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Imitation Learning for Object Manipulation Based on Position/Force

Information Using Bilateral Control

Tsuyoshi Adachi1, Kazuki Fujimoto2, Sho Sakaino3 and Toshiaki Tsuji 4

Abstract— This study proposes an imitation learning method
based on force and position information. Force information
is required for precise object manipulation but is difficult
to obtain because the acting and reaction forces cannot be
separated. To separate the forces, we proposed to introduce
bilateral control, in which the acting and reaction forces are
divided using two robots. In the proposed method, two models
of neural networks learn a task; to draw a line along a ruler.
We verify the possibility that force information is essential to
imitate the human skill of object manipulation.

I. INTRODUCTION

Labor shortage is of concern in developed countries be-

cause of the declining population. Robots are expected to

substitute human in doing simple factory tasks, but this

type of work has yet to be robotized. One of the most

difficult problems faced by current robots is their need to

be able to adapt to the working conditions as robots are

generally designed to only repeat specific tasks. Research

to develop hardware to adapt to environmental changes has

included flexible hands [1] and suction hands [2]. However,

the physical characteristics of the hardware restricted the

type of object that could be manipulated and it was difficult

to operate objects that did not match the capability of the

hardware [3].

The adaptability of robots can be improved by means of

software that is used to process large amounts of information.

However, it is difficult to design the software and control

systems because the behavior of a robot depends on much

information. The idea of ”end to end learning” was proposed

to reduce design efforts. In end to end learning, the behav-

iors of robots are determined only by sensor information,

and agents are trained by machine learning. Levine et al.

successfully manipulated objects by reinforcement learning

using end to end learning over 800,000 trials using multiple

manipulators [4].

However, even though multiple manipulators were pre-

pared, it took a huge amount of time to learn the ma-

nipulations. Humans can easily adapt to perturbations in
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working conditions but considerable research into designing

robots that can learn human manipulations is still required.

Technique have been actively conducted [5] [6] [7]. Re-

cently, some studies have significantly reduced the number

of trials by imitating human manipulative skills via remote

control [8]. However, these conventional studies decided

the behaviors of the robots based on position and image

information but did not consider force information, which

resulted in a low success rate. Some researches have been

made to imitate human object manipulation techniques on

robots based on force information [9]. However, these studies

do not use remote control system. On the contrary, in a

peg-in-a-hole experiment using a remote control system, the

feedback of the reaction force information to the operator im-

proved the work efficiency [10]. Reference [10] implies that

using force information in machine learning also improves

the success rate in object manipulation. Previously, we also

proved that every motion can be described as a combination

of position and force controllers [11]. In order to use force

information in machine learning, it is necessary to obtain

the acting and reaction forces to mimic the human’s force

control. However, if a human directly manipulates and guides

a robot to teach it a motion, the acting force and the reaction

force cannot be separated because the forces are applied at

the same place. Yokokura et al. demonstrated the use of

bilateral control to separate the forces in a behavior-cloning

task [12]. Bilateral control is a remote control technology that

uses two robots, one as a master robot and one as a slave

robot [13] [14]. In this technology, an operator manipulates

the master robot, and the slave robot tracks the master

robot’ s position, while the reaction force of the slave robot

is fed-back to the operator through the master robot. Then,

the operator feels as if the operator is directly manipulating

the remote environments of the slave side. The acting force is

recoded only in the master robot while the reaction force is

recorded only in the slave robot, resulting in a separation

of the forces. Needless to say, position information may

also be recorded by position and image sensors. Because

the conventional method [12] is just behavior-cloning, it

has almost no adaptability to perturbations in the working

conditions Therefore, we propose neural networks to imitate

human object manipulation skills using force and position

information from motions in a variety of working conditions

in order to achieve a standardized performance. As a result,

an improvement in the success rate of object manipulation

is expected. There is research on imitative learning by force-

feedback-type bilateral control [15] [16]. However, there

is no force controller in slave sides in force-feedback-type
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Fig. 1. Experiment flow

bilateral control. As a result, the imitated controllers do not

include force control resulting in low adaptability to environ-

mental perturbations. On the contrary, this research proposes

to use 4-ch type bilateral control, which has position and

force control both in master and slave side. A recurrent neural

network (RNN) learns the relation between the input and

output from human manipulation of an object by using the

data obtained by bilateral control and then gives commands

to the robots. In this paper, a robot conducted a task of

drawing a line with a pencil along a ruler without using an

image sensor but only using position and force information.

Two models of RNNs were compared: a model that learns

the position and force commands, and a model that learns the

torque reference values. Machine experiments were carried

out to investigate the success rate. The flow of the experiment

in this paper is shown in Fig. 1.

The remainder of this paper is organized as follows. Sec-

tion II describes the manipulator used in this study. Section

III describes the RNN network models and the normalization

technique. Section IV describes the experimental results and

compares the proposed models, and the work concludes with

section V.

II. MANIPULATOR

This section describes the manipulator used in this re-

search, the Geomagic Touch manufactured by 3D Systems,

shown in Fig. 2. Geomagic Touch was a 3-axis manipulator

with a maximum demonstrating torque of 3.3 N. In this

paper, we used two sets of Geomagic Touch for bilateral

control. One of them was used as a master robot and the

other was used as a slave robot.

A. Control system

The Control parameters of Geomagic Touch were identi-

fied by using Yamazaki’s method [17]. Fig. 3 shows a simpli-

fied model of Geomagic Touch; as the manipulator is affected

by unexpected disturbances, a disturbance observer [18]

was implemented to compensate for these disturbances. The

block diagram of the control system of Geomagic Touch is

Fig. 2. Geomagic Touch

Fig. 3. Model of Geomagic Touch

shown in Fig. 4. The controller is composed of a position

controller and a force controller. The position controller gives

a position control reference represented by (1). The force

controller gives a force control reference represented by (2).

τp = (Kp +Kvs)(θ
cmd

− θres) (1)

τf = −Kf(τ
cmd + τres) (2)

Here, θ, τ , Kp, Kv, and Kf are angle, torque, position

feedback gain, velocity feedback gain, and force feedback

gain, respectively. Since Geomagic Touch can only measure

angle responses, each angular velocity and acceleration are

derived by using pseudo derivatives. The reaction force was

measured by using a reaction force observer [19]. Bilateral

control was implemented in two sets of Geomagic Touch as

mentioned in the introduction. Bilateral control is a remote

control technology, where the master robot operates the

slave robot through a control system. In addition, when the

slave robot receives a reaction force from the environments,



Fig. 4. Control system

Fig. 5. 4-ch bilateral controller

force feedback is given to the master robot. We used a 4-

ch bilateral controller [11], which is known to be the best

bilateral controller. A block diagram of the 4-ch bilateral

controller is shown in Fig. 5. The 4-ch bilateral controller

establishes the law of action and reaction by synchronization

of the master and slave positions. Equations (3) and (4)

shows the requirements.

θm − θs = 0 (3)

τresm + τress = 0 (4)

θm is the master angle. θs is the slave angle and τm
res is the

reaction force of the master. τress is the reaction force of the

slave. Equations (5) and (6) describe the input of the master

and the slave with bilateral control where J is the inertia. .

τrefs =
J

2
(Kp +Kvs)(θ

res
m − θress )−

Kf

2
(τresm + τress ) (5)

τrefm =
J

2
(Kp +Kvs)(θ

res
s − θresm )−

Kf

2
(τresm + τress ) (6)

III. IMITATION LEARNING

A. Recurrent neural network model

A RNN is a network that holds the time series information.

The network contributes to natural language processing,

voice processing, and the like [20] [21]. Recently the network

has been applied to manipulation of robots and was used in

this research [22].

Figs. 6 and 7 show the proposed RNNs using position

(angle) and force (torque) information obtained by bilateral

control. The model in Fig. 6 predicts the next torque ref-

erences of the slave robot by using angle, angular velocity,

and torque responses (model 1). In order to train the model,

the angle, angular velocity, torque responses, and the torque

references were collected by bilateral control. That is, the

Fig. 6. Model to predict torque reference (model 1)

Fig. 7. Model to predict angle, angular velocity, and torque commands
(model 2)

network model learns not only the position and force com-

mands, but also the controller itself. On the other hand, the

model shown in Fig. 7 predicts the angle, angular velocity,

and torque commands by using the angle, angular velocity,

and torque responses (model2). This model only predicts

the commands and the position and the force controllers

are the same as those described in Fig. 5. Because of the

calculation time of the RNN, there was a delay between a

RNN program written by python using Chainer, and a control

program written by C Language. The delay was less than 20

msec, and therefore, the RNNs predicted data 20 msec in the

future.

B. Normalization

Normalization is a technique to normalize input data and

output data to equalize a data range. In this research, because

the angle, angular velocity, and torque have quite different

ranges they must be normalized. The normalization function

is shown in (7).

xnorm =
x− xmin

xmax − xmin

(7)

Here, xnorm is the new training data after normalization.

xmin and xmax are the maximum and minimum values of

the movable range. Since the outputs of the RNN are the nor-

malized values, the outputs are denormalized in calculating

the actual reference or command values.

IV. EXPERIMENT

A. Parameter

Gravity and friction force compensation were incorporated

into the control system based on the parameters in Table I.

1, 2, 3 are the number of robot’s joints.

B. Training data set

Acquisition of learning data is an important phase in

machine learning. As explained in section II, training data

was acquired from the robots using bilateral control. The



TABLE I

CONTROL PARAMETER

parameter coefficient unit

g 40 rad/s

J1 4.0 mkgm2

J2 8.21 mkgm2

J3 3.43 mkgm2

M2 95 mNm

M3 95 mNm

D 12 Nms/rad

Kp 100

Kv 20

Kf 1.0

Fig. 8. Situation of bilateral control

master robot was operated directly by an operator while a

pencil was fixed to the slave robot. The situation of bilateral

control is shown in Fig. 8. The fixed pencil did not reach

the floor because there was a limit in the working space of

Geomagic Touch. Therefore, by placing a pedestal on the

floor of the slave side, the pencil was brought into contact

with the paper surface. In order to draw a line using a ruler,

the ruler was fixed to the pedestal. The state where the ruler

was parallel to the pedestal was set to 0 degrees and the three

inclination states of 0 degrees, 30 degrees and 60 degrees

were to draw the line. Then, the master and the slave’s angle,

angular velocity, torque response, and torque reference values

were saved. The definition of the inclination is shown in

Fig. 9. The method for acquiring the training data comprised

from of three steps, which are detailed below.

Fig. 9. Definition of points and inclination

1) Step1

Fit the initial position of the manipulator to point 1 (at

this time, since the initial data was the synchronization

data of master and slave position, we discarded the data

from the first 5 seconds.)

2) Step2

Draw a line from point 1 to point 2

3) Step3

Draw a line from point 2 to point 3 along the ruler

after the pencil has contacted the ruler (the duration

from Step 1 to Step 3 was less than 5 seconds).

Fig. 10. Experiment
(Step1)

Fig. 11. Experiment
(Step2)

Fig. 12. Experiment
(Step3)

In order to normalize the saved data, the maximum and

minimum values of the data were set. The setting of the

maximum value and the minimum value of the movable area

are shown in Tables II and III. Then number 1, 2, and 3

indicate the lowest joint, the middle joint, and the top joint,

respectively.

TABLE II

MODEL 1 PARAMETER

parameter max min

θ1s 0.5 rad -0.5 rad

θ2s 0.4 rad 0.1 rad

θ3s 0.5 rad 0.1 rad

θ̇1s 0.05 rad/s -0.35 rad/s

θ̇2s 0.05 rad/s -0.20 rad/s

θ̇3s 0.35 rad/s -0.05 rad/s

T1res 50 mNm -250 mNm

T2res 50 mNm -600 mNm

T3res 100 mNm -100 mNm

T1ref 20 mNm -20 mNm

T2ref 25 mNm -25 mNm

T3ref 15 mNm -15 mNm

C. RNN learning

In order to compare the two models, the RNNs are trained

using the same motion but the output data differed. The

composition of each RNN is shown in Table IV. Fourth

layer was the all connected layer. An activation function

of the long-short term memory (LSTM) was a hyperbolic

tangent. In the training, one of 15 pieces of training data was

randomly selected. Then, two seconds of data were randomly

extracted from the time-series-data for further training.



TABLE III

MODEL2 PARAMETER

parameter max min

θ1m 0.5 rad -0.5 rad

θ2m 0.4 rad 0.1 rad

θ3m 0.5 rad 0.1 rad

θ̇1m 0.05 rad/s -0.35 rad/s

θ̇2m 0.05 rad/s -0.20 rad/s

θ̇3m 0.35 rad/s -0.05 rad/s

T1res 250 mNm -250 mNm

T2res 600 mNm -600 mNm

T3res 100 mNm -100 mNm

TABLE IV

RECURRENT NEURAL NETWORK COMPONENT

first layer second layer third layer fourth layer

units input data 100 100 output data

LSTM Z Z

D. Experiment

The performance of the RNN models were experimentally

evaluated by drawing a line along the ruler with the inclina-

tion of the ruler at 15 degrees and 45 degrees, inclinations

which were not included in the training data. The task was

regarded as a success if the robot drew lines 2 cm or longer

along the ruler. Figs. 13, 14, 15, 16, and 17 show snap shots

of the successful drawing of a line along the ruler.

Fig. 13. Snap shot 1 Fig. 14. Snap shot 2 Fig. 15. Snap shot 3

Fig. 16. Snap shot 4 Fig. 17. Snap shot 5

In each model, the success and failure rates are shown in

Table V.

TABLE V

MACHINE EXPERIMENT RESULT

model inclination success rate

1 15 degree 90%

2 15 degree 75%

1 45 degree 65%

2 45 degree 70%

At an inclination of 15 degrees, model 1 had a better suc-

cess rate than model 2, while the success rate at 45 degrees

was almost the same between both models. Therefore, model

1 seems to be better than model 2. However, model 2 was

more stable. Here, the differences in the failures of each

model are discussed in further detail.

The situation of failure in model 1 differed with the

inclination. At an inclination of 15 degrees, the manipulator

applied a force in the direction toward the ruler, and could

not move. On the contrary, at an inclination of 45 degrees,

the torque reference tended to diverge and became unstable.

In the failures of model 2, there were a few dependencies

on inclination. The pencil could not keep contact with the

paper regardless of the inclination. Note that even though

the task was not accomplished, the robot was stable. Since

model 1 learned not only the position and force commands

but also the controllers, the stability of the control was quite

difficult to guarantee. However, because model 2 learned

only the position and force commands and a stable controller

was designed by using control theories, the robot moved to

inappropriate commands even when it failed. Therefore, we

believe model 2 has more potential to obtain a better per-

formance. For example, if image information is also utilized

for imitation learning, the success rate will be improved.

To demonstrate further the performance of the set-up, a

task to draw a curve by using a protractor was conducted

using model 2. Fig. 18 shows that the robot could draw a

curve using model 2 even though there was no training data

for the use of a protractor. Fig. 19 shows the trajectory of

the position response and the vectors of the force command

and response when a curve was drawn along the protractor.

As can be seen from Figs. 18 and 19, model 2 predicted

the position command value inside the protractor and the

force command value along the protractor. This result shows

the force controller made a trajectory along the protractor

and the position controller made pressing force against the

protractor. We separated the work of drawing a curve using

4-ch bilateral control into position and force information,

then the RNN learned imitating work of human drawing a

curve from sensor information. Fig. 19 is the trajectory of

the pen derived from the sensors. Fig. 20 is a photograph of

a curve drawn along the protractor. From Figs. 19 and 20,

the trajectory read from the sensors was not an accurate

arc. In other words, the sensors of the manipulator used

in this experiment did not have high accuracy. However,

the arc actually drawn was accurate. Therefore it can be

said that the human object manipulation technique was

reproduced without using high-performance position sensors

or controller but force controller.

V. CONCLUSION

In this paper, we proposed two RNN models that imitated

object manipulation by humans using both position and force

information with the help of bilateral control. To compare the

two models, a task to draw a line along a ruler was given

to the robot systems, and a robot succeeded to draw lines

even with untrained inclination. Furthermore, the robot could

draw a curve by using a protractor without any preliminary

knowledge of the protractor. This adaptability in object

manipulation was obtained by force control. Usually, image

information has been exploited to adapt to changes in envi-

ronments. However, it is quite difficult to detect the contact

state only by image information, but with force control it is

possible. This paper demonstrated the importance of force

information in the machine learning of object manipulation.



Also, bilateral control is a key technique to obtain training

data including force information. This study is a simple step

in the progress toward general object manipulation. However,

more complicated tasks will be realized by integrating image

information and increasing the number of joints. When it

conducts not learning task, model 2 can control stably.

Fig. 18. Drawing with proctractor and position command predicted by
model2

Fig. 19. Response and command forces drawing a line along the proctractor
(model 2)

Fig. 20. Photograph of a trajectory drawing with proctractor
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