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ORBSLAM-Atlas: a robust and accurate multi-map system

Richard Elvira, Juan D. Tardés and J.M.M. Montiel

Abstract— We propose ORBSLAM-Atlas, a system able to
handle an unlimited number of disconnected sub-maps, that
includes a robust map merging algorithm able to detect sub-
maps with common regions and seamlessly fuse them. The
outstanding robustness and accuracy of ORBSLAM are due to
its ability to detect wide-baseline matches between keyframes,
and to exploit them by means of non-linear optimization,
however it only can handle a single map. ORBSLAM-Atlas
brings the wide-baseline matching detection and exploitation
to the multiple map arena. The result is a SLAM system
significantly more general and robust, able to perform multi-
session mapping. If tracking is lost during exploration, instead
of freezing the map, a new sub-map is launched, and it can be
fused with the previous map when common parts are visited.
Qur criteria to declare the camera lost contrast with previous
approaches that simply count the number of tracked points,
we propose to discard also inaccurately estimated camera poses
due to bad geometrical conditioning. As a result, the map is
split into more accurate sub-maps, that are eventually merged
in a more accurate global map, thanks to the multi-mapping
capabilities.

We provide extensive experimental validation in the EuRoC
datasets, where ORBSLAM-Atlas obtains accurate monocular
and stereo results in the difficult sequences where ORBSLAM
failed. We also build global maps after multiple sessions in the
same room, obtaining the best results to date, between 2 and
3 times more accurate than competing multi-map approaches.
We also show the robustness and capability of our system to
deal with dynamic scenes, quantitatively in the EuRoC datasets
and qualitatively in a densely populated corridor where camera
occlusions and tracking losses are frequent.

I. INTRODUCTION

SLAM (Simultaneous Localization and Mapping) algo-
rithms are able to build a map from sensor readings, and
simultaneously estimate the sensor localization within the
map. Cameras are particularly interesting sensors because
of the unique combination of geometry and semantics they
provide. In this case, the algorithms are dubbed V-SLAM
(Visual SLAM), in this work we focus on the purely visual
monocular and stereo sensors. We focus on keyframe and
feature point SLAM methods because of their relocalization
and place recognition performance, displayed in their capa-
bility to build up to city block size maps robustly.

More specifically we build on top of the reference system
ORBSLAM [1], [2], [3]. If compared with visual odometry
methods [4], [5], [6], [7], [8], ORBSLAM can perform far
more accurately especially if the same area is revisited.
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The ORBSLAM accuracy comes from non-linear bundle
adjustment (BA) in which the observations of the same map
point come from widely separated keyframes. On the one
hand, ORBSLAM is able to robustly detect matches between
keyframes even if they are widely separated in time, even in
the extreme case of loop closure. ORBSLAM is able to make
the most of these abundant high parallax re-observations
by an intertwining of elementary mapping stages: ORB
matching, DBoW2 place recognition, pose graph optimiza-
tion, local BA, global BA, and map management. The map
management includes creation, deletion, and merging of map
points and keyframes. However, it can only handle a single
map, which provokes a total failure in exploratory trajectories
if tracking is lost, and prevents multi-session mapping.

We propose the ORBSLAM-Atlas system, a generalization
of ORBSLAM to the multiple map case. Our main contri-
butions are:

e A multi-map representation that we call atlas, that
handle an unlimited number of sub-maps. The atlas
has a unique DBoWs database of keyframes for all
the sub-maps, which allows efficient multi-map place
recognition.

o Algorithms for all the multi-mapping operations: new
map creation, relocalization in multiple maps, and map
merging. We have devised how to interweave the ele-
mentary mapping stages to perform the multi-mapping
operations robustly, accurately and efficiently. Among
all the components of the system, it is relevant the
map merging procedure that produces a seamless fusion
of two maps with a common region. After the merge,
the two merging maps are totally replaced by the new
merged map. We propose the creation of a new map
after tracking loss. It prevents the failure in exploratory
trajectories in which relocalization cannot recover the
camera tracking losses.

e A new criteria to declare the tracking lost in the case
of poor camera pose observably. It is able to prevent
erroneous pose graph optimizations in the loops that
contain highly uncertain camera poses.

We provide a quantitative experimental validation in the
EuRoC datasets, in which ORBSLAM-Atlas achieves the
best results to date for a global map after multiple sessions. In
the monocular EuRoC difficult datasets, it greatly improves
the coverage and localization error when compared with the
single map ORBSLAM. Additionally, the system has proved
outstanding robustness in dealing with dynamic scenes.



II. RELATED WORK

In the literature, the multi-map capability has been re-
searched as a component of collaborative mapping systems.
The collaborating agents end up sending frames to a central
server where the multiple mapping operations are performed.
Foster et al. in [9] proposed for the first time this distributed
architecture. In their approach, the agents send frames to the
global server, however, they do not get information from the
server to improve their local maps. The first system with
bidirectional information flow, both from the agents to the
server and from the server to the agents was C2TAM [10]
that is as an extension of PTAM [11] to RGB-D sensors able
to handle multiple maps in multiple robots. Morrison et al.
in [12] research a robust stateless client-server architecture
for collaborative multiple-device SLAM. Their main focus is
the software architecture, not reporting accuracy results. The
recent work by Schmuck and Chli [13], [14] proposes CCM-
SLAM, a distributed multi-map for multiple drones, with
bidirectional information flow, built on top of ORBSLAM.
Our system is close to their central server because both are
built on top of similar elementary mapping stages. They are
focused on overcoming the challenge of a limited bandwidth
and distributed processing in the monocular case, whereas
our focus is building an accurate global map. According to
their reported experiments in EuRoC Machine Hall datasets,
our system is about 3 times more accurate in the monocular
case. Additionally, our system displays robustness, process-
ing accurately all the EuRoC datasets both in stereo and
monocular.

The recent ORB-SLAMM [15] also proposes an extension
of ORBSLAM?2 to handle multiple maps in the monocular
case. Their integration of the multiple maps is not so tight as
ours, because their sub-maps are kept as separated entities,
each having its own DBoW2 database. Additionally, their
merge operation computes a link between the sub-maps but
does not replace the merging sub-maps by the merged one.

We also compare with VINS-Mono [4] in the multi-session
processing of the Machine Hall EuRoC datasets. VINS-
Mono is a visual odometry system, in which loop correction
is estimated by pose graph optimization. As ORBSLAM-
Atlas is able to detect and process with BA numerous high
parallax observations, their individual maps are 2 times more
accurate than those of VINS-Mono. ORBSLAM-Atlas multi-
session global map retains the 2 times higher accuracy over
the VINS-mono global map, because thanks to the map
merging, it is able to detect and take profit from high parallax
matches also in the multi-map and multi-session case.

The idea of adding robustness to track losses during
exploration by means of map creation and fusion was firstly
proposed by Eade and Drummond [16] within a filtering
approach. One of the first keyframe-based multi-map system
was [17], where they proposed the idea of disconnected
maps, however, the map initialization was manual, and
the system was not able to merge or relate the different
sub-maps. In the filtering EKF-SLAM approaches, where
covariances are readily available, the camera was declared
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Fig. 1: ORBSLAM-Atlas multi-map representation and

workflow.

lost with a double criteria of threshold in the number of
matches, and low camera localization error covariance [18].
In the keyframe methods, the criterion was reduced just
to the number of matches because the covariances are not
computed. We propose to recover the double criteria, with a
low cost proxy for the camera pose covariance, which comes
from the Hessian of the camera-only pose optimization. This
approximated covariance has been recently used in [19] for
active perception.

III. ORBSLAM-ATLAS MULTI-MAP REPRESENTATION

We call the new multiple map representation atlas, from
now on, we will use the name map to designate each of the
atlas sub-maps. Next subsections detail the atlas structure and
the criteria to determine when a new map has to be created.

A. Multi-map representation

The atlas (Fig.[T) is composed of a virtually unlimited
number of maps, each map having its own keyframes, map
points, covisibility graph and spanning tree. Each map refer-
ence frame is fixed in its first camera, and it is independent
of the other maps references as in ORBSLAM. The incoming
video updates only one map in the atlas, we call it the
active map, we refer to the rest of the maps as non-active
maps. The atlas also contains a unique for all the maps
DBoW?2 recognition database that stores all the information
to recognize any keyframe in any of the maps.

Our system has a single place recognition stage to detect
common map regions, if both of them are in the active-map,
they correspond to a loop closure, whereas if they are in
different maps, they correspond to a map merge.



B. New map creation criteria

When the camera tracking is considered lost, we try to
relocalize in the atlas. If the relocalization is unsuccessful
for a few frames, the active map becomes a non-active map
and is stored in the atlas. Afterwards, a new map initialization
is launched according to the algorithms described in [2] and
[1].

To determine if the camera is on track, we heuristically
propose two criteria that have to be fulfilled, otherwise, the
camera is considered lost:

a) Number of matched features: the number of
matches between the current frame and the points in the
local map is above a defined threshold.

b) Camera pose observability: : if the geometrical
conditioning of the detected points is poor, then camera pose
will not be observable and the camera localization estimate
will be inaccurate.

Figure[2] displays an example from the Malaga datasets
[20], where the usage of the covisibility criteria, combined
with the multiple mapping produces a dramatic improvement
in the mapping accuracy. A number of points over the
threshold are matched in the image, however, they corre-
spond to distant map points, hence the camera translation is
estimated inaccurately. Without the observability criterion,
the loop closure correction computed by the pose graph
optimization is inaccurate due to the poor accuracy of the
relative translations included in the loop. Whereas if the
observability criterion is used, those uncertain keyframes
are removed from the map, the map is fragmented but
ORBSLAM-Atlas is able to merge all the sub-maps in an
accurate global map.

C. Camera pose observability

We estimate the observability from the camera pose er-
ror covariance. We assume the map points are perfectly
estimated because the real-time operation cannot afford
to compute the covariance for the map points per each
frame. The measurement information matrix, €2; ;, coding
the uncertainty for the observation, x; ;, of the map point
7 in camera . It is tuned proportional to image resolution
scale where the image FAST point has been detected. The
uncertainty of the camera ¢ is estimated with the m; points,
where m; is the number of points in the camera ¢ matched
with the map points.

We estimate the 6 d.o.f camera pose as the T} ., € SE(3)
transformation. Additionally, we code its uncertainty by
means of the unbiased Gaussian vector of 6 parameters €;
that defines the Lie algebra approximating T'; ,, around Tz‘,wi

T w Exp (g;) ® ’i‘Lw
g = (¢ ¥y 2z w, wy w;)~N(0,GC;)
Hi ~ ZJ{,jinjJivj
j=1
C, = H;'

where Exp : R® — SE(3) directly maps from the parameters
space €; € R to the Lie group SE(3). The covariance matrix
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Fig. 2: Example of mapping accuracy improvement due
to observability criterion. (a) Frame where most of the
matched points are far from the camera. The number of
points criterion is fulfilled but not the observability criterion,
and the camera translation is inaccurately estimated. The
image corresponds to the region marked as P; in the maps
below. (b) Camera trajectory without observability criterion.
Two loop closures were detected at P, and Ps, due to
the inaccurate camera poses around P1, the pose graph
optimization fails to produce an accurate correction. (c)
Camera trajectory with observability criterion. The camera
poses in the rectangle in the P; region area are excluded.
When the low observability region is left, a second map is
created. When P is reached, the place recognition fires, and
the two maps are merged into a single map. At Ps a loop
closing is detected applying the corresponding correction.
The final global map has fewer localized frames but they are
more accurate.

C; codes the camera estimation accuracy and J;; is the
Jacobian matrix for the camera pose measurement due to the
observation of the map point j in the camera 7. As translation
is the weakly observable magnitude, we propose to use in
the criterion only the C; diagonal values corresponding to
the translation error:

max (03,0y,0,) < afh (1)
[Jg op o2 o3 Ugy ng} = diag(C;)



D. Relocalization in multiple maps

If camera tracking is lost, we use the frame to query
the atlas DBoW database. This single query is able to find
the more similar keyframe in any of the maps. Once we
have the candidate keyframe, map, and the putative matched
map points, we perform the relocazation following [1]. It
includes robustly estimating the camera pose by a first PnP
and RANSAC stage, followed by a guided search for matches
and a final non-linear camera pose-only optimization.

IV. SEAMLESS MAP MERGING

For detecting map merges we use the ORBSLAM place
recognition stage. It enforces repeated place recognition for
three keyframes connected by the covisibility graph in order
to reduce the false positive risk. Additionally, in the merging
process, the active map swallows the other map where
the common regions have been found. Once the merging
is complete the merged map completely replaces the two
merging maps. When necessary, we will use the a, s, and
m subindexes to refer to the active, swallowed and merged
maps respectively.

1) Detection of common area between two maps. The
place recognition provides two matching keyframes,
K, and K, and a set of putative matches between
points in the two maps M, and M,

2) Estimation of the aligning transformation. It is the
transformation, SE(3) in stereo or Sim(3) in monocu-
lar, that aligns the world references of the two merging
maps. We compute an initial estimation combining
Horn method [21] with RANSAC, from the putative
matches between M, and Mg map points. We apply
the estimated transformation to K s for a guided match-
ing stage, where we match points of M, in K, from
which we eventually estimate Ty, w, by non-linear
optimization of the reprojection error.

3) Combining the merging maps. We apply Tw, w,
to all the keyframes and map points in M,. Then,
we detect duplicated map points and fuse them, what
yields map points observed both from keyframes in
M, and M,. Afterwards, we combine all M and M,
keyframes and map points into M,,. Additionally, we
merge the M, and M, spanning trees and covisibility
graphs into the spanning tree and covisibility graph of
My,.

4) Local BA in the welding area. It includes all the
keyframes covisible with K, according to M, covisi-
bility graph. To fix the gauge freedoms the keyframes
that were fixed in M, are kept fixed in the local BA,
whereas the rest of the keyframes are set free to move
during the non-linear optimization. We apply a second
duplicated point detection and fusion stage updating
the M, covisibility graph.

5) Pose graph optimization. Finally, we launch a pose
graph optimization of M,,.

The merging runs in a thread in parallel with the tracking

thread, the local mapping thread, and occasionally a global

bundle adjustment thread (Fig[I]) Before starting the merg-
ing, the local mapping thread is stopped to avoid the addition
of new keyframes in the atlas. If a global bundle adjustment
thread is running, it is also stopped because the spanning
tree on which the BA is operating is going to be changed.
The tracking thread is kept running on the old active map
to keep the real-time operation. Once the map merging is
finished, we resume the local mapping thread. The global
bundle adjustment, if it has been stopped, is relaunched to
process the new data.

V. EXPERIMENTS

The quantitative evaluation has been made in the EuRoC
datasets [22]. To score the results we compute the RMS ATE
(Absolute Translation Error) in meters for all the frames in
the sequences as proposed in [23]. To factor out the non-
deterministic nature of the multi-threading execution, we run
each experiment 5 times and report the average or median
values. The qualitative evaluation was done in monocular for
a hand-held camera traversing a densely populated corridor
where occlusions and tracking losses are frequent. For a
general overview of the experiments see the accompanying
video.

A. Multiple map performance

We focus our quantitative evaluation on the EuRoC
V1_03_difficult and V2_03_difficult datasets because ORB-
SLAM?2 stereo [2] or ORBSLAM monocular [3] reported
them as failure due to a coverage below 90 %. Coverage is
defined as the fraction of localized frames with respect to
the total number of ground truth frames in the dataset. The
differences in performance in the rest of the datasets are
negligible because ORBSLAM-Atlas never lost track, and
hence never used more than a single map.

Tablell] reports the quantitative comparison, see also Fig-
ure[3] We have made new experiments with ORBSLAM to
report both the RMS ATE and the coverage. Thanks to the
multi-maps, ORBSLAM-Atlas is able to significantly boost
the coverage from 10-15% to 70-90 %, with an RMS ATE
lower than ORBSLAM.

In the stereo case, in V1_3 the differences between ORB-
SLAM?2 and ORBSLAM-Atlas are negligible. In contrast, in
V2.3 ORBSLAM-Atlas produces 5 intermediate maps that
eventually are merged in a global map able to achieve around
95 % coverage and an RMS ATE lower that ORBSLAM?2.

B. Multi-session performance

Table [lI] displays the RMSE ATE for all the datasets
in EuRoC, which are processed individually. We also re-
port the global multi-session map after processing the five
Machine Hall datasets (MH_01 to MH_05) sequentially for
ORBSLAM-Atlas and VINS-Mono. For VINS-Mono and
VINS-Stereo we verbatim quote the values reported by the
authors in [4], [5]. Trajectories have been aligned by means
of SE(3) transformations.

We can conclude that our individual session maps are
more accurate than those of VINS-Mono or VINS-Stereo. We



ORBSLAM-Atlas ORBSLAM ORBSLAM-Atlas ORBSLAM2
Monocular Monocular Stereo Stereo
ATE (m) | Cover (%) | # Maps | ATE (m) | Cover (%) | # Maps ATE (m) | Cover (%) | # Maps | ATE (m) | Cover (%) | # Maps
V1.03 0.106 90.74 2 0.132 10.32 0.051 100 1 0.046 100 1
V2.03 0.093 70.74 2 0.146 15.71 0.218 94.55 5 0.316 89.21 1

TABLE I: Performance on the difficult Vicon Room EuRoC datasets. RMS ATE in meters. Median values after 5 runs.
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conjecture that ORBSLAM-Atlas can detect numerous high
parallax observations and process them with non-linear BA,
and hence is more accurate. The same accuracy advantage
between ORBSLAM-Atlas and VINS-Mono is retained in
the multiple session case, what proves that ORBSLAM-
Atlas is able to detect and exploit the high parallax matches
also among the multiple maps, and in the multiple session
operation.

In table we compare with respect to CCM-SLAM[13],
[14], which is a centralised collaborative monocular SLAM

ORBSLAM-Atlas VINS VINS
stereo stereo Mono Inertial
V1.01 0.036 0.550 0.068
V1.02 0.022 0.230 0.084
V1.03 0.051 X 0.190
V201 0.034 0.230 0.081
V202 0.028 0.200 0.150
V203 0.218 X 0.220
MH_01 0.036 0.540 0.120
MH_02 0.021 0.460 0.120
MH_03 0.026 0.330 0.130
MH_04 0.103 0.780 0.180
MH_05 0.054 0.500 0.210
muliple-session
’ MH_01-MH_05 0.086 ‘ - | 0.210

TABLE II: Multiple-session performance on EuRoC datasets.
We report the results of the individual mapping sessions, and
the global multi-session map after the sequential processing
of datasets MH_01 to MH_05. Reported RMS ATE (m) are
median values after 5 runs.

Global map RMS ATE (m)
CCM-SLAM (Mono*) 0.077
ORBSLAM-Atlas (Mono*) 0.024
| ORBSLAM-Atlas (Stereo) | 0.035 |

TABLE III: RMS ATE (m) in the EuRoC Machine Hall
(MH_01, MH_02 and MH_03). * indicates that the aligning
transformation prior to ATE computation includes a scale
correction. The reported values are the average after 5 runs
to make them comparable with results reported in [14].

system where the agents compute a local map and send
frames to the central server in order to build a global
map. In the experiment reported in their paper, CCM-SLAM
is launched with three agents, each of them processes, in
parallel, a sequence of the EuRoC Machine Hall experiment
(MH_01, MH_02 and MH_03), and the server processes all
the information from the three sequences in the global map.
The reported RMS ATE is computed with respect to the
ground truth after a Sim(3) alignment. We verbatim quote the
values as reported by the authors in [14]. We have processed
the MH_01, MH_02 and MH_03 datasets sequentially in
a multi-session manner with ORBSLAM-Atlas to obtain a
global map. We have made the monocular mapping with
the corresponding Sim(3) alignment. We have also made the
stereo mapping, hence we can recover the scale, and report
the RMS ATE after SE(3) alignment. We can conclude that
our global map is more accurate than CCM-SLAM in the
monocular case. Additionally, the stereo case also shows
better accuracy with the advantage that we estimate the scene
real scale.
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C. Mapping in dynamic scenes

In the accompanying video, we provide a qualitative
evaluation in a fast dynamic scene, in which a monocular
hand-held camera images a densely populated environment.
ORBSLAM-Atlas is able to produce a global map for the
whole plant corridor. Several intermediate maps have been
spawned to survive to camera tracking losses.

To provide quantitative evaluation, we have processed the
whole EuRoC dataset in a multi-session manner, feeding
the 11 stereo videos in sequence: MH_01, MH_02, MH_03,
MH_04, MH_05, V1.01, V1.02, V1.03, V2.01, V2.02,
V2_03, without providing any additional information to the
system. After the 11 sessions, the system has been able to
identify three different maps. The first map corresponds to
the five sequences of the Machine Hall. The second map
corresponds to V1.01, V1.02, V1.03, V2.0l and V2.02.
Experiments V1_XX and V2_XX were grabbed in the same
room, however experiments V2_XX were made 112 days
later than V1_XX, the distribution of the furniture was
changed, and the ground truth reference was moved as well.
Our system is able to merge the maps corresponding to the
two versions of the room because of the common elements,
which mainly correspond to the floor and the elements fixed
to the walls, such as the door, the windows or the radiators.
The third map corresponds to sequence V2_03 that, due to
the fast camera motion, our system is unable to merge with
the second map.

The merged map of the Vicon room is interesting because
it displays the lifelong capabilities of our system. The same
map is able to jointly consider the two different experiences
of the same room. There are some pairs of keyframes
localized close to each other in the map, however they image
two different version of the room (see Fig.[5), and are not
connected in the covisibility graph. Thanks to the accuracy

Fig. 5: Keyframes of the Vicon room global map. The
map contains the two experiences corresponding to the two
versions of the room. All the keyframes of the global map
are displayed, the purple keyframes correspond to V1_XX,
the blue ones to V2_XX. Two keyframes close in space but
corresponding to different experiences are displayed at top
left corner. The two bottom keyframes corresponds to the
merging keyframes.

of the place recognition and the feature matching, the system
never gets confused with the different versions of the room,
but reuses the keyframes when the camera observes common
scene areas. In Table [[V] we report the global map error, and
the map size in terms of the number of keyframes and the
number of map points. In the case of the Machine Hall,
there is a reduction in the number of keyframes (82 %)
and keypoints (52 %) of the global map with respect to
the individual maps. The reduction is proportional to the
common areas between the maps (see Fig.[). In the case of
the Vicon room, this reduction is only slightly smaller (89 %
for KF and 60 % for KP) despite the drone trajectories are
close to each other. There is no bigger reduction because the
global map has to represent the two versions of the room.
The global reference for the ground truth in the two rooms
was different, for this reasons, to compute the RMS ATE
we have made two SE(3) alignments, one for the V1 room
frames and other to the V2 frames.

D. Computing Time

We have evaluated our ORBSLAM-Atlas algorithm in an
Intel Core 17-7700 (four cores @ 3.6 GHz) desktop computer
with 32GB RAM. We focus on the V2_03 EuRoC dataset in
stereo, the frame rate is 20 Hz. We can achieve real time
in the tracking thread with an average processing time of
~ 42ms. The local mapping, running in a parallel thread,
typically consumes ~ 78 ms per keyframe. Place recognition



Dataset # KF # MP RMSE ATE (m)
MH_01 481 10,199 0.035
MH_02 430 16,504 0.018
MH_03 442 19,947 0.028
MH_04 316 18,943 0.119
MH_05 373 21,203 0.060
Total Size 2,042 86,796 -
(100 %) (100 %)
MH_01+MH_02+MH_03+ 1,666 45,660 0.086
MH_04+MH_05 (82 %) (53 %) .
V101 112 7,610 0.035
V1.02 145 9,682 0.020
V1.03 228 13,291 0.048
V201 109 7,902 0.037
V202 292 16,081 0.035
Total Size 886 34,566 -
(100 %) (100 %)
V1.01+4V1.02+4V1.03+ 791 32,920 0.040
V2.01+V2.02 (89 %) (60 %) i
V2.03 270 13,683 0.218

TABLE IV: Multiple-map in a dynamic scene. ORBSLAM-
Atlas stereo identifies 3 different maps. Comparison of the
individual session mapping with respect to the multi-session
mapping. Median values after 5 runs.

takes ~ 10ms to compute the aligning transformation and
map merging takes ~ 670 ms. In any case, as map merging
runs in a parallel thread, it does not interfere the real-time
tracking thread. Tracking operates on the unmerged map until
merging is finished, and then the unmerged map is substituted
by the merged one.

VI. CONCLUSIONS

We have presented ORBSLAM-Atlas a multi-map system
able to bring the outstanding qualities of the single map
ORBSLAM to the multiple map arena. It is able, not only
to robustly detect wide-baseline matches between the sub-
maps but also, to include them in the subsequent non-
linear optimizations to yield accurate estimations for the
cameras and the map. The resulting multi-map system is
more robust because it is able to survive to the tracking
losses in exploratory trajectories, and more general because
it naturally can handle multi-session operation.

The experimental validation in the EuRoC datasets has
revealed that ORBSLAM-Atlas can report the best results
to date for a global map after multi-sessions, and for the
coverage and error in the EuRoC difficult datasets sing
purely monocular vision. Additionally, the system has proved
outstanding robustness in dealing with dynamic scenes.
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