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People as Sensors: Imputing Maps from Human Actions
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Abstract— Despite growing attention in autonomy, there are
still many open problems, including how autonomous vehicles
will interact and communicate with other agents, such as human
drivers and pedestrians. Unlike most approaches that focus
on pedestrian detection and planning for collision avoidance,
this paper considers modeling the interaction between human
drivers and pedestrians and how it might influence map
estimation, as a proxy for detection. We take a mapping inspired
approach and incorporate people as sensors into mapping
frameworks. By taking advantage of other agents’ actions, we
demonstrate how we can impute portions of the map that would
otherwise be occluded. We evaluate our framework in human
driving experiments and on real-world data, using occupancy
grids and landmark-based mapping approaches. Our approach
significantly improves overall environment awareness and out-
performs standard mapping techniques.

I. INTRODUCTION

Despite growing attention in autonomous driving, there are
still many open problems, including how autonomous vehi-
cles will interact and communicate with human agents [1].
These concerns are particularly important when considering
vulnerable users like pedestrians [2]. Although there has been
some work in vehicle control in the presence of pedestrians,
the majority of research has been focused on improving
perception for pedestrian detection [3]-[5].

While detection is important for a complete autonomous
system, this paper considers a specific scenario concerning
the interaction between pedestrians and drivers, and exam-
ines how that interaction might influence map estimation, as
a proxy for detection. Such a scenario is shown in Figure [I]
In this scene, a pedestrian may be starting to cross the street.
From the perspective of the red car, the human is occluded.
We examine how to take advantage of other agent’s actions
to infer the presence of a pedestrian despite occlusion. We
present an approach based on a map estimation framework.

Mapping in mobile robotics refers to the process of repre-
senting an agent’s environment. Based on this representation
of the environment, the agent can make intelligent decisions
on how to behave in and interact with the environment. In
our scenario, the agent is the ego vehicle.
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Fig. 1: Motivating example of occluded pedestrian. (Left) Topview
showing the red ego vehicle, the black car causing occlusion, and
the hidden pedestrian. We model the actions of the black car as
sensor inputs. (Right) Viewpoint from the red car (ego vehicle),
showing that the pedestrian is occluded.

One common representation of the environment is the
occupancy grid map. The occupancy grid map represents
the environment as a grid of cells whose occupancy is
modeled by independent binary random variables [6]. The
occupancy grid map allows for tractability in representing
large environments with considerable amount of detail and
provides a starting point for more advanced representations.
Another type of map representation is the sparse feature-
based landmark map, which only represents key objects in
the environment [7]. There are many more representations,
many of which are more detailed (e.g. point-clouds and
textured meshes), yet require more computational resources
[8]. The particular choice of representation is dictated by
the environment, computational resources, and how the map
representation will be used to make decisions.

Common to all these representations is the need for sensor
modeling. Sensor models are regularly derived from physical
properties of how the sensor in question works. For example,
the pinhole model is used for visual cameras and beam
models for LIDAR and ultrasound sensors [9].

In this work, we exploit the fact that, aside from the
physical interaction of energy (e.g. light and sound) with
the environment, the actions of other intelligent agents also
give us useful information about the environment. As such,
we derive a data-driven behavioral model for agents in the
environment and incorporate these people as sensors.

Behavioral driver modeling is an active area of research in
many different applications, ranging from driver assistance
systems to improved interaction for autonomy [1], [10], [11].
In [12], the mapping of the environment state was learned
with respect to the states of the surrounding vehicles. These
influences can also be learned by estimating the cost function
of the driver, which can determine what actions the driver



might take given some feature representations [13]. Driver
models specifically considering pedestrian interactions have
also been developed [14]-[16].

Few approaches have directly modeled the external influ-
ences of driver behavior in a manner that is amenable to
improving environment estimation. Map-based approaches
require directly modeling the connection between observable
states of the vehicle (i.e., that which can be observed from a
nearby vehicles) and the belief over the environment. In this
work, we focus on developing a driver model that can act as
a sensor for the environment. We apply learning techniques
to approximate the distribution over pre-determined driver
behaviors given a map representation. From this, we integrate
the sensor model into mapping frameworks to improve our
overall awareness of the environment. This paper presents
four key contributions:

1) We introduce and formalize the concept of people as
sensors for imputing maps;

2) We conduct an experiment with human drivers in
a vehicle simulator to collect data on interactions
between drivers and pedestrians;

3) We demonstrate improved environment estimation us-
ing occupancy grids on the collected data; and

4) We modified pedestrian motion estimation and pre-
diction with the landmark representation of mapping,
which we test on a real-world dataset.

This paper is organized as follows. The methodology used
to integrate driver models and mapping is summarized in
Section The experimental setup for the user studies is
described in Section Section [III-B| presents our results
using our dataset. This method is also validated using an
existing real-world dataset in Section[[V] Section[V]discusses
our findings and outlines future work.

II. METHODS

This section provides a brief overview of mapping and the
methods used to incorporate people as sensors.

A. Mapping Preliminaries

Let M represent the space of maps. A map m € M
represents a possible state of the environment. In addition, let
x1.; represent relevant information about the mobile agent up
to time ¢ (e.g., pose) and z;.; represent information about the
physical state of the environment up to time ¢, (e.g., position
of other vehicles in the environment). Then, the problem of
mapping can be formulated as estimating the posterior belief
at time ¢, p;(m | 1., 21.¢), over the space of maps M.

The choice of environment representation largely deter-
mines which algorithm to use to estimate p;(m | 1.4, 21.¢).
In this paper, we have chosen to represent the environment
using two different approaches, depending on the structure of
the data. We examine applying the people as sensors frame-
work to (1) mapping the world using occupancy grids and (2)
using a collection of sparse landmarks in the environment.

1) Occupancy Grid Maps: When the environment is
represented using an occupancy grid, the world is a set
of binary random variables arranged in grids. Each random
variable indicates whether or not its corresponding grid cell
is occupied. Therefore, each map m is a realization of a set
of binary random variables. If we denote the value of the
grid cell with index i as m;, then m = {m; };—1.,, where n
is the number of grid cells used to represent the world.

Unfortunately, this choice of representation results in a
space of maps that grows exponentially with the number
of cells. However, most mapping algorithms make a further
assumption of statistical independence between each binary
random variable. Due to this assumption, one may compute
the posterior belief over the space of maps M as:

n
pe(m | 21, 210) = [ [ or(mi | 214, 2140), (D
i=1
leaving us to focus on the simpler and more tractable task
of estimating p;(m; | @1.,21.t). Further, we make the
simplifying assumption that the state of the world at any
time ¢ only depends on data obtained at time ¢. This is a
reasonable assumption, given rich enough sensor and mobile
agent information at time t. As such, we may write that:

pr(m | X1, 21:) = Hpt(mi | T, 2¢). 2
i=1

To compute p;(m; | z¢, z:), we make use of the mapping
algorithm presented by Thrun et al., [9]. Occupancy grids
are typically used for mapping in static environments. The
application of our work focuses on non-static environments,
including moving vehicles and pedestrians. Consequently,
we modify the traditional mapping algorithm by removing
the time dependence across maps, thus taking a one shot
approach with no prior knowledge of the environment. How-
ever, if some domain specific knowledge about the dynamics
of the environment is known, it can be incorporated into
pt(m; | ¢, 2:) through a transition function that links the
previous state to the current state.

2) Landmark Representation: When the environment is
represented as a collection of sparse landmarks, the world
can be viewed as a collection of salient points in the
environment (e.g., people, vehicles, key buildings and natural
objects). These salient points are termed landmarks, and the
mapping task is to estimate the state of these landmarks given
data obtained from sensors. Typically, the state of most inter-
est is the pose of these landmarks. This approach represents
the map m as a collection of k landmarks {; };—1.x, so that
now, m = {&}i—1.%.

In this work, we have chosen to use pedestrians as
landmarks. The state of interest is their position on the
2D floor plane. Concretely, & € R2. One could make use
of a Kalman filter to estimate p;(m | x1.,21.¢), but the
publicly available dataset this model was tested on did not
contain enough information to do this. Alternatively, since
we are interested in modeling the position of the pedestrian
in cases where they are occluded, we have assumed a uniform



distribution for p;(m | 1.4,21.¢). This simple approach
represents the fact that when the pedestrian is occluded, we
may have no information about its possible location due to
the unpredictability of human behavior.

B. Integrating Humans in Mapping

One of the main contributions of this paper is the use
of human models as a source of sensor information. We
argue that the actions of intelligent agents, specifically other
drivers in this scenario, are a ubiquitous source of rich
information that should not be ignored. However, it is also
important that this information be incorporated appropriately
with other sources of information, since human agents are
highly uncertain and are difficult to model.

Given data on human driver behaviors a, from a set A, we
may reformulate the mapping problem as estimating p;(m |
Z1.t, 21:t, A1), where aq.; is a sequence of observed data on
human drivers up until time ¢t. We will subsequently refer to
this human behavior data as an action.

While this idea is indeed general, we restrict ourselves
to the case where we only observe actions from the closest
driver in front of our ego vehicle. In future work, we will
extend formulation to the scenario with multiple driving
agents and lanes.

Building on the formulation discussed in the previous
section, we estimate p;(m | 1.+, 21.¢, a1.¢) by using Bayes’
rule to fuse information obtained from driver data with our
map estimate obtained using . Thus, we have:

pe(m | 214, 2104, a1:4) =
pe(ars | M, 210, 21.4)pe(m | T1:4, 2124)
pelars | 214, 21:4)

As before, we assume that the state of the world at any
time ¢ only depends on data obtained at time ¢. Though this
assumption may seem restrictive, in practice, we use actions
obtained at time ¢ that contain a history of observed behavior
that inherently incorporate sequences of actions.

We also assume that given a representation of the world,
the behavior of the human driver does not depend on the
pose of our mobile agent or our sensor information. While
this generally might not be true, in the specific context of
our application, this assumption is valid due to the relative
positioning of the agents. Taking into account the recursive
influences is left as future work. Given these assumptions,
what we seek to estimate is:

3)

pi(ag | m)p,(m | 24, 2)
pi(ar)

In the case where the world is represented as an occupancy
grid, we have used a driver model p;(a; | m;) that depends
on each grid cell and fused the information from the driver
to estimate:

4)

pe(m | T, 218, A1) =

pe(ar | mi)pe(m | @, 20)
pe(ar)

We then make use of (2)) to obtain p;(m | ¢, z¢, at ). The next

section explains in detail how we obtain the driver model

pe(ay | m).

(&)

pt(mi | $t72t,at) =

C. Sensor Models for Drivers

To model the driver as a sensor, we must learn a function
that takes in map data and outputs a probability distribu-
tion over actions that the driver may take. Our proposed
framework is general enough to handle both the occupancy
grid and the landmark formulation, depending on the type of
driving data used to learn the sensor model.

We evoke concepts from discrete choice theory, a tool from
economics that aims to describe, explain, and predict choices
between discrete alternatives [17]. We assume we have a
discrete set of actions that is both exclusive and exhaustive,
meaning that the driver must pick one and only one of the
defined actions.

1) Likelihood of Actions from Occupancy Grids: Sup-
posing we have a finite collection of driver actions A and
the assumption that each cell in the grid is an independent
Bernoulli random variable, we can approximate the proba-
bility of an action given the state of cell m; empirically.
For each action, we denote this empirical distribution as
pn.(a | m;), where N is the total number of trials and
a is the action in set A.

We employ this method on simulation dataset from which
we are able to extract the relative position of the human
driven vehicle to the crosswalk along with its velocity and
acceleration information. We seek to learn the distribution
over this data given the current map.

Given that learning the high-dimensional distribution is
computationally difficult and data intensive, we make a few
simplifications to the problem. Rather than learn over the
space of all positions, velocities and accelerations, we instead
define a finite collection of representative samples of this
space observed during experiments.

To determine what these samples should be, we cluster
over the data containing the current distance between the
human driven vehicle and the crosswalk, and ten evenly
spaced samples of both velocity and acceleration over the last
half second. We use k-means clustering algorithm to identify
k natural groupings in the data. These can be thought of as
“actionlets” that correspond to typical sequences of driver
behaviors. We then define these clusters as the set of possible
actions we may observe. In this work, we make set £ = 10
as prescribed by grid search.

In doing this, we can easily learn the probability distribu-
tion over actions given map data, giving us an approximation
of P, (ar | m;).

2) Likelihood of Action from Landmarks: Using the land-
mark interpretation of the mapping problem, the sensor
model of the driver must be approximated as the probability
of an action given the position of the landmark obstacle. To
do this, we apply the logit model from discrete choice theory
to find this mapping [17].

Previous work has demonstrated that this method can
determine driver actions and intent with high accuracy [12].
This approach employs the EM algorithm to iteratively find
the optimal linear combination of features in the dataset
to estimate the probability of an action given some map
configuration: p;(a; | m).



We employ this method on a real-world dataset. While
this dataset does not provide access to the vehicle state
information, it alternatively provides descriptions of the ego
vehicle’s velocity profile that are consistent with actions used
in the literature [18]:

1) Moving Fast: The vehicle is moving at a speed above
predetermined threshold.

2) Moving Slow: The vehicle is moving at a speed below
predetermined threshold.

3) Accelerating: The vehicle increasing its speed.

4) Decelerating: The vehicle is decreasing its speed.

5) Stopped: The vehicle is stopped.

We make use of these descriptions as actions. Given that
these actions inherently take into account time (e.g., moving
fast indicates a high constant velocity for a period of time)
we do not consider the the sequences of actions over time
and only estimate the map given the last observed action.

III. CASE 1: OCCUPANCY GRID FORMULATION

We first evaluate our conceptual framework on the map
representation of occupancy grids. In this test case, we carry
out a user study to collect ground truth information about
the state of the world, which is easily translated into the
discretized space of occupancy grids.

A. Experimental Setup

In order to build the driver model for mapping purposes,
training, testing, and validation driving data is required. For
the scenario considered, there are few publicly available
datasets that provide the quality of data required for map-
ping and driver modeling purposes. Section [[V] presents the
formulation and results on one of these real-world datasets.

Due to lack of available data with full information about
the vehicle and environment states, a new dataset was
collected to study driver pedestrian interaction. Driver data
was collected using PreScan, an industry standard simulation
tool that provides vehicle dynamics and customizable driving
environments [19]. Using a force feedback steering wheel
and pedals for the subject to control the human-driven
vehicle, we created various intersection scenarios in which a
pedestrian might appear, as shown in Figure 2]

In each trial, the human-driven vehicle began approaching
an intersection at an initial distance dy and speed vy. The
pedestrian motion was designed to recreate typical pedes-
trian behaviors. After appearing from behind an occluding
obstacle at randomized velocity, the prescribed behaviors
included boldly crossing the road, waiting to cross until the
approaching vehicle slowed down, and just standing at the
side of the road. To discourage anticipating the pedestrian
motion, the pedestrian did not appear in half of the instances.

Five subjects each completed approximately one hour
of experiments. In each trial, the subject was asked to
maintain a constant velocity between 10 and 15 mph and
stay in their lane, if possible. This resulted in 1,440 example
interactions each lasting approximately 5 to 10 seconds,
recorded at 30Hz. From this, we generated a total of 281,506
maps to build our sensor models and test our mapping.

Fig. 2: Visualization of the driver view from the experiment. As
the driver approaches the crosswalk, there is a chance a pedestrian
obstacle will appear from behind the bus stop.
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Fig. 3: Illustrative example of input and output of the driver model.
(Left) Sample occupancy grid for the region in front of the vehicle
(i.e., grid location (2,6) is directly in front of the vehicle), where
an occupied space is far ahead and to the right of the vehicle at
(3,2). (Right) Probability distribution over possible semantic actions
given the occupancy map on the left.

Twenty percent of this data is used to generate the learned
distribution over actions.

For each trial, we collected: the human driven vehicle
states and inputs, and the ground truth position of the pedes-
trian. Using this data, we created a ground truth occupancy
for the region in front of the human driver that would be
occluded for our ego vehicle. The occlusion is determined
using a simple lidar model to determine what the closest
obstacles are in the 360° view. We assume only some of
the vehicle states are observable from the ego vehicle (i.e.,
relative position and velocity, distance to crosswalk).

Using the actions defined in Section I, we train a sensor
model that maps the ground truth occupancy grid and sensor
measurements to a distribution over actions; this human
driver model can then be used to impute the occupancy map
from observed actions. An example occupancy grid input and
the associated action distribution is shown in Figure [3]

To reiterate, we consider a scenario with three agents: the
ego vehicle, the human driven vehicle, and the pedestrian, as
visualized in Figure [T} The ego vehicle observes the human
driven vehicle that is occluding the pedestrian. Based on
the observed actions, we construct a posterior belief across
possible maps.
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Fig. 4: Two example comparisons of occupancy grids generated by our method and a standard occupancy grid algorithm. Darker regions
indicate greater confidence of occupancy. The orange and blue car icon represent ground truth positions of our ego vehicle and obstructing
vehicle, respectively. The pedestrian icon indicates the ground truth position of the pedestrian. In the left image, the obstructing vehicle
is observed increasing its velocity while in the right image the obstructing vehicle is observed slowing down.

B. Evaluation Metrics

We tested our work on multiple scenarios from our ex-
perimental dataset. As stated previously, each scenario is
composed of three agents, an ego vehicle in one lane, a
human driven vehicle in the other lane causing the occlusion,
and a pedestrian. The ego vehicle was set to follow a constant
velocity trajectory behind the human driven vehicle in the
second lane (see Fig. [I). To evaluate the occupancy grids
generated by our approach, we made use of the Image
Similarity metric.

The Image Similarity metric, 1, is used to evaluate the
similarity of an occupancy grid to an ideal or ground truth
measurement [20]. This metric is computed as:

W(A,B)= Y d(A B,c)+d(B,Ac) ©)
ce{0,1}
where
d(A, B,c) =
#Cl(A) > min {[|g(i) — gl : Blil =¢} (D)

Ali]=c

where A[i] is the occupancy value at grid cell 4 in map A, g(-)

returns the 2D coordinates of grid cell 4,5 € {1,2,...,n},

[|-]|1 gives the Manhattan distance between coordinates, and

#.(A) is the number of cells in A with occupancy values c.
To make use of v, we indicate the occupancy value of each

cell by thresholding the probability p;(m; = 1|x1.¢, 21.) as

follows:

A[Z} 1 lf pt(mi = 1|m1:t721:t) Z 0.6

0 if ps(m; = 1|z1:4, 21:¢) < 0.6

C. Results

We compare our results to a standard occupancy grid map-
ping algorithm that does not incorporate information from the
actions of other drivers and to ground truth measurements.

We refer to the results from the standard occupancy grid
algorithm as “Standard Grid.”

Figure [4] shows sample results based on using occupancy
grids to represent the environment. The orange and blue
vehicle icons indicate the ground truth positions of the ego
vehicle and the human-driven vehicle respectively, while the
pedestrian icon indicates the ground truth position of the
pedestrian. In these scenarios, the pedestrian is occluded
from the view of the ego vehicle by the human-driven
vehicle in the scene. Consequently, there is large uncertainty
concerning the position of the pedestrian using the Standard
Grid. Although we do not observe the pedestrian, we observe
the behavior of the human-driven vehicle. By incorporating
this information, our driver model is able to help us reason
about the likely positions of the pedestrian. Our algorithm
can reduce the uncertainty present and provide a more
accurate prediction about the position of the pedestrian.

Quantitatively, we applied the metric presented in the
previous subsection to compare our work to the Standard
Occupancy Grid. Table [l and Figure [5] show the average
scores under the Image Similarity metric, where ¢ = 0
indicates the beginning of the trials, ¢ = 7'/2 indicates the
middle of each scenario, and and 7T indicates the end of each
scenario. The mean and standard deviation of the results over
time are shown in Figure [5] Our work does significantly
better than the standard occupancy grid approach

TABLE I: Image Similarity Results for Occupancy Grid Approach.

Avg. t=0 t=T/2 t=T
Standard grid  1.085 1.863 1071  0.377
Our work 0.169 0218  0.068  0.289

'We note that while these results show results overall drivers in the
study, we also examined individual driver models. The individual metrics
exhibited similar trends to the overall metrics, except for two drivers which
had significantly better performance near ¢t = 7.
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Fig. 5: Comparison of Image Similarity scores between the oc-
cupancy grid generated by our work and the standard approaches.
Lower scores imply better matching. Plots show the mean for the
two methods along with the standard error. Our method exhibits
significant improvement to the standard occupancy map.

IV. CASE 2: LANDMARKS IN REAL-WORLD DATASET

We attempted to assess our framework on a more realistic
scenario by testing on a real-world dataset for pedestrian
interaction. Ideally, we use a dataset with a substantial
amount of pedestrian interactions, ground truth estimates of
vehicle and pedestrian locations over time, and annotations of
driver actions. Many of the public datasets do not meet these
requirements. The Joint Attention in Autonomous Driving
(JAAD) dataset centers on driver-pedestrian interaction, but
provides only partial information about the state of the world
through semantic action labels and approximate position
estimates, making occupancy grids difficult to consider with-
out substantial assumptions [21]. Taking these restrictions
into account, we modify our mapping pipeline to one that
estimates landmarks that may be occluded, and demonstrate
that our framework can be applied to many different settings
if context can be taken into account.

A. JAAD Dataset of Pedestrian Interactions

We use the JAAD dataset, which consists of 346 high-
resolution video clips, lasting approximately 5 to 10 seconds
each, that are representative of possible crosswalk scenes
that often occur in urban driving. These clips are annotated,
providing labels associated with the driver and pedestrian
actions as well as bounding boxes of detected pedestrians
[21]. No vehicle state information (e.g., position, speed,
acceleration) is provided with this dataset.

From the pedestrian’s bounding box, we estimate the
person’s position relative to the vehicle camera housing to
generate an approximate map for each frame. Given the
assumptions required to get this estimate, we assume a
Gaussian distribution over our estimates, making this partial,
noisy data more inline with the landmark philosophy.

From this dataset, we extract a total of 76,514 samples to
train and test our model from. The logistic regression model
is trained on 20% of the samples to find the relationship

Fig. 6: Example image from JAAD Dataset with the pedestrian in
a labeled blue bounding box [21].

between the action and relative position. An example image
and map data are shown in Figure [f]

B. Results

Using the driver model learned from the JAAD dataset,
we predict the location of the pedestrian as a landmark,
as described in Section We assume an uninformed (i.e.,
uniform) prior over the occluded space, and show how the
output of our algorithm provides a posterior distribution
conditioned on the human driver actions that can improve
the estimation of the pedestrian’s location. To evaluate the
improvement that the map generated by our landmarks model
of the environment provides, we compare the likelihood of
the pedestrian’s true location in the posterior distribution to
the prior distribution.

The results of our approach compared with the uniform
prior are shown in Table Figure [7] presents a sample
output of the our work using the landmark representation and
that of the uniform prior. The orange and blue vehicle icons
represent the ground truth positions of the ego vehicle and
the human-driven vehicle respectively, while the pedestrian
icon represents the ground truth position of the pedestrian.

Once again, in this scenario, the pedestrian is occluded
from the view of the ego vehicle. The plots in the figure
represent the estimated posterior density of the position of
the pedestrian, with darker regions indicating higher density
values. As shown, by incorporating the driver model learned
from data, our work is able to predict the likely position of
the pedestrian during occlusions.

Our method provides useful predictions in a majority
of the actions and is most informative in safety critical
situations. The scenarios where our methodology is less
informative are intuitive if we consider how drivers behave

TABLE II: Evaluation Metric on JAAD Dataset showing the
probability of observing the pedestrian at ground truth location for
each action.

Action Uniform Prior  Our Work  Improvement Ratio
Moving Fast 0.064 0.002 -0.963
Moving Slow 0.064 0.027 -0.569
Accelerating 0.064 0.067 0.049
Decelerating 0.064 0.080 0.242
Stopped 0.064 0.257 3.040
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Fig. 7: Example comparison of landmark map generated by our
method versus using a uniform prior over possible locations,
where the obstructing vehicle is stopped. White space indicates
un-occluded regions. Darker regions indicate greater belief in the
pedestrian position. The orange car, blue car, and pedestrian icons
represent ground truth positions of our ego vehicle, obstructing
vehicle, and pedestrian, respectively.

in the real-world. When we drive and observe other drivers
maintaining a constant speed, we gain little insight about
occluded obstacles. We observe from the driver model de-
rived from the JAAD dataset that the two constant velocity
actions (moving fast and slow) are not informative without
detailed contextual information. Further, since we partition
the dataset to only consider samples where the pedestrian
might be occluded, these two actions are underrepresented
relative to the other labels. Because of these points, our
approach only exhibits improved performance on a subset of
the actions. The authors are of the opinion that with ground
truth position information and more evenly distributed data,
significantly better improvements can be obtained as was the
case in the simulated environment.

V. DISCUSSION

By exploiting the actions of other intelligent agents, a great
deal of information can be inferred about the environment.
We have presented a methodology that uses driver models
as sensors to impute maps that can be used to improve
planning in the face of uncertainty. Thus, regions of the map
that would otherwise be occluded can be imputed, providing
an estimation of the environment’s state. We validate this
concept on two different map representations and datasets,
demonstrating significantly improved performance over stan-
dard mapping techniques.

While we have presented promising results on an in-
teresting case study, there is a great deal of future work
to be done. First, given the data-driven method of this
framework, there is a strong dependence on the underlying
data, scenes, contexts, and semantics that are represented.
Expanding this work to more scenarios and contexts is key
for making sure this works in a real-world scenario (e.g.,

complex intersections and crosswalks, jaywalking, general
driving, etc.). In addition, we wish to investigate how to relax
time dependence assumptions by incorporating suitable data-
driven transition models. Finally, we believe the community
would benefit from collecting datasets germane to tasks
presented in this work. Such datasets would allow stronger
comparisons and provide a better sample coverage, thus
allowing for better generalization in unseen scenarios.
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