A Robust and Efficient Dynamic Network Protocol for a large-scale
artificial robotic skin

Christian Bader, Florian Bergner and Gordon Cheng

Abstract— Artificial robotic skins are continuously in contact
with their environment, and therefore highly rely on proper
connections in their skin cells’ network. With a static network
protocol approach, the affected skin area is unusable after a
connection failure. Therefore, we developed a dynamic network
protocol for large-scale artificial robotic skins, which re-routes
the network upon connection failures to keep the whole skin
in operation. Furthermore, the protocol balances the load for
driving larger skins without packet loss. For verification, we
validated the protocol on a large artificial robot skin we have
developed and analyzed its performance with a skin network
consisting of up to 204 cells. The failure recovery of the protocol
converges in at most 50ms. We showed that the balancing
method achieves a packet loss reduction of over 30% compared
to the previously used protocol.

I. INTRODUCTION
A. Motivation

Modular artificial robotic skins, like RoboSkin [1] or the
skin for robots [2], are designed to extend a robot with a
sense of touch and consist of a large number of homogeneous
nodes (=~ 102 — 10?) covering the whole body of a robot.
Every skin cell is sensing the environment and forwards
sensor data to a PC. With a growing number of nodes in
a network, the probability of a connection failure increases,
possibly leading to data loss of the affected skin area. If
such a connection failure is not detected and resolved, the
resulting data loss may lead to a safety deficit and loss of the
deterministic behavior of the robot, and thus possibly causes
damages to objects or even humans.

To the best of our knowledge, all modular robotic skin
networks use a static network protocol, which configures the
routing either off-line or once during start-up, and therefore
have to be restarted after a broken connection. For instance,
the skin of robots [2] takes around two seconds during start-
up/re-start time, and the skin is unusable during this period.
Such a long dead-time can be infeasible for critical robotic
applications. Therefore, there is the need for a dynamic
routing protocol, adapting on topology changes caused by
broken connections during runtime, and thereby lowering any
resulting dead time.

Furthermore, as the sensor data is used as input for control
algorithms, the network requires low end-to-end latency
and minimum packet loss to guarantee operations without
failures. Due to the large number of skin cells in the modular
artificial robotic skin and the limited processing power and
memory resources of each cell, the nodes directly connected
to the interface of the PC are processing close to their limits.

All authors are with the Institute for Cognitive Systems (ICS), Technische
Universitt Mnchen, Munich, Germany, see http://www.ics.ei.tum.de

— —
Master Port Master Port

? original
route

f new route

distributed route
determination

3 7
1. broken
54

— connection
Z

2. lost routp

3. re-routing

Fig. 1: Dynamic routing at an artificial robot skin. The network protocol constructs
its routes in a distributed manner upon startup and reacts on connection failures. The
image shows a single patch of a robot consisting of 204 skin cells. In case of a
broken connection to the interface, it reroutes the network until every cell can reach
the interface again.

If the network is unbalanced with respect to the root nodes,
it may lead to additional packet loss or require a lower data
gathering frequency, which reduces the reaction time.

B. Related Work

Several works exist on dynamic networking, mostly tar-
geting wireless sensor or ad-hoc networks. Artificial robotic
skins are flat based multi-hop networks, i.e. data from
sources has to be forwarded to the next hop neighbor to reach
the sink. Therefore, we first focus on this type of protocol.
Many dynamic network solutions relying on shortest paths
are out of three different types: i) Link-State; ii) Distance-
Vector; or iii) Source Routing protocols.

In Link-State protocols, like OSPF [3], every node knows
about the whole state of the network and resolves the shortest
path problem with the Dijkstra algorithm. This requires large
memory capacity and high computational power, both limited
in artificial robotic skin networks. In contrast, Distance-
Vector protocols use the distributed bellman ford algorithm to
determine routes, which is quite efficient in terms of memory
and processing requirements. The DSDV [4] is a proactive
Distance-Vector protocol with every node periodically broad-
casting its routing tables to its direct neighbors. Broken links
are detected by the link layer and it guarantees loop freedom
by the use of sequence numbers. An improved version of
DSDV is shown by Chakeres et al. [5] called AODV. Here,
routes are only determined if necessary by route requests
via broadcast. Another Distance-Vector protocol is SGF [6].
Instead of only considering shortest path as a parameter
for the bellman-ford algorithm, it also considers physical
distance to sink and link-quality. In contrast to the former

Proximity LED

Normal Force Port 2 Port 1

Micro

Temperature
P Controller

Si

Acceleration

e
Port 4 Port3
Ba

Fig. 2: A single skin cell, including micro-controller and peripherals [12].

protocols, they don’t explain in [6] how they provide loop-
freedom. Source Routing protocols like DSR, as described
in [7], store routes in packets, which is insufficient for large-
scale networks like artificial skins.

Dynamic routing protocols always require some bandwidth
for route updates. To reduce the impact of this issue,
overlying load balancing algorithms can increase the data-
throughput. Some load balancing solutions like [8], [9],
[10] try to avoid temporally occurring congestion, possi-
bly leading to a frequent change of the routes. This may
lead to packet-delay variations, which are unacceptable for
artificial robotic skins due to control algorithms for the
robot. One interesting load balancing solution is presented by
Puccinelli et. al in [11]. Upon distance to sink and bottleneck
link quality, they also use bottleneck load as routing criteria.
Their approach could also be used for artificial skins to
improve the packet throughput.

C. Our Approach

This work presents a robust network protocol for modular
artificial robotic skins, running with an overlying balancing
algorithm to increase the possible sensor data frequency. The
protocol is a distance vector protocol with bottleneck load
balancing. The design is implemented on a robot arm and
verified on different skin cell patches and combinations.

II. SYSTEM DESCRIPTION
A. The Robot Skin and skin cell network

The Robot Skin developed at the Institute for Cognitive
Systems (ICS) is a modularized artificial skin for robotic
systems [2], providing them with the sense of touch. It is built
up of hexagon-shaped nodes (Skin Cells), each consisting of
several peripheral modules like sensors for data gathering
and a micro-controller for processing, as shown in Fig. 2.

These cells can be connected to up to four neighbors and
are ordered in a honeycombed structure as patches with the
size of up to hundred cells. Several patches may further
be connected together building a large-scale network. Fig.
3 shows an example network structure built out of three
patches.

In general, data is forwarded in two different directions.
All data gathered by skin cells is forwarded via interface
to the PC. This data flow is called upstream and its inverse
is called downstream. If a port forwards data in upstream
direction, it is called a Master Port. Slave Ports are the

Port2 Port1
(Slave Port) (Master Port)

T Downstream
(Commands)

Upstream
Port3 (Sensor Data)

(Slave Port)

Port4
(Slave Port)

=iy=(o}
o=
50

(Data Flow)

Fig. 3: Example network structure and its data flow with upstream and downstream
direction. Upstream is the way from skin cells to the PC using the Master Port,
downstream the opposite direction using Slave Ports.

ports responsible for downstream data flow, for example, to
broadcast commands.

Skin cells can only send packets to its directly connected
neighbors. Therefore, most packets need to be forwarded
multiple times until they reach the sink, which is also called
a multi-hop network. This requires a method for determining
routes to the sink.

In the previous network protocol solution [2] builds routes
once upon startup via a breadth search first algorithm. The
resulting routes are static and have some drawbacks:

1) If a connection breaks, the network may need to
be restarted. This dead-time of up to a few seconds is
unsatisfying for any robot control algorithm. 2) Differences
in message forwarding delays lead to a non-deterministic
routing, and 3) The network is not balanced with respect to
the root nodes, reducing the maximal data throughput.

Therefore, there is the need for a new protocol, which dy-
namically resolves lost routes, is as deterministic as possible
and balances the network with respect to the bottleneck load.

B. Dynamic network protocol

The new dynamic network protocol is a distributed pro-
tocol adapting its routes during runtime upon topology
changes. Additionally, it uses information from the sink to
increase the data throughput and reduce the latency via load
balancing.

Three tasks are running in parallel in the dynamic network:
finding of potential paths to the skin driver, recognition of
topology changes and determination of the final routes to
the sink, as shown in Fig. 4. The information necessary
for routing is shared between neighbors by periodically
exchanged beacon packets.

The network protocol approach only slightly differs from
conventional distance-vector protocols like AODV, DSDV.
The main contribution of our algorithm is in reducing any

) BeaconPackets Neighbors Fig. 4: Different steps in skin
cell of the dynamic routing
protocol. To share routing and
. network information (distance
\ to the sink, load, etc.), skin
| cells periodically forward bea-
con packets to all at startup time
bidirectionally connected neigh-
/ bors. Furthermore, it periodi-
/ cally checks the connectivity to
neighbors, determines the cur-
rent best port, and if required,
switches the master port.

determine ports with
lowest distance to sink

determine best port via \
balancing

check sequence number

N\ 4

switch master port

Algorithm 1: Distributed routing algorithm

Algorithm 2: Determine MasterPort

. initial:
[e's) for all skin cells
: H
® 90 for the PC
. given:

: P, as set of all active ports, Py as set of slave ports
. Beacon packet b,

Dm0
: EVERY PERIOD 7}, DO:

: at every SKkin Cell (Source)

. find best master port pp,

: Py +— Pa/ P

13: Ppin + min(H(Py))

14: p,, < determineMasterPort(P, ;)
15: if p, = 0 or H(p.) = oo then

DEoYXIQUNEL

18 H(by,) « H(pm) +1
19: end if

20: SQ(bP7) <~ S(pnz)

21: send bp; to all ports p; € P,

23: at the PC (Sink)
24: Sq + Sq+1
25: H(bp) + 0

26: Sq(bp) + Sq
27: send by, to all ports P

Increment Sequence Number

overhead, which is unnecessary for wired networks and
could increase the convergence time. To further reduce
the convergence, the detections of broken connections is
modified. Furthermore, a balancing algorithm reduces the
overall bandwidth cost of the dynamic network protocol or
even improves the maximal sensor data bandwidth compared
to the previous static solution.

1) Algorithm for Route Determination: The protocol de-
termines routes in a distributive manner, i.e. without knowl-
edge about the networks topology. Possible routes to the sink
are determined by a gradient based on the hops to the sink to
keep the resulting routes and network depth as deterministic
as possible. In this work, we use the distributed Bellman-
Ford algorithm [13] for gradient determination, implemented
in the same way as in most proactive distance-vector routing
protocols, e.g. like in DSDV [4].

Alg. 1 shows the basic procedures, executed every period
T} at skin cells or PC. At initialization, every skin cell starts
with a distance to sink H(z) of co. The PC, as the sink
itself, starts with a distance of 0. Now every node ¢ shares
H (%) + 1 with its neighbors by sending beacon packets by,
every period T; to every active port p,, € F,. In the next
period, every skin cell received one packet at every p,,
setting the port with the lowest distance min(H (P,)) to its
master port. After determination of the current best master
port using Alg. 2, it forwards a distance H(m,) + 1 to its
direct neighbors. If the skin cell itself and all its neighbors
still have a distance of oo, it can not distinguish a master
port and therefore continuous forwarding oo to its neighbors.
Let’s say [V is the set of all nodes in the network, then after
maz(H(N)) * T, the algorithm converges and all nodes
know a potential route to the sink.

As shown in Alg. 2, the function
determineMasterPort(P,,;,) chooses a random node

. given: Py, r,: Set of ports with shortest path to the sink
tif my =0 or H(Prin) < H(mp) then
Pmpew < Tandom(Pmin)
: else if | Py, in| > 1 then
Prmnew balancing Function(Pyp,in)
if Sq(Pmpew) = Sq(pm) then
DPm < Pmpew
end if
. else

SPRIDUNB W=

H(pm) + oo
11: end if
12: return p,,

out of P,,;, during initialization, since there, m, = 0. If
balancing is enabled, it uses the balancing algorithm to
possibly switch its master port, if it improves the network’s
balancing.

2) Sequence numbers for loop avoidance: As explained in
[13], the Bellman-Ford algorithm is not loop-free. In theory,
a loop will solve itself if all nodes have a possible way to the
sink [13]. However, if sensor data packets are forwarded via
loops in the robot skin, it is possible that skin cells are too
occupied by data packets to process beacon packets, which
are necessary for resolving loops. This leads to an unstable
and nondeterministic network behavior.

One solution for a loop prevention is the use of sequence
numbers (Sq), as shown in DSDV[4]. Here, sequence num-
bers express the freshness of a route and are incremented
by sinks after every route update (in the skin network every
period T}). A new port p; can only be chosen as master port
if Sq(p;) is equal or larger than the sequence number of the
current master port Sq(pn,), executed in line 7 of Alg. 2.

3) Recognition of broken connections: All nodes validate
the consistency of routes by frequent packet hand-shake at
any connection. To achieve that, every node in the network
examines, whether it received the last £ consecutive beacon
packets at any port. If none of the k packets arrived on
port p;, it sets p; as broken. If p; is the current master
port, the skin cell will now forward a distance to sink of
oo, and Alg. 1 is going to reroute the network until every
node has a potential route, as described in Fig. 5. The
threshold of £ packets is necessary since packets can be
missed due to timer differences between nodes or too high
processing occupancy of the micro-controller. Furthermore,
they can be corrupted due to electromagnetic noise or other
environmental influences.

It is possible that some connections only partially work.
This kind of connections have to be avoided as a route to
prevent unnecessary frequent route changes. DSDV damps
these switches by waiting for a fixed delay before any route
switch. Since the skin cell network should convergence as
fast as possible, a different approach has to be used.

The new dynamic protocol detects these connections via
failure penalty py and two penalty rates, 7 and r,., whereby
ry specifies the increase of p; after a missed packet and 7,
the reduction after a detected recovery, i.e. after receiving a
packet.

@t=(k+2)Ty @ t=(k+3)T,

Fig. 5: Worst case scenario of a single broken connection: Failure on the connection
(n1,Intf.). At t = 0, the failure occurs (a), then the effected node (n1) will
recognize this at k7'b, and sets its own distance to the sink to oo (b). The first node
which switches its master port is n2, upon receiving a distance of oo from n1(c). na
switches after being informed about the lost route by n3 (d). This gives node n4 the
ability to resolve its route to the sink. The algorithm converged after (k + 3) * T
(e).

12~ [beacon |-
received
P,

(@ ry=re

®)yry >rr

Fig. 6: Two examples for the detection of a loose connection. If py exceeds 1, the
connection is marked as not working. If beacons are received, py is reduced by r..,
if no beacons are received, it is increased by py. Fig. a) shows the example for rz
similar to r,., whereby it does not detect the loose connection, since beacon misses
are too rare. If 7y is increased and r,. is reduced, the connection is detected (py is
larger than 1), shown in b)

Py = {pf - Tr,
pf+ry,
If py exceeds the value 1 at a port, the connection is
set as broken, otherwise, it is expected not to be broken.
By choosing py and 7y, the allowed ratio between lost and
received packets can be set. py can only have values in
the range of [0, 2], to guarantee that the cell is able to fast
detect working connections which previously were broken
(e.g. after replugging a cable). Fig. 6 shows two examples
of a partly working connection and the resulting change of
py during the time.

if packet received
if no packet received

4) Route selection for load balancing: Additional meth-
ods for picking the best out of all possible routes can provide
a more balanced network.

One possible balancing method without topology knowl-
edge is the Shortest Path Balancing (SPB), which is among
other balancing methods also used in Arbutus [11]. Here,
every route is always the shortest path to the sink, to guar-
antee, that the Bellman-Ford algorithm can resolve routes as
quickly as possible.

In SPB, a node chooses its master port depending on the
load of the interface port used in that route, as described in
Alg. 3.

This requires additional data, carried by the beacon pack-
ets: Load and Subnetwork Size.

The Load L(i) of node i is calculated as:

L(i) =1+ Y L(j) ¢))

jEPq,

Algorithm 3: Balancing Function

. given:
Py, in (Ports with shortest path to sink), S(x) (Subnetwork Size for port x)
: L(z) (Load for port x), L (Load of Skin Cell)

. find new best master port Py, .,
Pmpew A (D
Q +— Pm'in/p'm
: while |Q| > 0 do
gi + min(S(Q))
if S(qi) > S(pm) and L < L(q;) — L(pm) then
Pmpew < i
break
else
Q<+ Q/qi
end if
: end while
Dif Prnge, == 0 then
return p,,
. else
return Py, ..,
. end if

N e SR ED S 0R NN R WS

with P, as the set of all slave ports of node i. The
Subnetwork Size S(x) of a node k refers to the load of the

interface port used by k to forward data to the PC.

To avoid unnecessary oscillations, a node in the network
should only switch its subnetwork, if the new routing solution
decreases the overall balance factor. This can be achieved
by forbidding node ¢ to switch from subnetwork & to j for

balancing if:
L(i) < L(j) — L(k) ()

Additionally, to guarantee that the balancing will converge
in finite time, the balancing frequency has to be lower
than the beacon packet frequency to satisfy the following
conditions: 1) Subnetwork sizes have to be up-to-date before
a node balances, and 2) Only one node should balance at the
same time.

The maximum number of beacon periods until the bal-
ancing is up to date (n,q;) can be calculated as: n,q <
2« max(H(N)), with H(z) as the distance to the sink for
node x and N as the set of all nodes in the network.

It is important, that there is only one cell balancing every
tyai- Therefore, fi, has to be reduced further by the number
of nodes, which possibly balance at the same time (npg;).
Lets say the distance of a node ¢ to the PC is d;. Since the
network has a two dimensional meshed structure, only one
node of the network can have the distance d; to two root
nodes, i.e. the ability to balance.

Therefore, ny,; is bound by the maximum distance to the
sink in the network d,, 4, and the number of root nodes | Ny|
via: Npe; < dipas * |NR‘

This leads to a maximum balancing frequency fpq; of

_ fo fo
f bal —

Nbal * Nval 2% dgmzz * |NR|

3

However, this is a worst-case scenario. Experiments with the
real network were showing, that higher balancing frequencies

also lead to a stable balancing.

III. EXPERIMENTS

The experiments consist of two parts: Analysis of the
dynamic network protocol itself and analysis of the impact
of a connection failure on a running system.

/... disabled connection
wewp [T w_ h N
“ h T T 9 139
- 2 oo 1
\ 3 oo 19 13
4 2 23

Fig. 7: Setups for measurement. Two different patches were used with the interface
connected to ports on opposite sides. [and w are the length and width of the patch
in number of cells. h are the number of cells between the interface connections. The
red cross marks the connection disabled at tq.

600

100 T T T T T T

—— mean
min

|
—- \ -]

g \ E ¥]

£ E gl i |
o o

2 a00f 2

g g Gof

g g ——

) .) _

5 200 5 ——k=10
Z Z 10 ——max ||
=} =}

Q Q

. T T
14 16 18 20 22 24
distance between interface ports [hops]

(b) C vs h and k

0 50 100 10 200 250 Rt

frequency [Hz]

(a) C vs fp and k

Fig. 8: Convergence time vs beacon frequency by and beacon threshold k (a) as

well as distance h in hops 2 sink (b). Experiment in (a) is taken with setup 1 by

disabling one interface port at every measurement. The lines show C (fp, k) and its

error ACerp(fp). Higher frequency f;, than 250 Hz for the beacon packets were

not tested, since this may result in an unstable network routing. For the measurement

in (b), setup 1-4 were used, with varying distances between the interface ports. Lines
represent the function Ca(k, fp), error bars ACe,r2(f5)-

A. Analysis of the dynamic routing protocol

1) Route recovery convergence time: The worst case

convergence time appears by connecting the ports to cells
of opposite sides on patches, to force every skin cell, which
is forwarding to the affected port, to switch its route.
It is measured by taking the difference between the occur-
rence of the failure (¢p) and the last master port switch
(tf), reported to the PC via a packet delayed by Atg,. The
convergence time c,, is calculated as: ¢, = max(ty, —to —
Atg,).

Instead of physically breaking the connection, the failure
is simulated by stopping to forward beacon packets at the
PC, to get precise measurements.

The first experiment studies the dependency of the recov-
ery convergence time on the beacon frequency f;, and the
beacon threshold k. The measurements are taken with setup
1, as shown in Fig. 7. There was an average delay At,, of
6 ms in the network. This results in the following function
for the mean convergence:

Cr(fuk) =~ + &

— 4+ — 4
A (C))
for a network with a distance between the interface ports of
13 hops and a total size of 99 skin cells.

The error of the function is given by:

ACur(fy) = £ s)
fo

This variance is most likely caused by timing differences
between nodes, varying the routing information propagation
delay.

Furthermore, the convergence time may depend on the dis-
tance between the nodes h. For the study of this relationship,
we measure the convergence time of setup 1 to 4, with a

Interface

o {7],

PC | 168 cells

A 132 cells 17 204 el LL oo A0 L
v v
12 . 12 e
(a) Setup 5 (b) Setup 6 (c) Setup 7

Fig. 9: The network setups for the balancing performance analysis. The setups were
chosen in a way that there is some data loss with the static network protocol with data
gathering period of 250 Hz.

1.00 { s — -— 40 4
Y
= 0.75 - 30
& P
& 0.504 | protocol type & 20
S $ dynamic £
= 0251 static < 104 o
- ‘ e

0.00 04

5 6 7 5 6 7

network setup network setup

Fig. 10: Balance factor and data loss studies for setups 5-7. The dynamic protocol
reaches always a balance factor of 1, in contrast to the static network protocol. For the
data loss study, the networks have been set up in a way, that every network is running
beyond its limits to force data loss, by choosing a data gathering rate of 250 Hz
and using a too large network setups for the number of interface ports. The dynamic
protocol could decrease the data loss for every network compared to the previous
used protocol by balancing the bottleneck packet load, i.e. the load at the connections
between network and interface).

beacon frequency f;, of 250 Hz. Fig. 8b shows its results. It
is possible to distinguish, that the convergence time almost
linearly depends on the hop-distance between interface ports.
The error applied in the figure, Cerra(fp), is % This leads
to the following function:

1 2

9500z © f ©)

Calh,K) = (T5h] +K) =

The factor [1h] equals the maximal subnetwork depth d,,
when connecting the interface to skin cells placed at the
opposite side of a patch. By combining formula 6 with the
results of formula 4 and 5, we can determine the dependency
of the convergence time on d,,, k and f; as:
dn k| 3
Cllm b o) < T2+ 3 % @
This equals the theoretical example as mentioned in Fig. 5.
Further measurements with different setups were showing,
that the convergence time for any connection break in the
network is bounded by C(d,,, k, f).
2) Load balancing performance: The balance factor S is
an often used performance metric to compare the load of
nodes in the networks and is calculated by:

_ (Ef:l L(xi))Q
kY5, L(xi)?

with L(x) as the load of k different ports x;. (is in the range
of (0, 1] with 1 if the load of every port at a node is the same.
Three different network setups were used to compare the
balancing and the data loss improvement, as shown in Fig.
9. It was important to construct the networks in a way that
data loss occurs when using the previous network protocol.
Every measurement was taken with a data gathering rate of

B ®)

o

wul
'
t

'

o

w
'
t

packets/lO3
w EN
- g
joint states
o

4 4 ' 1 l |
7.5 0 2.5 7.5

5
t [s]5 t[s]

Fig. 11: Failure at a controlled robot arm [14]. One connection to the interface port
were un-plugged by hand at around 2.6 seconds. It can be seen, that the joint states
are smooth, without any unpredicted behavior during the connection loss. Therefore,
the algorithm resolves the network routing fast enough for a stable control application.

250 Hz and a beacon frequency of 10 Hz. The balance factor
results are shown in Fig. 10. The dynamic protocol solution
reaches almost balance factors close to 1, in contrast to the
previous protocol. Nevertheless, the balancing performance
depends on the network structure since the algorithm can
only balance in the range of shortest paths.

Data loss could be reduced by about 10% in every network
setup, as shown in Fig. 10, with a maximum of about 30
% reached in setup 2. Furthermore, it can be distinguished,
that the dynamic protocol leads to more deterministic results.
The remaining data loss is caused by the network setup.
Reduction of the network size or increase of the number

of interface ports prevents this data-loss.

3) Cost analysis: The dynamic network requires addi-
tional packet transmission bandwidth B,..;, which can be
calculated with knowledge about packet-size P,, beacon
frequency f3, intermission gap I,, as well as data rate D,
by

fox(Ps+ 1) fox*240bit

Bra(f) = D, = TAMbit/s ©
leading to an bandwidth usage of 0.6% for 10H z, 6% for
100H z. This has an effect on the maximum subnetwork size
vs interface port ratio, which is decreased by B,.; when
using the dynamic network.
However, if the network is built in a way, such that it
can be balanced with the constraint of shortest distances,
the improvement of the balancing algorithm exceeds the
maximal data bandwidth reduction caused by the periodic
beacon packets, whereby the dynamic protocol still improves
the overall network performance. This can be seen in Fig.
10, as the dynamic network decreases the data loss.

B. Failure at a controlled robot arm

In the final experiment, we disconnected an interface
port connection by hand at a currently controlled robot
and analyze the joints’ behavior as well as the data loss,
caused by the failure. Fig. 11 shows the result with a beacon
frequency by of 20 Hz and a k value of 8. Although there is
a total convergence of around 500 ms, the joint states don’t
show any negative effect caused by the failure and rerouting
of the network.

IV. CONCLUSION

This work presents a dynamic routing protocol for
large-scale meshed skin networks with constrained memory
and processing power. It uses the Bellman-Ford algorithm
to determine possible routes and guarantees a loop-free

convergence by the use of sequence numbers. If the protocol
detects a connection failure, it reroutes the network when
necessary, until every node has a valid route to the sink.
The protocol can achieve maximum convergence time of 40
ms when using a beacon frequency of 250 Hz. Furthermore,
the protocol implements an additional shortest path load
balancing algorithm allowing larger skin networks and
leading to more deterministic routing results. Depending on
the network topology, it could reduce the largest subnetwork
size for about 20% compared to the previously used
protocol. The design was validated and analyzed on a real
robot skin network.
REFERENCES

[1] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded

artificial skin for humanoid robots,” in 2008 IEEE International

Conference on Multisensor Fusion and Integration for Intelligent

Systems, 2008, pp. 434-438.

P. Mittendorfer and G. Cheng, “Self-organizing sensory-motor map

for low-level touch reactions,” in 2011 11th IEEE-RAS International

Conference on Humanoid Robots. 1EEE, 2011, pp. 59-66.

P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and

L. Viennot, “Optimized link state routing protocol for ad hoc net-

works,” in Proceedings. IEEE International Multi Topic Conference,

2001. IEEE INMIC 2001. Technology for the 21st Century., 2001, pp.

62-68.

[4] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers,”
ACM SIGCOMM Computer Communication Review, vol. 24, no. 4,
pp. 234-244, 1994. [Online]. Available: http://doi.acm.org.eaccess.ub.
tum.de/10.1145/190809.190336

[5] 1. D. Chakeres and E. M. Belding-Royer, “Aodv routing protocol im-
plementation design,” in 24th International Conference on Distributed
Computing Systems Workshops, 2004. Proceedings, 2004, pp. 698—
703.

[6] P. Huang, H. Chen, G. Xing, and Y. Tan, “Sgf: A state-free
gradient-based forwarding protocol for wireless sensor networks,”
ACM Trans. Sen. Netw., vol. 5, no. 2, pp. 14:1-14:25, Apr. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1498915.1498920

[71 R. Poonia, A. K. Sanghi, and D. Singh, “Dsr routing protocol in
wireless ad-hoc networks: Drop analysis,” International Journal of
Computer Applications (0975-8887), vol. 14, no. 7, 2011.

[8] A. Hossein Mohajerzadeh and M. Hossien Yaghmaee, “Tree based
energy and congestion aware routing protocol for wireless sensor
networks,” Wireless Sensor Network, vol. 02, no. 02, pp. 161-167,
2010.

[9] D. Kumar, T. C. Aseri, and R. B. Patel, “Eehc: Energy efficient het-
erogeneous clustered scheme for wireless sensor networks,” Computer
Communications, vol. 32, no. 4, pp. 662-667, 2009.

[10] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, ‘“Pump-slowly,
fetch-quickly (psfq): A reliable transport protocol for sensor net-
works,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 4, pp. 862-872, 2005.

[11] D. Puccinelli and M. Haenggi, “Arbutus: Network-layer load balancing
for wireless sensor networks,” in 2008 IEEE Wireless Communications
and Networking Conference, 2008, pp. 2063-2068.

[12] F. Bergner, P. Mittendorfer, E. Dean-Leon, and G. Cheng, “Event-
based signaling for reducing required data rates and processing power
in a large-scale artificial robotic skin,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2015, pp.
2124-2129.

[13] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-
Luna-Aceves, “A loop-free extended bellman-ford routing protocol
without bouncing effect,” ACM SIGCOMM Computer Communication
Review, vol. 19, no. 4, pp. 224-236, 1989. [Online]. Available:
http://www.cs.cmu.edu/~srini/15-744/papers/_Cheng.pdf

[14] E. Dean-Leon, B. Pierce, P. Mittendorfer, F. Bergner, K. Ramirez-
Amaro, W. Burger, and G. Cheng, “Tomm: Tactile omnidirectional
mobile manipulator,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 2441-2447.

[2

—

[3

[t}

