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Model Free Calibration of Wheeled Robots Using Gaussian Process
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Abstract— Robotic calibration allows for the fusion of data
from multiple sensors such as odometers, cameras, etc., by
providing appropriate relationships between the corresponding
reference frames. For wheeled robots equipped with cam-
era/lidar along with wheel encoders, calibration entails learning
the motion model of the sensor or the robot in terms of
the data from the encoders and generally carried out be-
fore performing tasks such as simultaneous localization and
mapping (SLAM). This work puts forward a novel Gaussian
Process-based non-parametric approach for calibrating wheeled
robots with arbitrary or unknown drive configurations. The
procedure is more general as it learns the entire sensor/robot
motion model in terms of odometry measurements. Different
from existing non-parametric approaches, our method relies
on measurements from the onboard sensors and hence does
not require the ground truth information from external motion
capture systems. Alternatively, we propose a computationally
efficient approach that relies on the linear approximation of
the sensor motion model. Finally, we perform experiments to
calibrate robots with un-modelled effects to demonstrate the
accuracy, usefulness, and flexibility of the proposed approach.

I. INTRODUCTION

Robotic calibration is an essential first step necessary for
carrying out various sophisticated tasks such as simultaneous
localization and mapping (SLAM) [1], [2], object detection
and tracking [3], and autonomous navigation [4]. For most
wheeled robot configurations equipped with wheel encoders
and exteroceptive sensors like camera/lidar, the calibration
process entails learning a mathematical model that can be
used to fuse odometry and sensor data. In the case when
the motion model of the robot is unavailable, due to some
unmodelled effects calibration involves learning the rela-
tionships that describe the sensor motion in terms of the
odometry measurements. Precise calibration is imperative
since calibration errors are often systematic and tend to
accumulate over time [5]. Conversely, an accurately speci-
fied odometric model complements the exteroceptive sensor,
e.g. to correct for measurement distortions if any [6], and
continues to provide motion information even in featureless
or geometrically degenerate environments [7].

Traditional approaches [8], [9] for calibration of wheeled
robots focus on learning a parametric motion model of the
robot/sensor. A common issue among these approaches was
the need for external measurement setup such as calibrated
video cameras or motion capture systems. On the other hand
[10], [11] overcome this issue by performing simultaneous
calibration of odometry and sensor parameters using mea-
surements from the sensor. More generic calibration routines
for arbitrary robot configurations were presented in [12],
[13] where solution to calibration parameters is found along
with robot state variables. All these techniques essentially
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Fig. 1: Deformed Turtlebot3 mecanum drive robot used for experi-
mental evaluations. (a) Unaligned wheel axis deformation, (b) Tilted
wheel deformation.

learn the parameters associated with the motion model of
the robot/sensor to generate accurate odometry. However,
the performance degrades due to uncertainty arising from
interactions with the ground and hence lead to bad odometry
estimates [5]. Moreover, modeling such uncertainties that
arise due to non-systematic errors is a very challenging
and difficult task. To this end, non-parametric methods [14],
[5] employ tools from Gaussian process (GP) estimation
learn the residuals between the parametric model and ground
truth measurements from external motion capture systems.
A common assumption that all these methods make is the
residual function being zero mean, which holds true only
when the kinematic model of the robot is accurately known.
However, for robots with misaligned wheel axis or other
unknown offsets that may arise due to unsupervised assembly
[15], excessive wear-and-tear etc., zero mean assumption is
not valid rendering the approach suboptimal.

This work puts forth a more general framework that
subsumes existing non-parametric approaches, while also
applicable to scenarios where the motion model of the
robot/sensor is distorted or not known. Different from the
existing non-parametric approaches, the proposed method
learns the whole sensor/robot motion model. To this end,
the key contributions of the work are

o Formulation of a Gaussian-process regression frame-
work that captures the arbitrary or unknown motion
model of the sensor/robot. The entire calibration routine
can be carried out using measurements from onboard
sensors capable of sensing ego-motion

e A computationally efficient approach for near-optimal
and model-free calibration

The rest of the paper is organized as follows. Sec. II details



TABLE I: Nomenclature used in the paper

Parameters

P = (L, by, Ly, 1)
N——

parameters to be estimated

£
£ position of extrinsic sensor w.r.t robot frame
r robot instrinsic parameters

Measurements
u raw data log of odometry sensor
Measurememts from exteroceptive sensor
qt) = [qz(t) qy(t) go(t)]T Pose of robot at any time
Sik sensor displacement estimate for time interval [t;, )

More Symbols

(5} Roto-translation operator
€] inverse of & operator
[ by az + by cosag — by sinag
ay| @ |by| = |ay + bz sinag + by cosag
ag be ag + by
az:| A |:—az cos ag — ay sin a9:|
O |ay| = | azsinag — aycosag
ag —ag

the system setup and the problem formulation. The proposed
algorithm is described in Sec. III. Detailed experimental
evaluations are carried out to validate the performance of
the proposed method, and the results are discussed in Sec.
IV. Finally, Sec. V concludes the paper. The notation used
in the paper is summarized in Table I.

II. PROBLEM FORMULATION

In this section we first start with introducing preliminary
notations (see Table I) used through out the paper. Consider a
general robot with an arbitrary drive configuration, equipped
with m rotary encoders on its wheels and/or joints and
an exteroceptive sensor such as a lidar or a camera. The
exteroceptive sensor can sense the environment and generate
scans or images V = { Z(t) }+c7 that can be used to estimate
its ego motion. Here, 7 := {t1, ta, ..., t, } denotes the set of
discrete time instants at which the measurements are made.
The rotary encoders output raw odometry data in the form
of a sequence of wheels angular velocities U = {6(¢) }+eT-
Given two time instants ¢; and t; such that At;, := ¢ —
t; > 0 is sufficiently small, it is generally assumed that
a(t) == 0y for all t; < ¢ < ty. Traditionally, the odometry
data is pre-processed to yield relative translation motion and
orientation information, and is subsequently fused with the
ego motion estimates from exteroceptive sensors. This pre-
processing step necessitates the use of the motion model f,
of the robot that acts upon the odometry data J;; to yield
the relative pose of the robot q;;, := ©q; © q;, = f (k)
for the time interval At;y.. Here q; := (g7, q;-*,q?)T denote
the position of the robot at time ¢ = ¢;. Note that if the
exteroceptive sensor is mounted exactly on the robot frame
of reference, the sensor motion model denoted by f is the
same as the robot motion model f,.. In general however,
if the pose of the exteroceptive sensor with respect to the
robot is denoted by £, the sensor motion model is given by
f(0;1) = 0LD fr(d,1) ® £, where generally £ is unknown.

Having the preliminary notations at hand, we now describe
the system setup displayed in Fig. 2. The goal of the calibra-
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Fig. 2: Block diagram describing the system setup and data flow

tion phase is to estimate the function f, given ¢/ and V. The
estimated motion model, denoted by f , 1s subsequently used
in the operational phase to augment or even complement the
motion estimates provided by the exteroceptive sensor. For
instance, accurate odometry can be used to correct distortions
in the sensor measurements [6]. Note here that the parametric
form of the function f exists when the robot motion model
fr is well defined. For instance two-wheel differential drive
robot [10] , four wheel mecanum drive [16] etc. In other
words, f(e) = g(e ; p) where g is a known function and
p is the set of unknown parameters, such as the dimensions
of the wheel, sensor position w.r.t robot frame of reference
etc. State-of-the-art techniques like [10], [11], [17] learns
f under this assumption. A significantly more challenging
scenario occurs when the form of f is not known, e.g. due to
excess wear-and-tear, or is difficult to handle, e.g. due to non-
differentiability. For such cases, the parametric approaches
[10], [11], [17] are no longer feasible and the unknown
function f is generally infinite-dimensional. Towards this
end, a low-complexity approach is proposed (see Sec. III-
B), wherein a simple but generic (e.g. linear) model for
f is postulated. A more general and fully non-parametric
Gaussian process framework is also put forth that is capable
of handling more complex scenarios and estimate a broader
class of motion models f. It is remarked that in this case,
unless the exteroceptive sensor is mounted on the robot axis,
additional information may be required to also estimate the
robot motion model f;.

III. MODEL FREE CALIBRATION USING GP

When no information about the kinematic model of the
robot is available, it becomes necessary to estimate f di-
rectly. As in Sec. II, let 7 be the set of time instants at
which measurements are made. For certain time interval
[t;,tx) for which At} is not too large, let the exteroceptive
sensor generates motion estimates § ;. Given data of the form
D := (0;k,8k)(j,k)ce» Where £ represents set of indices of
all chosen key measurement pairs of the sensor and n := |£|,
the goal is to learn the function f : R™ — R? that adheres
to the model

Sik = f(0jx) + €jk (1)



for all (j,k) € &, where €j;, ~ N(p, ;) € R® models
the noise in the measurements, and 6,5 now represents the
number of wheel ticks recorded in the time interval Atjy.
Here we assume that the noise covariance X is known
before hand. Given an estimated f of the sensor motion
model, a new odometry measurements d. for an edge e (pair
of times at which measurements are made) can be used to
directly yield sensor pose changes s, = f' (d¢). As remarked
earlier, it may be possible to obtain the robot pose change
q. from s, if the sensor pose £ is known a priori. Since
the functional variable f is infinite dimensional in general,
it is necessary to postulate a finite dimensional model that
is computationally tractable. Towards solving the functional
estimation problem, we detail two methods, that are very
different in terms of computational complexity and usage
flexibility.

A. Calibration via Gaussian process regression (CGP)

The GP regression approach assumes that the measure-
ment is Gaussian distributed and that the function f is
a Gaussian process, whose mean and variance functions
depend on the data. Specifically, we have that

Sjk ~ N (f(;1), Zjr) (2)

or equivalently, €;; ~ N (0,3;). Given inputs {d,}, let
f denote the {3n x 1} vector that collects {f(d,5)} for
{(j,k) € &}. Defining ¥ € R3"*3" ag the block diagonal
matrix with entries 3;; and § € R3™ as the vector that
collects all the measurements {S;x}(;,x)ce. Having this we
can equivalently write the joint likelihood as

pBIf) = N§If, %) 3)

Unlike the parametric model based approaches [10], we
impose a Gaussian process prior on f directly. Equivalently,
we have that

p(f) = N(f| i, K) )

where i € R3" is the mean vector with stacked entries
of u(d;r) € R3 and K € R3¥3" js the covariance
matrix with a block of entries [K; ;| = K(0;,0;/,) for
(j,k) and (§',k') € € and i, € {1,--- ,n}. The choice
of the mean function g : R™ — R3? and the kernel
function Kk : R™ x R™ — R3*3 is generally important
and application specific. Popular choices include the linear,
squared exponential, polynomial, Laplace, and Gaussian,
among others. With a Gaussian prior and noise model, the
posterior distribution of f given D is also Gaussian. For a
new odometry measurement &, with noise variance 3., let
k. € R3"*3 be the vector that collects {x(d¢, ;1) }(j.r)ee-
Then the distribution of f(d.) for given § is

p(£(8)18) = N (£(8e) | fre, 3e) (5)

where fi, = k! (K+3X)"!(§—f1)+p(d.) and the covariance
3. = k(6e,0.) — kI (K+X) k.. Note that in general, the
choice of the mean and kernel functions is important and

specific to the type of robot in use. In the present case, we
use the linear mean function

p(x) = Cx (6)

where x € R™ is the vector of wheel ticks recorded in a time
interval and C € R3*™ is the associated hyper-parameter of
the mean function. Recall that m represents total number
of wheels equipped with wheel encoders. Intuitively, the
implication of this choice of linear mean function is that the
relative position of the robot varies linearly with the wheel
ticks recorded in the corresponding time interval. Such a
relationship generally holds for arbitrary drive configurations
if the time interval is sufficiently small. A widely used kernel
function is the radial basis function as follows

1
[Krpr (X, X)]i00 = aﬁi, exp (—2(x — x’)TB;il, (x — x’)>

(N
where x,x’ € R™ are the data inputs with hyper-parameters
E = |oi4,Biw], here ¢,i' = 1,2,3. It will be shown in

section IV-C that for the two-wheel differential drive robot
in use here, the squared exponential kernel (7) with the linear
mean function yielded better results than others. On the other
hand for four-wheel Mecanum drive in use here, the inner
product kernel, which amounts to a linear transformation of
the feature space,

[Kin (%, X)]5,i = ( X, X') (®)

performed better. We remark here that for our experiments
we have assumed k(x,x’) is a diagonal matrix with diagonal
entries {[k(x,x’)];;}. In general, the choice of the mean and
kernel functions and that of the associated hyper-parameters
is made a priori. For our experiments we infer the hyper-
parameters by optimizing the corresponding log marginal
likelihood. However, they may also be determined during
the calibration phase via cross-validation.

Algorithm 1 CGP algorithm to learn the motion model of
the sensor

1: Collect measurements from sensors.
2: Training Phase :
3: Run sensor displacement algorithm for each selected in-
terval, to get the estimates {85} with the corresponding
wheel ticks d;; and stack them.
Now pre-compute the following quantities :
(K+X)"'(§—p) and (K + %)~ !
Testing Phase :
For every test input d., evaluate the following,
fre = ke(K +3)71 (s — 1) + p(de)
3. = k(6.,0.) — k(K +X) k.
10: Report §., where p($.) = N (8¢|fte, 3e)

R A A

B. Approximate linear motion model

As an alternative to the general and flexible CGP ap-
proach that is applicable to any robot, we also put forth
a computationally simple approach that relies on a linear
approximation of f. Specifically, if At;y, is sufficiently small,
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Fig. 3: (a),(b),(c) illustrates the movement of the sensor frame in x,y, 0, respectively w.r.t change in left and right wheel ticks of a two
wheel differential drive robot (i.e., f(e) = g(e ; p)), overlaid with the corresponding sensor displacement measurements generated using
raw data published at [18] for a particular configuration. Note p denotes parameter estimates found using CMLE [10]. Also in [18], since
data from each configuration is divided into three subsets, we consider any two of them as training data and rest as test data. Points
that are displayed in red and yellow color denote training and testing samples generated at selected scan instants respectively. Note: red
points that are away from the 3D surface are outliers. (d)-(f) represent the truncated and enlarged versions of the same plots to expose

the linearity. (Figure is best viewed in color)

so are elements of d;;. Therefore, it follows from the first
order Taylor’s series expansion, that f is approximately
linear. This assertion if further verified empirically for the
two-wheel differential drive. As evident from Fig. 3, for
Aty sufficiently small, the elements of d,;, are concentrated
around zero and the surface fitting them is indeed approxi-
mately linear. Motivated by the observation in Fig. 3, we let
F(8;1) = Wé,j, where W € R**™ is the unknown weight
matrix. The following robust linear regression problem can
subsequently be solved to yield the weights:

K §L — [Wé.rl.
W=argmin > > p ”iijk] ©)
(j,k)eE ic{z,y,0} ik

where p. is the Huber loss function [19]. Here, (9) is a
convex optimization problem and can be solved efficiently
with complexity O(n?). It is remarked that the entries of W
do not have any physical significance and cannot generally
be related to the intrinsic or extrinsic robot parameters,
especially after wheel deformation. Note that while making
predictions the complexity of the linear model is O(m)
where as for CGP it is O(n?).

IV. EXPERIMENTAL EVALUATIONS

This section details the experiments carried out to test the
proposed CGP algorithm. We begin with the performance

metrics used for validating the accuracy of the estimated
model followed by details regarding the experimental setup
and results.

A. Performance Metrics

In the absence of wheel slippages, it is remarked that the
accuracy of estimated model is quantified by the closeness
of the robot/sensor trajectory estimate obtained from odom-
etry to the ground truth trajectory. Since ground truth data
was not available for the experiments, we instead used a
SLAM algorithm to localize the sensor and build a map
of the environment. While SLAM output would itself be
not as accurate as compared to the ground truth, of which
some of them [20] do not require odometry measurements
and consequently serves as a benchmark for all calibration
algorithms. Specifically, the google cartographer algorithm,
which leverages a robust scan to sub-map joining routine,
is used for generating the trajectory and the map [20] of
the environments. It is remarked that in the absence of
extrinsic calibration parameters, SLAM outputs only the
sensor trajectory (and not the robot trajectory), which is
subsequently used for comparisons.

Various sensor trajectory estimates are compared on the
basis of Relative Pose Error (RPE) and the Absolute Trajec-
tory Error (ATE) motivated from [21]. The RPE measures
the local accuracy of the trajectory, and is indicative of the
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Fig. 4: Fire Bird VI robot used for experimental evaluations.

TABLE II: List of experimental configurations with labels
and locations

Training
Robot Configuration Test Data
Data
Tomography
FireBird VI F1 WSN Lab
Lab
T1 ACES ACES
Turtlebot3
T2 Library Library

drift in the estimated trajectory as compared to the ground
truth. At any time t; € T , let the odometry and SLAM
pose estimates be denoted by & and xy, respectively. Then,
relative pose change between times ¢; and tj4; estimated
via odometry and SLAM are given by O &) @ &1 and
© X @ Xp41, respectively. Defining e}, := © (© @ &
Tr11) D (O x @ ®p41), the RPE is defined as the root
mean square of the translational components of {ef}7_,
ie.,

1 n—1 1/2
R \[12
RPE := (n_lkz—l |[trans(e}) | ) (10)

where trans(ey) refers to the translational components of
ei. In contrast, the ATE measures the global (in)consistency
of the estimated trajectory and is indicative of the absolute
distance between the poses estimated by odometry and
SLAM at any time ;. Defining the absolute pose error at
time t;, as e} := O &, @ xy, the ATE is evaluated as the
root mean square of the pose errors for all times ¢t € T,
ie.,

(1)

Lo 1/2
ATE := | = t ay 12 .
(n;l rans(ey ) || )

Next, we detail the experimental setup used to test model
estimates from different forms of Gaussian process (GP).

TABLE III: ATE and RPE for Configurations F1

GP Estimate Configuratin F1
Mean fn Kernel fn ATE (m) | RPE (mm)
Zero RBF 6.273 9.634
Linear RBF 0.592 9.367
Zero Linear 0.687 9.367
Zero RBF + Linear 0.716 9.34
Linear RBF + Linear 0.732 9.343
Linear Model 0.687 9.367
CMLE [10] 1.546 9.361

TABLE IV: ATE and RPE for Configurations T1 and T2

GP Estimate Configuration T2 Configuration T1
Mean fn Kernel fn ATE (m) | RPE (mm) | ATE (m) | RPE (mm)
Zero RBF 2.49 5.21 6.523 5.466
Linear RBF 0.161 8.324 5.006 5.573
Zero Linear 0.068 5.108 0.87 5.457
Zero RBF + Linear 3.798 5.121 0.87 5.455
Linear | RBF + Linear 1.193 5.49 1.849 5.519

Linear Model 0.068 5.108 0.869 5.458
Regular Model 4.24 5.112 3.647 5.517

B. Experimental Setup

1) Robots: We have used a two-wheel differential drive
FireBird VI robot (see Fig. 4) having a particular set of
intrinsic parameters [22] and a four-wheel mecanum drive
Turtlebot3 robot (see Fig. 1). The Fire Bird VI is primarily
a research robot with diameter 280 mm, weight of 12
kilograms, and maximum translational velocity of 1.28 m/s.
All FireBird encoders publish data at the rate of 10 Hz with a
resolution of 3840 ticks per revolution. Similarly Turtlebot3
mecanum 1is also a research robot from the Robotis group
with all wheels diameter of 60 mm. It weighs 1.8 kilo-
grams and maximum translational velocity is 0.26m/s. The
dynamixels used publish data at 10 Hz with an approximate
resolution of 4096 ticks per revolution. For the purposes of
the experiment, we made use of an on board computer with
15 processor, 8GB RAM, running ROS kinetic for processing
the data from lidar and wheel encoders, performing SLAM
for validation, and running the calibration algorithms.

2) Lidar Sensor: RPLidar A2 is a low cost 360°, 2D
laser scanner with a detection range of 6 meters, a distance
resolution less than 0.5 m and an adjustable operating
frequency of 5 to 15 Hz. This scanner was mounted on the
both the robots with the frequency of 10 Hz resulting in an
angular resolution of 0.9°.

3) Scan Matching: We used point-to-line ICP (PLICP)
variant [23] in order to estimate the sensor displacements
S;k. It is remarked that all ICP-like methods also output the
corresponding covariance value in closed-form [24] that can
be used by the CGP algorithm.
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Fig. 5: Trajectory comparison against SLAM for different robot configurations. (a) is the test environment for the configuration F1 where

as (b) and (c) are for configurations T1 and T2 respectively.

4) Data Processing: For the purposes of the experiments,
we ensure that scans are collected at times spaced 7" seconds
apart. The choice of T is not trivial. For instance, choosing
a small 7' often makes the algorithm too sensitive to un-
modeled effects arising due to synchronization of sensors,
robot’s dynamics. It is lucrative to choose far scan pairs as
more information is capured about the parameters however
both the scan matching output as well as the motion model
become inaccurate when T is large. For the experiments,
we chose the largest value of 7' that yielded a reliable scan
matching output in the form of sensor motion, resulting
in T = 0.6 second for Turtlebot3 mecanum and T =
0.3 seconds for the Firebird VI robot. These values are
chosen based on maximum wheel speeds such that slippages
are minimized during experimentation. Note that since the
odometry readings are acquired at a rate, higher than the
scans, temporally closest odometry reading is associated to
a given scan. With the chosen 7' the robots would move a
maximum displacement of 15cm in X and y and 8° in yaw,
under such conditions PLICP achieves 99.51 % accuracy
[23].

5) Deformed Robot Configurations: In order to demon-
strate the non-availability of the robot model, one of the
wheels of the Firebird VI robot is deformed with a thick
tape (see Fig. 4(b)), this configuration is referred as F1. Care
was taken to ensure that the deformation was not too large,
so as to avoid wobbling of the robot and the scan plane
of the Lidar. In the case of Turtlebot3 robot two different
configurations (T1 and T2) are constructed (see Fig. 1), by
changing the position of the wheels from the regular config-
uration. We will see further that the amount of deformation
in tilted wheel configuration T2 (as in Fig. 1(b)) is more
as opposed to unaligned wheels configuration T1 (as in Fig.
1(a)). Next, experiments comprising of training and testing
phases, are carried out using these deformed robots for all
the specified configurations (see Table II). While training
data is used to learn the motion model of the robot/sensor,
the test data is used to evaluate the accuracy of the learned
model. It is remarked that the collected test data involves

short and long trajectories with varied robot motions. Each
experiment is labeled for reference, with details provided
as shown in Table II. For example, configuration T1 refers
to the experiment done using Turtlebot3 robot, where both
training and test data are collected in ACES library.

C. Experimental Results

We first perform offline calibration of FireBird VI robot
with configuration F1 using the proposed CGP algorithm
along with the model based CMLE [10] algorithm. Note that
in the case of CGP algorithm various kernel and mean func-
tions are trained to determine which of them captures the sen-
sor motion model accurately. Note that we have also trained
on composite kernel functions like k4 + Krin (X, X’). After
the model is learned, predictions are made on the test data.
The predicted trajectories are then compared with SLAM
trajectory as reference. Error metrics for these trajectories are
generated and displayed in Table III. It is observed that CGP
with squared exponential kernel function with linear mean
function outperforms other trained models, also CMLE. We
remark here that although CMLE predicts the radius of the
left wheel to be slightly more than that of the right wheel,
the predictions are worse due to non applicability of the
parametric model as the wheel looses its notion of circularity.
Observe that CGP with linear kernel function is comparable
to the best case. The predicted trajectories generated for
CMLE [10], CGP with linear kernel and SLAM [20] are
displayed in Fig. 5(a). It is evident that the proposed CGP
with linear kernel predicts test trajectory close to SLAM.

Similar procedure is carried out in the case of Turtlebot3
robot with configurations T1 and T2. Note that since the
analysis of CMLE [10] is restricted to two wheel differen-
tial drive robots, we use parametric motion model of four
wheel mecanum drive robot [16] with manufacturer specified
parameters for robot intrinsics and nominal hand measured
parameters for lidar extrinsics to perform predictions on
test data. Table IV displays error metrics evaluated for
parametric and various non-parametric models. Observe that
the proposed CGP algorithm with linear kernel function



outperforms other learned models. The corresponding test
trajectories for configurations T1 and T2 are displayed in
Fig. 5(b) and Fig. 5(c) respectively.

Interestingly it can be observed from Table.Ill and Table
IV that the linear model approximation is sufficient to explain
the motion model with the set deformities in all configura-
tions. Here we notice that learning a linear approximation of
f is sufficient to accurately predict robot odometry, this is
in lines with our discussion in Sec. III-B.

V. CONCLUSION

We develop a novel odometry and sensor calibration
framework applicable to wheeled mobile robots operating
in planar environments. The key idea is to utilize the ego-
motion estimates from the exteroceptive sensor to estimate
the motion model of the sensor/robot. The proposed frame-
work is general as it applies to robots whose motion model is
not known. We advocate a non-parametric Gaussian process
regression-based approach that directly learns the relation-
ship between the wheel odometry and the sensor motion.
The method does not require ground-truth measurements
from an external setup, and henceforth the calibration routine
can be carried out without interrupting the robot operation.
A computationally efficient method that relies on a linear
approximation of the sensor motion model is shown to
perform on par with the proposed calibration via Gaussian
process (CGP) algorithm. Experiments are performed on
robots with un-modelled deformations and is shown to
outperform existing parametric approaches. Moreover, all the
MATLAB codes are made available online!. The method
being general is applied to wheeled robots operating in planar
environments but does not make any assumptions regarding
the same. As part of the future work, it would be interesting
to test the performance in non-planar settings.
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