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Contact Skill Imitation Learning for Robot-Independent Assembly
Programming

Stefan Scherzinger1, Arne Roennau1 and Rüdiger Dillmann2

Abstract— Robotic automation is a key driver for the ad-
vancement of technology. The skills of human workers, however,
are difficult to program and seem currently unmatched by tech-
nical systems. In this work we present a data-driven approach
to extract and learn robot-independent contact skills from
human demonstrations in simulation environments, using a
Long Short Term Memory (LSTM) network. Our model learns
to generate error-correcting sequences of forces and torques in
task space from object-relative motion, which industrial robots
carry out through a Cartesian force control scheme on the
real setup. This scheme uses forward dynamics computation
of a virtually conditioned twin of the manipulator to solve
the inverse kinematics problem. We evaluate our methods with
an assembly experiment, in which our algorithm handles part
tilting and jamming in order to succeed. The results show that
the skill is robust towards localization uncertainty in task space
and across different joint configurations of the robot. With
our approach, non-experts can easily program force-sensitive
assembly tasks in a robot-independent way.

I. INTRODUCTION

The robotic automation of assembly tasks is one of the
oldest fields of robotic applications and has challenged
engineers and scientists ever since. In the domain of robotic
assembly, having generalized strategies has been a strong
incentive, since it would enable to program many robots in
short time by effectively re-using solutions. However, highly
varying system dynamics usually require specific strategies
to deal with part tilting and jamming during execution, and
are difficult to generalize to other robots and work postures.
In this work, we propose a data-driven approach to obtain
contact skills that encapsulate human manipulation strategies
that we extract from demonstrations in simulation. Robots
can then execute these skills with a common force-control
interface.

Flexible automation and intelligent robots in industry have
been considered for decades to be substantial for industrial-
ized countries [1], [2]. Towards this goal, works investigated
the mechanics of assembly to derive general analytic solu-
tions and principles, e.g. to handle friction [3], part jamming
that arise through sensor imprecisions [4], or targeted planar
parts with compliance parameter optimization [5]. Contacts
and contact transitions have been investigated between ma-
nipulation objects [6], [7], whose semantic information can
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speed-up the design of compliant motion for robot end-
effectors in contact with their environments [8]. Following
the task-level approach, works used primitives to compose
skills, e.g. by formulating position-force commands, such as
’rotate to level’, ’rotate to insert’ [9], or concatenating senso-
rimotor primitives [10], [11], using human inspired recipes
[12] or formulating elementary actions in the task frame [13].
The idea of elementary skills has still gained some interest in
recent works [14], [15]. However, the ingenuity of finding the
primitives that apply best in certain situations and parame-
terizing them often means a considerable engineering effort,
leaving the cognitive performance to the programmer and
not to the system. Humans are remarkably skilled workers
and join assembly parts with ease, although not necessarily
using analytical representations, such as contact states [16].
However, it is not intuitive for us to describe how we deal
with tilting and jamming or what strategies we deploy upon
getting stuck. Following this insight, human performance can
directly be used to obtain skills through imitation learning,
such as in Programming by Demonstration (PbD) 1 [17],
[18], [19], with applications for general object manipulation
[20], [21], [22], and industrial assembly processes [23],
[24]. Contrary, approaches have shown promising results
on contact-rich manipulation tasks without human input
[25],[26], also with very tight clearances [27]. Transferring
the solutions to arbitrary poses in the workspace or even
to other systems, however, requires the training of a new
controller, even if initial trajectories are provided [28].

In this work, we aim at developing force-based contact
skills to handle jamming and tilting effects that are portable
to different robotic manipulators, and can, once learned,
serve as robot independent skills for a specific assembly
task. To this end, we train a recurrent neural network to learn
human-like manipulation strategies from human performance
in simulation, and relate those to the relative object’s geom-
etry in task space. In contrast to related works, our model
predicts sequences of forces and torques, which serve as
reference set point for a Cartesian force-control of position-
controlled robots, which we build upon the idea from an
earlier work [29].

The remainder of the paper is as follows: In II we discuss
related work and motivate our approach, which we explain
in detail in III for our contact skill model, and in IV for the
robot-abstracting force-control. V shows our experiments and
results. In VI we discuss final aspects and conclude in VII.

1Also Learning from Demonstration (LfD)



II. RELATED WORK

Imitation learning of human assembly skills has been
tackled with various approaches, such as using teleoperation
[30], [23], [24], teaching with a haptic device [31], direct
kinesthetic manipulator guiding [32] or the explicit usage of
simulation to record human performance, [33], [34], [35],
[36]. Our work incorporates both the idea of teleoperation
for human skill extraction and the advantage of simulation
to acquire numerous samples in short time, using Long
Short-Term Memory (LSTM) [37] as a method to model
assembly sequences. A similar approach has been used by
Rahmatizadeh et al [38] to learn basic manipulation skills
with a gamepad, albeit not explicitly targeting contact skill
dominated scenarios or robot transfer.

Early proposals for the usage of simulation are from Ogata
and Takahashi [33] and Onda et al [35], [34], in which
they used a robotic manipulator as teach device to steer
objects in simulation with the aim to extract the visiting
of contact states during assembly. They later derived hybrid
position/force commands, using the work of Hasegawa et al
[9]. Skubic et al [31] learned mappings from sensor forces
to contact formations directly, obtaining samples via a haptic
device. After classifying sequences of those formations, they
commanded the robots with velocities using a finite state
machine. In a similar approach, Dong et al [36] relied on
performance in a virtual environment to identify the contact
states with a Hidden Markov Model (HMM). They used
Locally Weighted Regression (LWR) to learn rotation angle
correction trajectories for a 3 DOF (Degree of Freedom) task.

Krueger et al [23], and later Savarimuthu et al [24] used
magnetic trackers in the assembly objects to record Cartesian
trajectories during assembling the Cranfield benchmark set.
The robot imitated the human performance in teleoperation
mode on a twin of the assembly setup, while recording
the forces with the robot’s end-effector sensor. Instead of
requiring special setup for the skill extraction, Kramberger
et al [32] directly guided a light-weight robot during the task,
recording Cartesian trajectories and force profiles, which
were then generalized, using Locally Weighted Regression
(LWR).

In contrast to those works, we steer the assembly objects
directly with forces and torques, both during the acquisition
of training data and during the execution on the robotic
system. There are two main reasons for this choice: First,
learning mappings from object’s geometry to sequences in
wrench space allows us to cope with various disturbances
(self-provoked or external), by continuing our work from
multiple entrance points. Ideally, we plan to recover from
arbitrary, relative object poses. Second: Commanding in
wrench space allows us to scale the output of our model
easily without changing its semantics. Both require an in-
terface to gravity-compensated force control on the robot as
described in section IV.

Human performance

desired
wrench

Recurrent Neural Network

Physics simulation

Active assembly object

(a)

(b)

Fig. 1: Skill extraction. (a) Users solve the task by steering the
objects with a teach device, using the simulation’s rendered world
as feedback for their actions. (b) For a successful assembly, users
must correct tilting and jamming of the parts that occur due to
friction and small clearances of the setup.

III. MODEL

A. Skill extraction

We consider the task of learning assembly skills from
human performance in simulation. To this end, we assume
that the geometry of all objects involved in the task is
known, and we model the assembly parts as rigid bodies
with collision physics in a zero gravity environment as shown
in Fig. 1 for an exemplary box assembly. We find that the
features mentioned are common place for most robot simu-
lation environments, such as Gazebo [39], which we use for
our simulations. Note that our approach does not necessarily
require realistic mass nor inertia parameters of the objects,
which, in contrast to geometry, could be difficult to obtain.
Approximate values are sufficient, as long as steering the
objects in simulation feels natural and responsive enough.
For the active object, we impose a velocity proportional
damping according to(

I3×3dlin 0
0 I3×3drot

)
ẋ+ fd + f c = 0 (1)

in which ẋ = [ẋ, ẏ, ż, ṙx, ṙy, ṙz]
T is the floating part’s

6-dimensional velocity with linear and rotary compo-
nents, dlin, drot are linear and rotary damping, fd =
[fx, fy, fz, tx, ty, tz]

T is the wrench of forces and torques
applied to its center of mass by the user via the teach device
and f c is a physics engine controlled wrench to maintain
contact stability and prevent objects from penetrating.

While applying forces and torques to objects is an es-
sential feat of physics engines, it is commonly difficult to
obtain realistic contact forces of those objects with virtual
sensors, due to approximations of friction for rigid bodies



and numerical constraint instabilities. Our idea was therefore
to avoid the dependency of those forces as input features to
our neural network: The users correct the outcome of their
force-based actions through observing the rendered world in
simulation. We did not include any other visual feedback,
such as plots of force-torque readings. We assume that the
users’ demonstrations in this visual servoing approach con-
tain sufficient semantic information to learn error-correcting
skills relative to the objects. Through this approach, we aim
to prevent depending on force-feedback as input feature that
would be prone to suffering the ”reality gap” when working
on the real system. Still relying on simulation provides us
with a method to carry out a big number of trials as easy as
possible to generate sufficient data for our deep network.

To this end, users steer the active assembly parts with
the help of a teach device, in our case a conventional space
mouse, which we deploy as a sensor for 6-dimensional
motion. We map those inputs to forces and torques, such
that offsets to the sensor’s initial position scale linearly with
the magnitude of the wrench fd applied to the object in
simulation. We continuously record fd along with the target
pose x = [x, y, z, qx, qy, qz, qw] of the final assembly oper-
ation with the orientation given in quaternion notation, and
the objects 6-dimensional velocity ẋ. Note that we transform
and display all quantities with respect to the moving frame
of the active assembly object. The user initiated commands
fd represent expert behavior in each situation, which entail
both micro strategies with short time horizon against getting
stuck at edges and macro strategies with longer time horizon
for more path planning behavior.

B. LSTM-based Contact Skill Models

We use an LSTM-based model (Fig. 2) to learn and
generalize human skills in form of one-to-many mappings.
In contrast to feed forward networks, LSTM cells keep an
internal state, enabling them to learn across various time
steps. More details can be found in the original work [37]
and the refinement [40], which is also the base for the
implementation we use. When using them recursively on
their own predictions, LSTMs have been shown to pro-
duce creative sequences from single inputs [41]. Although
residing in another domain, our application has similari-
ties to this approach: In our work, to a given seed input
- an estimated state in the middle of an assembly op-
eration - our model should generate a creative sequence
that is representative of human behavior in that scenario.
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T
M

Fig. 2: Skill model

Our idea is to drop the model into a
specific situation and let it predict a
meaningful sequence of next steps in
form of forces and torques fd. The
seed input features are composed as
the tuple

[
x0 ẋ0 f

d
0

]
. where the sub-

script 0 shall reflect any starting point
in time from which on a sequence is to
be predicted by our model. We unroll
our network over a number of fixed
steps N both during training and inference. The unrolling
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Fig. 3: Unrolling the neural network over time.
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Fig. 4: Composition of training samples.

procedure is as follows:

y0 =Wi

[
x0, ẋ0,f

d
0

]T
yk = LSTM(yk−1), k ∈ {1, .., N}
pk =Woyk, k ∈ {1, .., N}

(2)

Note that we use the model’s prediction in each step as
the next input, as is shown in Fig. 3. In all unrolled steps,
the LSTMs share the same parameters, which we optimize
together with the input weights Wi and output weights Wo

subject to our loss

L(x0, ẋ0,f
d
0 ,f

d) =
1

N

N∑
k=1

(fd
k − pk)2. (3)

C. Training

Fig. 4 shows the composition of training samples. The
records from simulation and readings from the teach device
form a multitude of demonstrations, each with an individ-
ual temporal length T . The difference in length is due to
non-deterministic human performance throughout the task
and differences in the random starting poses of the active
assembly object. Although the sequences depicted in light
blue decode expert behavior, the commands issued by users
are not optimal and likely contradictory to certain degree.
We assume, however, that they statistically contain sufficient
consensus on ”the correct behavior” in jamming situations.
During training, we take samples randomly from the total
of demonstrations. Each sample is comprised of the input
seed and the following human performance as sequence of
labels. Note that the time span of the sample length N
is smaller than an individual complete demonstration T .
We train the network with Back Propagation Through Time
(BPTT), using mini-batch stochastic gradient descent.
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Fig. 5: Skill model in combination with Cartesian force control. The neural network predicts a sequence of N steps, whose individual
elements fd serve as reference setpoint for the force regulating PD controller. The plant uses realistic manipulator kinematics J , and a
virtually conditioned manipulator inertia matrix H .

IV. ROBOT CONTROL

We consider the class of robots with high-gain position
servo in the joints, which provide an interface for com-
manding feed forward joint trajectories qd(t) with individual
reference set points. We further assume that our robots
possess sensors to measure the wrench fs at their end-
effectors, i.e. at the grasped assembly objects and that they
provide functionality to bias the sensors. This functionality
is important for us in order to replicate the zero gravity
environment we had chosen during the skill extraction in
simulation. Relying on additional sensors is not restrictive,
given that 6-axis force-torque sensors have become widely
available for industrial robots. To derive our control concept,
we start with the common equations of motion for an
articulated rigid body system in joint coordinates q

H (q) q̈ +C (q, q̇) = τu + JTfext (4)

where H(q) denotes the positive definite joint inertia matrix,
C encompasses centrifugal and Coriolis terms, as well as
gravitational forces, and τu denote the motor torques in
the joints of the manipulator. External forces and torques
fext, acting on the end effector map to joint space with the
manipulator Jacobian J(q). We skip the dependency of q
in further notation for brevity. Under the assumption that
we move slowly in contacts and that the robots we consider
already compensate for gravity in their lower level control,
we omit C and τ , such that we obtain

q̈ =H−1JTfext (5)

as an instruction to move according to external disturbances.
In contrast to our previous work [29] we use the approxima-
tion of (5) for the quasi static case. This mapping computes
the instantaneous joint acceleration of our virtual system,
reacting in direction of our wrench vector fd. While J
reflects our real system’s kinematics, we chose H by setting
the masses of all links to some unit values. Note that we do
not estimate the real system dynamics. Instead, we follow the
idea from [29], and deploy (5) as a forward dynamics solver
for the inverse kinematics problem on a virtually conditioned
twin of the real manipulator. After double time integration
we obtain the new joint commands qd, which we sent open-
loop to the black box control of the robot, whose low-level
joint position servo compensates for dynamics-introduced

Fig. 6: Coordinate systems and transformations to describe task and
robot relations.

disturbances and gravity. The force-torque sensor’s readings
close the control loop in contacts with the environment. We
discuss limitations of this black box restriction briefly in
section VI.

Fig. 5 depicts the control scheme, in which fd is the feed
forward prediction of the neural network at each time step
and qd is the joint position set point for the robot. The PD
controller regulates f c according to f c = kpe+kdė for each
of the six Cartesian components until fd is equilibrated by
the individual measured components in fs. The gains kp and
kd are, in combination with the chosen dynamics of H , a
partly redundant means to adjust the systems responsiveness.
Our overall incentive is to achieve that the assembly objects
respond equally to fd, both during supervised training in
simulation (without manipulator) and during neural network
controlled execution on real robotic manipulators.

We compute the input features for the neural network
using joint state feedback q, q̇ from the robot. Fig. 6 shows
the reference frames and relationships. In the following
notation, the sub- and superscripts t, e and b stand for
target, end-effector and base respectively. We assume that
an estimation of the final target pose {t} of the assembly
operation is given with respect to the robot base {b}, which
we denote with the homogeneous transformation bTt. Its
ground truth will coincide with the robot’s end effector
pose bTe after a successful task execution. The current end-
effector pose is computed according to bTe = g(q) at every
time step, using the position sensors readings q and a forward
kinematics routine g, which we do not further specify. Using
the inverse of this transform (bTe)

−1 = eTb, the estimated
target pose can be formulated with respect to the moving end-



TABLE I: Specifications of the assembly task setup

cube side plates mockup clearance
edge length thickness diameter trans. rot.

[mm] [mm] [mm] [mm] [deg]
400 4 145 2 0.8

effector frame according to eTt =
eTb

bTt, from which it is
straight-forward to extract our input features in quaternion
notation. Additionally, we compute the current end-effector
velocity Jq̇, and likewise display the solution seen from the
end effector frame, using eRb as the pure rotational part of
eTb.

Deriving the input features for our neural network sum-
marizes as follows:

[x, y, z, qx, qy, qz, qw]
T ←e Tt

[ẋ, ẏ, ż, ṙx, ṙy, ṙz]
T ←

(
eRb 0
0 eRb

)
Jq̇

[fx, fy, fz, tx, ty, tz]
T ← fd

(6)

V. EXPERIMENTAL RESULTS

We conducted a set of experiments to evaluate our ap-
proach of contact skill imitation learning in simulation with
transfer to a real robot.

A. Implementation and setup

We implemented our neural network model in Python,
using the machine learning framework Tensorflow [42], and
implemented the force control from Fig. 5 in C++ as a real-
time ROS-controller for the ROS-control framework [43].
We designed the test setup to include spots for form-closure
effects, such as collisions and jamming during insertion.
We realized this through a set of cube structures with
round plates on the sides, as illustrated in Fig. 7. Table I
summarizes the details of the task setup.

We further chose the Universal Robots UR10 as exemplary
platform for the task transfer, which is a common place,
joint position-controlled, industrial robot. It provided both
the reach and the end-effector load capacity for our task.

B. Contact skill learning

The training samples for the task of our experiments were
generated in the simulation environment as described in III-
A, using a logging rate of 100Hz. We trained on approxi-
mately 1000 demonstrations, each representing a successful
insertion by a human expert, classically lasting between 10 s
and 15 s, depending on the random starting poses. For all
experiments we used 50 cells in our LSTM layer, a mini-
batch size of 512 and sequences of N = 50 steps in
BPTT, corresponding to time slices of 0.5 s in the training
set. We applied Dropout [44] as regularization technique to
prevent our network from overfitting, and used Adam [45]
as optimizer.

We tested the learned skills with bringing the neural
network in a multitude of unseen jamming situations in
simulation and letting it solve the task. Five of these starting

Fig. 7: Starting poses for the experiments in simulation. No manip-
ulator is involved in these experiments.
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Fig. 8: Absolute forces applied by our model along the way to the
goal pose. The curves a - e correspond to the starting poses of
Fig. 7

poses are depicted in Fig. 7. The purple cube was oriented
in such a way that it was mandatory for the model to
retreat and to apply a more sophisticated strategy than
simple goal-directed pushes to succeed. We set the serving
rate of the neural network to 50Hz, covering a time span
of 1 s in simulation. Fig.s 8 and 9 show the course of
the forces and torques as applied by our model along the
Euclidean distance to each goal position (reading from right
to left). We found that the forces rapidly increased at the
beginning of the assembly task, and then characteristically
dropped at approximately 0.25m, which indicates that our
model has learned the correspondence of this part of the
geometry with the difficult initial insertion phase. This hurdle
is located where the edges of the active assembly cube
collide with the side plates in the mockup. The according
plot of torques underlines this assumption: After correcting
the initial orientation, the torques peak again where the
forces drop. This shows the neural network’s effort to get
the insertion right at this point, which it had generalized
from the human demonstrations. Only when successfully
passing this bottleneck was the network more likely to apply
forces of a higher magnitude, which nearly vanish along
with the torques upon reaching the goal position. The results
show that our model has learned from human demonstrations
to cope with jamming situations for this specific task, and
linking its predictions to the relative objects’ geometry.

C. Task to robot transfer

In this experiment, our goal was to transfer the learned
skill to actual hardware and evaluate its robustness with
respect to an imprecise target. To this end, we corrupted
our ground truth bTt of the final assembly with a random
offset in the margin of 50mm linear displacement and 5 deg
rotational displacement, which we applied along random
directions in a multitude of trials. Figure 10 shows an excerpt
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Fig. 9: Absolute torques applied by our model. The curves a - e
correspond to the starting poses of Fig. 7

of the trials in different joint configurations for the robot.
During the runs we let our neural network predict sequences
of 50 steps, which we executed on the robot with our force
control during a constant time window of 2.5 s for each
sequence. The force control was running at 125Hz (0.008 s
cycle time, lower limit for the UR10), obtaining updates fd

to the force regulator every 0.05 s. For this experiment we
constantly scaled the model’s force output with a factor of
1.5 and the torques with 2.0 respectively. We determined the
magnitude in test runs prior to starting the evaluation. Note
that the ability to scale our model in this way provided an
easy and fast mechanism to fine-tune our skill to the real
hardware.

Fig. 11 shows the cumulative histogram (right to left) of
the trials vs. distance to the goal (ground truth). We discon-
tinued the individual executions when our skill model either
made no further progress or when we successfully reached
the goal pose. The curve shows that our model frequently got
stuck at approximately 250mm to the goal position, which
relates to the decisive region, as was also experienced with
the forces and torques from Fig. 8 and Fig. 9 respectively.
Note that all tries except for two were successful after
surpassing this region, as indicated by the almost horizontal
line of Fig. 11. Fig. 12 shows the performance of our model
for random error combinations. The blue circles represent
successful executions. As long as the errors do not exceed
certain ranges, the results indicate a robust performance for
up to five times the linear clearance and three times the
rotational clearance of the task. For further increased errors,
our model still succeeded in some cases, which could be due
to the random error direction being sometimes less severe.
The results show that our skill model for this task, although
purely trained on simulated data, was able to solve the task
on the real hardware, using a robot that was not part of the
learning process.

Videos are included in the supplementary material.

VI. DISCUSSION

A. Robot control

During the experiments on the real platform we antic-
ipated that singularities of the robot kinematics decreased
the performance of the force controller. This would also be
the case for robots with limited morphology. We propose

to compute the kinematic manipulability in the workspace
prior to executing the task and position the robot accordingly.
Additionally, we consider articulated robots with a minimum
of 6-axis for this purpose. We also observed that the force-
torque predictions of our model were partly compensated by
measurements of the force/torque sensor. This was especially
the case when the robot end-effector had rotated strongly
from its taring position. If sufficiently known, the masses
and inertias of the active assembly object could be gravity
compensated during runtime for further improvements.

A control rate of 125Hz is commonly slow for stiff
contacts. To maintain contact stability with our setup, we had
to execute the task at low speeds. Robots with faster read-
write cycles might therefore be more suitable for productive
applications.

B. Skills

The time span of our network’s memory covered only
few seconds during training and inference. Yet, we observed
that the robot’s execution on the setup followed several
longer-term strategies in the neighborhood of tens of seconds.
We address this effect to the chaining of small-scale, local
sequences from the model’s predictions that together form
strategies that are more complex over the course of execution.
By setting the friction conservatively high in simulation,
we motivated the human experts to avoid scratching along
surfaces (because it slowed them down), and instead to
exploit clearance where possible. Our results show that the
demonstrations in simulation contained sufficient contact-
geometry semantics to solve our real-world task, such that
our model could overcome friction on the real setup without
including force-torque measurements in its input features.

C. Scalability of the approach

Although input feature scaling in our network provides
a basic generalization for the size of the objects, we as-
sume limited transferability to objects with highly different
shapes. This is due to the implicit encoding of geometry
in the object-relative poses. However, reusing the network’s
weights in combination with fine tuning for another task is
a promising direction for further research.

Finally, we want to mention that obtaining training data
with the real robot in teleoperation is also feasible with
our approach, but implies more effort for human experts
in obtaining a similar number of labeled executions, albeit
then including real task parameters. Note that although 1000
samples seem much, this corresponds to approximately three
hours in simulation for obtaining a robot-transferable skill
without requiring expertise in robot programming.

VII. CONCLUSIONS

We presented a robot independent method to extract and
learn object-relative contact skills from human demonstra-
tions in simulation, using an LSTM-based neural network.
Our model learned to correct part tilting and jamming in
contacts, which we evaluated on a cube assembly task on
real hardware for different joint configurations. Although



Fig. 10: Skill execution on the UR10. Our experiments included 227 trials with randomly corrupted target poses.
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Fig. 11: Cumulative histogram of trials, summing-up from right to
left.
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Fig. 12: Performance of the skill with respect to localization
errors of the setup. The target poses were corrupted randomly.
The clearance between objects was 2mm and 0.8 grad. The three
classes categorize the individual executions, depending on distance
to the ground truth goal pose. Blue circles represent successful
trials.

solely trained on simulated data, the obtained skills were
carried out robustly by a Universal Robots UR10, which
had not been included in the training process. Excluding real
force-torque sensor measurements from the network’s input
features helped this transfer. An advantage of our method is
the ability to scale the neural network’s predictions without
loosing their semantics: Users can deploy their skills with
reduced magnitudes for safe test runs.
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