reshaped
dynamics (2a) globally asymptotically converges to x̂.

Proof: Note that the linear dynamics of ṡ in (2b) does
not depend on the dynamics of ẋ in (2a). Being α > 0 and
ŝ = 0 for t > tf , we can conclude that s converges to ŝ = 0
for t → +∞. Hence, for t → +∞, the term su(x) → 0
and x converges to x̂, the GAS equilibrium of (1).

The formulation introduced in (2a)–(2b) ensures that the
robot’s motion is generated by a stable (first-order) dynam-
ical system. As discussed in Sec. I, stable DS generate con-
verging motions that accurately reproduce the demonstrations

and are robust to external perturbations. An additive control
input is assumed in (2a). While this is a common assumption
for many physical systems like robots, it also eases the
computation of the training data as detailed in Sec. III-A.
The clock signal in (2b) introduces a time dependency in
the reshaped system. This makes easy to ensure stability
properties (see Theorem 1) without losing some benefits of
autonomous DS in case of external perturbations. Indeed,
if the robot is blocked and time passes, the control input
remains unchanged because it only depends on the robot
position. When the robot is released, it smoothly continues
its motion towards the goal.

The proposed reshaped DS (2a) resembles the dynamic
movement primitives (DMPs) framework [8]. DMPs reshape
a second-order linear system (original DS) with a non-linear
forcing term (control input). An exponentially decaying
clock signal is used to cancel the effects of the forcing
term guaranteeing global stability. Compared to the original
DMPs, our approach differs in the following aspects. In our
framework the original DS can be any non-linear system.
As experimentally shown in Sec. V, the adoption of a non-
linear DS significantly improves the accuracy in reproducing
complex, intrinsically non-linear movements. Moreover, the
non-linear control input can be learned and incrementally
updated from multiple demonstrations, while batch learning
from a single demonstration is used in original DMPs. The
adoption of multiple demonstrations improves the general-
ization capabilities of the learning algorithm.

III. LEARNING THE RESHAPING CONTROLLER

In this section, an approach is presented to learn and on-
line retrieve the control input u(x) ∈ Rn in (2a) for each
state x. We firstly describe how to compute the training
data from the given demonstrations and learn the reshaping
controller. Then, an approach is presented to incrementally
update the reshaping controller.

A. Computation of the training data

Consider that a new demonstration of a skill is given as
D = {xtd, ẋ

t
d}
Td
t=1, where xtd ∈ Rn is the desired state

vector (e.g. the robot position) at time t, ẋtd ∈ Rn is the
time derivative of xtd (e.g. the robot velocity), and Td is
the number of samples. To learn the control input u(x) in
(2a) from D, demonstrations are first converted into a set of
input/output training data.

Assuming s = 1 and considering (2a), the dynamics of ẋ
in (2a) can be re-written as

ẋ− f(x) = u(x), (3)

which shows that the desired control input u(x) is a non-
linear mapping between x and ẋ − f(x). Hence, we con-
sider the demonstrated states X = {xtd}

Td
t=1 as input and

Λ =
{
ẋtd − f(xtd)

}Td

t=1
as observations (output) of u(x).

In other words, the learned controller adds a displacement
to f(x) which makes the reshaped dynamics close to the
demonstrated one (see requirement 2) in Sec. II-A).



Once the training data are computed, any regression
technique can be applied to learn the reshaping controller
and retrieve a smooth control input for each value of x. In
this work, we adopt a local regression technique, namely
the Gaussian process (GP) regression [25]. Local regres-
sion ensures that u → 0 when the state is far from the
demonstrated trajectories, making possible to locally follow
the demonstrations leaving the rest of the trajectory almost
unchanged. Note that GP does not require the alignment of
input sequences to a common length, being the regression
performed considering all the points in the training set.

B. Gaussian process regression

Gaussian processes (GP) [25] assume that the training
input X and output Λi = {λti}Tt=1, where λi is the i-th
component of Λ, are drawn from the scalar noisy process
λti = g(xt) + ε ∈ R, t = 1 . . . Td. The noise term ε
is Gaussian with zero mean and variance σ2

n, while g(·)
is a smooth and unknown function. The joint distribution
between training points and the output λ∗i at a query point
x∗ is [

Λi

λ∗i

]
∼ N

(
0,

[
KXX + σ2

nI Kx∗X

KXx∗ k(x∗,x∗)

])
, (4)

where Kx∗X = {k(x∗,xt1)}Td
t=1, KXx∗ = KT

x∗X , k(·, ·)
is a covariance function, and the element ij of the matrix
KXX is given by {KXX}ij = k(xi,xj).

To make predictions, one can consider that the conditional
distribution of λ∗i given Λi can be written as

λ∗i |Λi ∼ N
(
µ
λ∗
i |Λi

, σ2

λ∗
i |Λi

)
,

µ
λ∗
i |Λi

= Kx∗X
(
KXX + σ2

nI
)−1

Λi,

σ2

λ∗
i |Λi

= k(x∗,x∗)−Kx∗X
(
KXX + σ2

nI
)−1

KXx∗ .

(5)

The mean µλ∗
i |Λi

is used as an estimate of λ∗i given Λi. Note
that the described procedure holds for a scalar output. Hence,
n GPs are used to represent the control input u(x) ∈ Rn.

In our approach, k(·, ·) is the squared exponential function

k(xi,xj) = σ2
k exp

(
−‖xi − xj‖

2

2l

)
+ σ2

nδ(xi,xj), (6)

where δ(xi,xj) = 1 if ‖xi − xj‖ = 0 and δ(xi,xj) = 0
otherwise. The variance σ2

k, the length scale l, and the noise
sensitivity σ2

n are positive hyper-parameters which can be
hand-tuned or learned from demonstrations [25]. The kernel
function (6) guarantees that the control input goes to zero
(u(x)→ 0) for points far from the demonstrated positions.

C. Incremental gaussian process updating

GP regression is computed considering all the training
data. If, as in this work, GP hyper-parameters are fixed,
incremental GP learning is performed by simply adding
new points to the training set. To reduce the computational
effort due to the matrix inversion in (5), incremental GP
algorithms introduce criteria to sparsely represent incoming
data [26], [27]. Following this idea and assuming that Td
data {xtd, ẋ

t
d−f(xtd)}

Td
t=1 are already in the training set, we

propose to add a new data point [xTd+1
d , ẋTd+1

d −f(xTd+1
d )]

if the cost is defined as

CTd+1 = ‖ẋTd+1
d − f(xTd+1

d )− û(xTd+1
d )‖ > c̄, (7)

where û is the control input predicted at xTd+1
d using only

data {xtd, ẋ
t
d − f(xtd)}

Td
t=1 already in the training set. The

tunable parameter c̄ represents the error in approximating
the demonstrated state derivative and it can be easily tuned.
For example, if ẋd is the robot velocity, c̄ = 0.2 means that
velocity errors smaller than 0.2 m/s are acceptable.

IV. RELATED WORK

A. Skills representation using dynamical systems

The dynamic movement primitive (DMP) framework [8] is
one of the first examples of robotic skills representation via
DS. DMPs exploit a non-linear forcing term, learned from
a single demonstration, to reshape a linear dynamics, and a
clock signal to suppress the non-linear force after a certain
time guaranteeing the convergence towards the target. Task-
parameterized motion primitives [9], [28] extend the standard
DMP by introducing extra task-dependent parameters useful
to adapt robot movements to novel scenarios.

The stable estimator of dynamical systems (SEDS) in [10]
generates stable motions from a non-linear DS, represented
by GMM. Global stability is ensured by constraining the
GMM parameters to satisfy a set of stability constraints
derived from a quadratic Lyapunov function. The main ad-
vantage of SEDS is that the learned system is globally stable.
The main limitation is that contradictions may occur between
the demonstrations and the quadratic stability constraints,
preventing an accurate learning of the desired motion.

The accuracy problem is explicitly considered in several
works [11]–[14], showing that complex motions can be
accurately represented by non-linear DS. In [11], [12] two
different approaches are proposed to learn a Lyapunov func-
tion which minimizes the contradictions between the stability
constraints and the training data, favoring an accurate re-
production of complex motions. [13] learns a diffeomorphic
transformation that projects the training data into a space
where they are well represented by a quadratic Lyapunov
function. Perrin et al. [14] propose a fast algorithm to learn
diffeomorphic transformations from a single demonstration.

RDS is complementary to the state-of-the-art approaches
for skill representation via DS. RDS, in fact, incrementally
reshapes the trajectories of a given DS (original DS) without
affecting its stability properties. The original DS can be either
designed by an expert or learned from demonstrations using
one of the the aforementioned approaches.

B. Incremental learning of robotic skills

Several approaches have been proposed to extend the
DMP framework to incremental learning scenarios [29]–[34].
In [29] the recursive least square and a forgetting factor
are used to incrementally update the DMP weights. Gams
et al. [30] present a two-layered system for incremental
learning of periodic movements. The first layer of the system
is a DS which extracts the fundamental frequency of the



demonstrations. The second layer is a periodic DMP which
learns the waveform of the demonstrated motion. The overall
system works on-line, but it is limited to periodic motions,
while discrete movements are the focus of our work. The
work in [31] considers incremental human coaching for
DMP. In the teaching phase, the user is considered as an
obstacle, avoided by adding an extra forcing term to the
DMP [19]. In this way, the human is able to modify on-
line the robot’s path without touching it. The novel path is
used to incrementally updated DMP weights via recursive
least square. Nemec et al. [32] leverage iterative learning
control [35] to realize a learning strategy which is faster
and more robust than recursive least square. The approaches
in [31], [32] are evaluated on periodic movements, but they
are also applicable to point-to-point motions. The interaction
between two agents, modeled via DMPs, is incrementally
learned in [33] to guarantee that both agents equilibrate into
a common target, i.e. the two agents are effectively helping
each other. Maeda et al. [34] propose active incremental
learning with DMP and Gaussian Processes (GP). They learn
a GP from demonstrations and use GP regression to retrieve
a confidence execution bound. If the confidence bound is
low, the robot explicitly asks for novel demonstrations and
updates the GP weights. A DMP is then trained over the GP
mean to generate a converging trajectory.

Similarly to DMP, RDS exploits an additive control input
and a clock signal to reshape an asymptotically stable DS.
The role of the clock signal in RDS and DMP is the same:
suppress the control input to guarantee asymptotic stability.
In DMP, the control input (or forcing term) is a function of
time, while in RDS it is a function of the robot’s position.
A position dependent control generates smooth motions in
case the robot is kept fixed by an external perturbation
(see Sec. II-B). In the same situation, a time depended
forcing term may generate big accelerations when the robot
is released due to the time passed. DMP reshapes only linear
spring-damper DS, while the proposed RDS applies to any
autonomous DS. This is the main limitation of DMP-based
incremental approaches. Indeed, linear DS generate straight
trajectories and, as experimentally demonstrated in Sec. V-
A, transforming a straight line into a non-linear path is not
trivial and may generate a loss of accuracy, i.e. the learned
motion does not accurately match the demonstrated one.

The work in [36] leverages Contraction theory to automati-
cally compute a stabilizing control input for a DS represented
by GMM. Even if the control input can be computed on-
line, [36] only works for DS represented by GMM, while
RDS applies to any parameterization. The Locally Modulated
Dynamical Systems (LMDS) in [26] reshapes an autonomous
DS using a modulation matrix, obtained by multiplying a
rotation matrix by a scalar gain. The modulation matrix is in-
crementally learned from demonstrations using GP [25]. The
learned modulation matrix does not generate any spurious
attractor in the modulated DS. Moreover, the effects of the
modulation disappear for points far from the demonstrations.
These properties of the modulation matrix guarantee the
local stability of the modulated DS. Even if global stability

is not proved, experiments show that the modulated DS
remains stable in practice. LMDS shares some similarities
with the proposed RDS. Like RDS, LMDS applies to any
autonomous DS (both linear and non-linear), it allows incre-
mental learning from multiple demonstrations, and it permits
an accurate reproduction of demonstrated trajectories. These
similar features make interesting to experimentally compare
the performance of RDS and LMDS (see Sec. V).

V. RESULTS AND COMPARISONS

Experiments in this section show the effectiveness of the
proposed Reshaped Dynamical Systems (RDS) approach.
The LASA Handwriting dataset2 is used as a benchmark. The
dataset consists of 26 different point-to-point 2D motions,
where each motion trajectory is demonstrated seven times
and contains Td = 1000 positions and velocities. All the
demonstrations end at the target position x̂ = [0, 0]T.

A. Accuracy test

This experiment compares the reproduction accuracy of
the proposed RDS approach and the LMDS approach in
[26]. As a proof of concepts, we consider the first three
demonstrations for each motion in the LASA dataset and
we subsample each demonstrated trajectory to 100 samples.
LMDS guarantees local stability if the modulation is not
active in a neighborhood of the equilibrium. This property is
called locality in [26]. In order to ensure the locality property,
we remove the last 10 points in each demonstration, creating
a neighborhood of the origin without training points. We
do the same with our approach for a fair comparison. To
guarantee the maximum accuracy for both the approaches,
all the 90 samples of each trajectory are considered without
applying the sparsity criteria in Sec. III-C. Moreover, the
optimal hyper-parameters are learned from the given demon-
strations by maximizing the marginal log-likelihood [25].

The error that occurs when reproducing a demonstrated
motion is measured by the swept error area (SEA) [12],
defined as SEA =

∑Td−1
t=1 A(xte,x

t+1
e ,xtd,x

t+1
d ), where xte

and xtd are respectively the reproduced and the demonstrated
position at time t, Td is the length of the demonstration, and
A(·) is the area of the tetragon formed by xte, x

t+1
e , xtd, and

xt+1
d . The reproduced trajectory is equidistantly re-sampled

to contain exactly Td points. The SEA metric measures
how well the DS preserves the shape of the demonstrations.
To measure how the DS preserves the kinematics of the
demonstrations, we use the velocity error defined in [11]
as Vrmse =

√
1
Td

∑Td

t=1 ‖ẋ
t
d − f(xtd)‖2, evaluated on the

training data {xtd, ẋ
t
d}
Td
t=1. The Vrmse measures the differ-

ence between the demonstrated velocities and the velocities
generated by the learned DS for each training position.

Two different scenarios are considered. In the first sce-
nario, the first-order, linear DS ẋ = −3x is used as an
original system. This task is particularly challenging, since
a linear dynamics has to be transformed into the complex,
non-linear motions of the LASA dataset (see the qualitative

2Available on-line: http://bitbucket.org/khansari/lasahandwritingdataset.
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Fig. 2. The linear DS ẋ = −3x (a) and the SEDS non-linear system (b) reshaped into the 26 complex motions of the LASA dataset. The proposed
RDS is able to learn complex motions without affecting the global stability of the original DS.

results in Fig. 2(a)). In the second scenario, a stable non-
linear DS for each motion is learned by means of the Stable
Estimator of Dynamical Systems (SEDS) approach in [10].
RDS and LMDS are applied to the learned DS to improve
the reproduction accuracy of the SEDS algorithm.

The reproduction errors for the considered scenarios are
shown in Tab. I. Since the reproduction errors (SEA and
Vrmse) of each motion are not normally distributed, we
consider the median Me instead of the mean. To indicate
the maximal and minimal deviation from the typical perfor-
mance, we provide the location of the 10% (Q10) and the
90% (Q90) quantiles. As shown in Tab. I, SEDS+RDS has
median errors of 81 mm2 (SEA) and 2 mm/s (Vrmse), which
is significantly more accurate than Linear+RDS (124 mm2

for SEA and 5.2 mm/s for Vrmse). Also with LMDS,
modulating a SEDS system gives more accurate results than
modulating a linear DS. This is an expected result, because
it is easier to transform a dynamics which is close to the
demonstrated motion, rather than transforming a linear DS
into a complex motion. In both cases, RDS exhibits higher
accuracy than LMDS, meaning that RDS is more effective

TABLE I
REPRODUCTION ERROR OF RDS AND LMDS ON THE LASA DATASET.

Learning SEA [mm2] Vrmse [mm/s]
Method (Me /Q10 /Q90) (Me /Q10 /Q90)

Linear + RDS 124 / 25 / 604 5.2 / 3.4 / 9.0
Linear + LMDS 233 / 44 / 842 6.6 / 3.2 / 32.4

SEDS 366 / 73 / 584 11.5 / 8.2 / 30.9

SEDS + RDS 81 / 27 / 251 2.0 / 1.0 / 3.2
SEDS + LMDS 195 / 66 / 437 6.2 / 2.4 / 13.3

in imposing a (potentially) different dynamics to a given DS.

B. Incremental learning of multi-model behaviors

The goal of this experiment is two-fold. First, it shows that
RDS can learn multi-model motions, i.e. different behaviours
in different regions of the space. Second, the experiment
shows that RDS and the batch learning approaches in Sec.
IV-A are complementary. As a proof of concepts, we inves-
tigate the combination of RDS with SEDSII [12].

SEDSII computes a stabilizing control input from a



learned control Lyapunov function (CLF). The CLF is pa-
rameterized as CLF = xTP 0x+

∑k
l=1 β

k(x)(xTP k(x−
µk))2, where βk, P k, and µk are learned from demonstra-
tions by solving a constrained optimization problem. SEDSII
is very effective in accurately learning complex motions
while guaranteeing the convergence towards a unique target,
but it is not prone to an incremental implementation. Hence,
SEDSII is combined with RDS as

ẋ = forig(x)︸ ︷︷ ︸
DS

+uCLF (x)︸ ︷︷ ︸
SEDSII

+ suRDS(x)︸ ︷︷ ︸
RDS

, (8)

where forig(x) is a possibly unstable DS, uCLF (x) is the
control input that stabilizes the original DS, and suRDS(x)
is the reshaping controller defined in (2a)–(2b).

The controlled DS in (8) is tested in an incremental
learning scenario to show the benefits of combining SEDSII
and RDS. We consider the four multi-model motions of the
LASA dataset. Each multi-model motion contains demon-
strations of two or three different motions (see Fig. 3). Only
the first demonstration of each different motion is considered
in this experiment. Demonstrations are sub-sampled to 100
samples. The original DS forig(x) is a Gaussian process,
learned from the given demonstration. The parameters used
in this experiment are listed in Tab. II.

Three different tests are performed, as shown in Fig. 3. In
the first case both forig(x) and uCLF (x) are learned from
the first motion (green circles in Fig. 3), while uRDS(x) =
0. Novel demonstrations are then provided (brown and red
circles) and forig(x) is incrementally updated as proposed in
Sec. III-C. The CLF is not re-trained, since CLF parameters
estimation cannot be performed efficiently. As shown in
Fig. 3(a) and Tab. III, novel demonstrations are poorly
represented, especially if different motions are demonstrated
with the initial CLF parameters. In the second case, instead,
the CLF is re-trained considering all the demonstrations.
SEDSII accurately learns the multi-model motions, but the
training takes almost 200 times longer. The third case shows
the combination of SEDSII and RDS. Instead of re-training
the CLF parameters, which is computationally expensive, the
reshaping term uRDS(x) is incrementally learned. With the
parameters in Tab. II, the incremental learning approach in
Sec. III-C uses from 45% to 65% of the points to encode the
motion. Results in Fig. 3(c) and Tab. III clearly show that
the combination of SEDSII and RDS is a good compromise
in terms of accuracy and training time.

C. Incremental learning in higher dimensions

RDS is directly applicable to spaces of any dimension.
On the contrary, LMDS exploits a rotation matrix, and

TABLE II
PARAMETERS USED IN THE MULTI-MODEL BEHAVIORS LEARNING

EXPERIMENT.

Original GP SEDSII RDS
σ2
k σ2

n l k (# CLF) σ2
k σ2

n l ĉ [m/s] tf [s]

1.0 0.4 3.0 3 1.0 0.4 3.0 0.01 10.0

x1 x1x1x1

x 2

Trajectories
Goal

Demonstration 1
Demonstration 2
Demonstration 3

(a) SEDSII with initial CLF.

x1

x 2

x1 x1 x1
(b) SEDSII with re-trained CLF.

x1x1 x1 x1

x 2

(c) SEDSII (initial CLF) combined with our reshaping approach.

Fig. 3. Qualitative results for the incremental learning of stable multi-model
motions with different approaches.

TABLE III
REPRODUCTION ERRORS AND TRAINING TIMES OF RDS AND SEDSII

ON THE MULTI-MODEL LASA MOTIONS.

Learning Re-train SEA [mm2] Time [s]
Method CLF (Me /Q10 /Q90) (mean ± std)

GPR + SEDSII No 1.69 / 1.05 / 5.27 0.009 ± 0.007

GPR + SEDSII Yes 1.54 / 1.08 / 2.5 3.6 ± 2.6

GPR + SEDSII + RDS No 1.56 / 1.05 / 2.71 0.018 ± 0.013

defining a rotation in spaces with more than 3 dimensions is
still an open problem (see Sec. V-D). Extending LMDS to
high dimensional spaces is beyond the scope of this paper.
Hence, in this experiment, we show the scalability of RDS
to high dimensional spaces. To this end, we exploit the DS
ẋ = 3(x̂ − x) to generate a converging trajectory in a 6
dimensional space. The 6D state vector x = [θ1, . . . , θ6]T ∈
R6 can be interpreted as the joint angles of a robotic manip-
ulator. The original DS generates a point-to-point motion in
the joint space from x(0) = [35, 55, 15,−65,−15, 50]T deg
to x̂ = [−60, 30, 30,−70, 25, 85]T deg. The original joint
angles trajectories are shown in Fig. 4 (black solid lines).

The original trajectory is modified by providing 100
additional data in the time interval [0.25, 1.25] s (brown
solid line in Fig. 4). For each joint angle θi, the training
data belongs to a straight line starting from θi(0.25) deg
and ending at θi(0.25) + 20 deg. As shown in Fig. 4, the
reshaped trajectories (blue solid lines) accurately follow the
given demonstration and converge to the desired goal x̂.
Results are obtained with noise variance σ2

n = 0.04, signal
variance σ2

k = 0.1, length scale l = 0.01, and the threshold
c̄ = 1 rad/s. With the adopted c̄ only 26 points over 100 are
used to learn the control input.



Fig. 4. Results obtained when RDS reshapes a motion in a 6D space.

D. Discussion

Performed experiments have underlined several properties
of the proposed RDS approach. As shown in Sec. V-B, RDS
can be easily combined with batch learning based approaches
like SEDSII. The result of this combination is a system
capable to incrementally refine a learned skill by significantly
reducing training time while preserving the stability of the
motion and the reproduction accuracy. Results in Sec. V-
A show that reshaping a non-linear system results in more
accurate reproduction than reshaping a linear DS. This is
because it is hard to transform linear dynamics (straight
lines) into a complex, intrinsically non-linear motion like the
ones contained in the LASA dataset (see Fig. 2). It is worth
noticing that DMPs also reshape a linear dynamical system
and they may suffer from a similar accuracy problem.

RDS, as DMP, exploits a clock signal to suppress the con-
trol input after tf seconds and to guarantee global stability.
The value of tf affects the obtained results. Small values of
tf may result in the loss of accuracy, if the control input
is suppressed too early. On the contrary, too large values of
tf may cause the system to stop in a local equilibrium for
long time before the control is deactivated. These problems
were not encountered in our experiments. The reason is that
we selected large values of tf (larger than the demonstration
time) and, since we used local demonstrations (i.e. no train-
ing data were added in a neighborhood of the equilibrium)
and a local regression technique (GP), the control input was
already vanishing (u → 0) for t < tf . In other words, the
reshaped DS was reaching the goal before tf seconds.

In order to illustrate the behavior of RDS, we design a
“failure” case where the reshaped system falls into a spurious
attractor. Consider that RDS generates a spurious equilibrium
if and only if, for s = 1, u(x) = −f(x) for some x 6= x̂,
i.e. if the original dynamics and the learned control are
anti-parallel and have the same magnitude. To reproduce
this situation, we reshape the 2D DS ẋ = −3x, used to

generate a converging motion from x(0) = [2, 2]T m to
x̂ = [0, 0]T m. As shown in Fig. 5, a demonstration is
provided in the form of a straight line starting from the goal
(x̂ = [0, 0]T m) and ending at x = [0.6, 0.6]T m, therefore
pushing away the original DS from its global equilibrium.
In this case, RDS generates a spurious attractor at about
x̄ = [0.6, 0.6]T m (Fig. 5 (left)) because u(x̄) = −f(x̄).
Satisfying the condition u(x) = −f(x) for x 6= x̂ is
improbable in realistic cases, as experimentally shown in this
section. For instance, in Sec. V-C we also reshape ẋ = −3x
(in a 6D space) without generating spurious equilibria (Fig.
4). However, even if the motion temporary stops in a spurious
equilibrium, the control input starts to vanish (s → 0) for
t > tf and the motion converges to the global attractor
(Fig. 5 (right)). Depending on the application, waiting tf
seconds in a spurious attractor may be undesirable. Spurious
attractors in first-order DS can be detected by checking if the
DS velocity vanishes for any x 6= x̂ and escaped by adding
a small velocity in a fixed direction [15], e.g. a velocity
pointing towards the goal. Moreover, the influence of tf on
the generated motion can be reduced by implementing a time
scaling approach similar to the one exploited in DMPs [8].

RDS has been compared with LMDS, a prominent ap-
proach in the field. The comparison has shown that tra-
jectories generated by RDS follow the demonstrations in a
more accurate manner. The higher accuracy of RDS mainly
depends on the fact that an additive control input is probably
more effective in imposing a different dynamics to the
original system. By inspecting (3), in fact, it is clear that
the learned control u(x) cancels out the original system
dynamics f(x) to impose the demonstrated dynamics ẋd.
As shown in Sec. V-C, RDS has the advantage to be directly
applicable to high dimensional spaces, while LMDS requires
the computation of a suitable rotation matrix. In spaces with
more than three dimensions multiple parameterizations of
a rotation are possible and all require at least n(n − 1)/2
parameters [37], while the control input in RDS is a uniquely
defined n-dimensional vector. As a final remark, recall that
LDMS can encode periodic movements, while generating
stable periodic orbits with RDS is still an open problem.

Fig. 5. Results obtained when the novel demonstration forces RDS to
generate a spurious attractor. (Left) RDS generates a spurious attractor at
x̄ = [0.6, 0.6]T because u(x̄) = −f(x̄). (Right) The reshaped trajectory
stops into the spurious equilibrium until the control input is deactivated
(t > tf = 2 s) and then converges to the global equilibrium.



VI. CONCLUSIONS AND FUTURE WORK

We presented the Reshaped Dynamical Systems (RDS),
an approach useful to incrementally update a predefined skill
by providing novel demonstrations. RDS is able to modify
the trajectory of a dynamical system to follow demonstrated
trajectories, while preserving eventual stability properties. To
this end, a suitable control input is learned from demon-
strations and retrieved on-line using Gaussian process re-
gression. The procedure is incremental, meaning that the
user can add novel demonstrations until the reproduced skill
is satisfactory. Experimental results show the effectiveness
of the proposed approach in reshaping dynamical systems.
Compared to the state-of-the-art approaches, our method has
a higher reproduction accuracy and it is directly applicable
to high dimensional spaces.

RDS exploits Gaussian process regression to learn and
retrieve the additive control input. Gaussian processes use all
the training data to regress the output, which is a drawback in
incremental learning scenarios where novel demonstrations
are continuously provided. The problem is alleviated in
this work by using a selection algorithm that limits the
number of training data. However, the applicability of other
incremental learning techniques to DS reshaping has not been
investigated and it will be the topic of our future research.
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[27] L. Csató, “Gaussian processes - iterative sparse approximations,” Ph.D.
dissertation, Aston University, 2002.

[28] A. Pervez and D. Lee, “Learning task-parameterized dynamic move-
ment primitives using mixture of gmms,” Intelligent Service Robotics,
vol. 11, no. 1, pp. 61–78, 2018.

[29] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

[30] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič, “On-line learning
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