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Abstract— Advances in Unmanned Aerial Vehicle (UAV)
opens venues for application such as tunnel inspection. Owing
to its versatility to fly inside the tunnels, it can quickly identify
defects and potential problems related to safety. However, long
tunnels, especially with repetitive or uniform structures pose
a significant problem for UAV navigation. Furthermore, post-
processing visual data from the camera mounted on the UAV is
required to generate useful information for the inspection task.
In this work, we design a UAV with a single rotating camera
to accomplish the task. Compared to other platforms, our
solution can fit the stringent requirement for tunnel inspection,
in terms of battery life, size and weight. While the current
state-of-the-art can estimate camera pose and 3D geometry
from a sequence of images, they assume large overlap, small
rotational motion, and many distinct matching points between
images. These assumptions severely limit their effectiveness in
tunnel-like scenarios where the camera has erratic or large
rotational motion, such as the one mounted on the UAV. This
paper presents a novel solution which exploits Structure-from-
Motion, Bundle Adjustment, and available geometry priors to
robustly estimate camera pose and automatically reconstruct
a fully-dense 3D scene using the least possible number of
images in various challenging tunnel-like environments. We
validate our system with both Virtual Reality application and
experimentation with a real dataset. The results demonstrate
that the proposed reconstruction along with texture mapping
allows for remote navigation and inspection of tunnel-like
environments, even those which are inaccessible for humans.

I. INTRODUCTION

Recent advances in low-powered Unmanned Aerial Vehi-
cles (UAVs) and drones have enabled them as acquisition
tools for 3D reconstruction as well as scene visualization,
anomaly and fault detection, and Dense Surface Models
(DSM) creation. Although image stitching, Structure-from-
Motion (SfM), Simultaneous Localization and Mapping
(SLAM), and 3D reconstruction are mature topics in the
Computer Vision community [1]-[5], most of these tech-
niques use a depth camera or focus on sparse and semi-dense
reconstruction while assuming stable camera trajectory with
limited rotational motion. Unfortunately, these assumptions
do not hold when a camera is mounted on a UAV, especially
when reconstructing challenging environments like bridges
and sewage or underground tunnels [6], [7].
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Fig. 1. Our Dense 3D reconstruction framework using images collected by
a spirally moving camera mounted on a UAV. We exploit geometry prior to
assist in data collection, bundle adjustment and 3D reconstruction process.
Our system outputs a 2D texture map and 3D pointcloud that can be viewed
in Unity for scene visualization and inspection.

This paper focuses on reconstructing inaccessible tunnels
using a UAV which allows experts to remotely inspect the
tunnel’s structural integrity and physical conditions. In this
application, there are several challenges and limitations that
restrict the design of the UAV’s imaging setup, and conse-
quently present challenges for traditional SfM algorithms.
As we will demonstrate in the results section, SLAM based
approach completely fails due to significant rotational motion
of the camera. Moreover, SfTM based techniques give sub-par
results due to having extremely limited amount of images.
In fact, we cannot afford to discard a single image as this
will result in loss of vital 3D information of the tunnel. Some
proposed solutions [8] require custom built heavy UAVs with
multiple light sources, cameras and a LIDAR. This results
in a heavy and expensive UAV. Due to safety precautions
and limited cross-sectional size of the sewage pipe, we can
neither use a LIDAR nor a big and bulky UAV.

Thus, taking into consideration limitations on power,
weight, mandatory safety features and resolution, we custom-
built a UAV designed for long flight time and use a light-
weight GoPro camera [9]. We rotate the GoPro around the
shaft of the UAV while the UAV traverses the tunnel. This
paper presents a framework, as shown in Fig. 1, to densely
reconstruct a given scene in 3D using our custom UAV. The
input to our system would be a series of images taken with
an outward-facing camera moving along a spiral trajectory
as shown in Fig. 2. We utilize Structure-from-Motion (SfM)
along with Bundle Adjustment (BA) and a geometry prior
to reconstruct the scene geometry and generate cylindrical
images for texture mapping. The geometry and textures are
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Fig. 2. Our UAV consists of a rotating shaft with a GoPro camera rigidly
connected to a range sensor and light source. The shaft rotates the camera
and range sensor resulting in a “Cylindrical dataset” if the UAV is static;
and a “Spiral dataset” if the UAV flies horizontally in a given environment
resulting in a panoramic spiral image.

used in our 3D visualization tool in Unity [10] to aid experts
in visualization, remote inspection, and fault detection of
these tunnels.

In particular, we make the following contributions:

o A framework to estimate maximum theoretical speed for
complete coverage and method to centralize the UAV in
the tunnel using range sensors.

o Utilize geometry prior during BA to improve camera
pose estimation.

o Dense 3D Reconstruction of the scene using geometry
prior where all pixels are estimated.

We evaluate our approach on both synthetic dataset where
ground-truth information is available, and real data obtained
using a rotating camera setup and compare with state-of-the-
art reconstruction methods. In both cases, we demonstrate
that our proposed framework is capable of handling actual
situations where the camera data contain noise and jitters.

II. RELATED WORK

SfM and SLAM: Structure-from-Motion (SfM) refers to the
recovery of 3D structure of the scene from given images. A
widely known application of SfM is where ancient Rome

is reconstructed using Internet images [11]-[14]. SfM is
highly dependent on accurate feature matching to estimate
the camera’s pose and location. RANSAC [15] is typically
used for outlier detection which unfortunately results in
discarding a large fraction of true matches [16]. This results
in a fragmented and discontinuous reconstruction [17].

Another approach to estimate camera pose is by using
Simultaneous Localization and Mapping (SLAM) [3], [18],
[19]. SLAM usually works in situations where the camera
captures a video sequence consisting of minimal rotational
motion. Unfortunately, both these assumptions do not hold
true for our case. Off-the-shelf SLAM algorithms such as
ORB-SLAM [18] often fail to estimate camera pose for
our synthetic and real data experiments. Our solution is to
use RepMatch [20] - a robust wide-baseline feature matcher
which uses an epipolar guided feature matcher to guide
the discovery of more feature matches. Repmatch works
exceptionally well in man-made repeated structures and
provides a dense set of matching feature points between
a pair of images. This allows us to reliably find dense
correspondence between images consisting of significant
camera rotation between them.

Bundle Adjustment: In general, Bundle Adjustment
(BA) refers to the problem of jointly refining and estimating
optimal 3D structure and camera(s) intrinsic and extrinsic
parameters. Classically, BA is formulated as a non-linear
least squares problem [21]. The cost function is assumed
to be quadratic in terms of 2D reprojection error. Outlier
detection and removal are used to make it more robust
to noise and missing data. We leverage on the scene
geometry to make our system more robust and slightly
faster than general BA. During the triangulation process,
we aggressively discard points with a significant 2D
reprojection error. We also detect and discard points
that are farther away than the expected geometry. This
not only makes the BA results more accurate, but also
results in a faster convergence as there are considerably
fewer 3D points to fit in the non-linear least squares problem.

3D Reconstruction: Once the camera pose is robustly
estimated, all the matching feature points are triangulated
in 3D. This involves triangulating multiple views of the
same region for a semi-dense reconstruction of the scene.
Some approaches [22] work with volumetric representations
and usually do not scale very well to large scenes while
others such as Multi-View Reconstruction Environment
(MVE) break down the scene into multiple segments [23],
[24]. MVE integrates SfM, multi-view stereo (MVS), and
floating scale surface reconstruction (FSSR) to produce
a surface triangle mesh as output. First, SfM is used to
reconstruct camera parameters and a sparse set of matching
points. Depth maps are computed using MVS and a colored
mesh is extracted from depth maps using FSSR resulting
in a semi-dense 3D reconstruction. All points are kept in
memory in order to be used in evaluation of the implicit
function. This memory overhead prevents MVE from



handling datasets which contain more than a few hundred
images. Most of these approaches are based on low-level
vision and hence do not understand the scene. Our approach
adds another component by exploiting the scene geometry.
All points, corresponding to every pixel lying an image, are
estimated to fit the geometry and used to reconstruct the
scene.

III. DATA ACQUISITION

The quality of the texture map generated is paramount for
Virtual Reality applications. This means that the final texture
map must have high resolution and complete coverage. In the
case of a UAV acquiring the input data for reconstructing a
tunnel, the position of the UAV must be at the center of
the tunnel cross-section to have maximum resolution for all
views. The movement of the UAV is also crucial because
there must always be overlapping regions between when the
camera completes a full rotation.

A. UAV camera set-up

While a detailed analysis of our custom UAV design is
out of scope, we briefly describe major constrictions that
informed the current UAV design. The imaging system has
to be lightweight, high-resolution and have an unobstructed
360° view. Commercial UAV cameras are not suitable be-
cause they are designed for high-altitude long-range imaging
and limited field-of-view. Augmenting the UAV with high
resolution commercial 360° cameras is an alternative but they
are too bulky, consume too much power, and are difficult to
mount onto the UAV. In fact, since our application requires
maximum resolution along the walls of the tunnel, significant
percentage of pixels from 360° cameras would not be usable,
further reducing the final resolution.

Our solution mounts a camera perpendicular to the intes-
tine surface (UAV shaft) where there is no obstructed view
and image distortion is minimal at areas of interest. A light
source is rigidly attached to the camera that illuminates the
camera’s FoV. The camera rotates and captures image data
while the UAV moves forward (Fig. 2(c)) to capture the entire
inner cylindrical surface of the tunnel with high fidelity and
minimal optical distortion. We also tried using four synchro-
nized cameras with four corresponding light sources instead
of a rotating shaft. However the extra weight of cameras
and light sources along with reduced battery life make it
a non-viable option. In practice, we use a GoPro HERO 4
camera that is programmed to capture an image after rotating
a certain degree every few milliseconds. This set-up provides
us with spiral-like images and produces 7,500 pixels per
360° resolution after stitching. It translates to an angular
resolution of 0.0325° per pixel and approximately 1.70mm
per pixel resolution for the lateral movement in a tunnel of
radius 3m.

B. Geometry Prior

One of the key components of our work is the use of
geometry prior at various stages of the proposed framework
as shown in Fig. 1. The prior known geometry such as tunnel
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Fig. 3.  We showcase our framework to initialize the position and estimate
the maximum speed of our UAV. (a) The initial position of the UAV is
triangulated using the depth sensors located on the 4 sides of the UAV. (b)
As the distance, r1, from center of tunnel increases, the maximum allowable
distance moved by the UAV decreases to ensure no dead-space during the
offline stitching process.

radius and wall dimensions of a rectangular room enables us
in achieving various components that would not be possible
otherwise. In particular:

1) Geometry prior enables us to perform dense 3D recon-
struction of the entire scene. As shown in [25], known
geometry prior can also allow for feature-less stitching
of 2D images.

2) It allows us to pre-configure our UAV’s speed for most
efficient data capture as explained in Sec. III-D.

3) It also assists us in removing erroneous triangulated
points during the Bundle Adjustment process. Any
3D triangulated point that is far away from expected
geometry such as tunnel boundary is removed from the
Bundle Adjustment process as discussed in Sec. I'V-B.

C. Sectional Location of the UAV in the Tunnel

We use four range sensor on the UAV to place it in
the center of the tunnel’s cross-section. These range sensors
measure the distance of the UAV vertically and horizontally
(Fig. 3(a)) and have a range up to 14m. We use the in-
built inertial measurement unit (IMU) to stabilize the UAV
and point it horizontally forward, i.e. zero pitch, yaw, and
roll. We discard the readings from the range sensor pointing
downwards and use the range information from remaining
three sensors since there may be flowing water or sludge in
the tunnel.

Assume the 3D location of the UAV to be p, the distance
measured by two horizontal and a vertical range sensors be
{d1,da,ds} respectively, and the radius of the tunnel be r.
We present a framework to compute the offset of the UAV
from tunnel center, [¢,, t,]T. We parameterize the three points
located by the three range sensors as follows:

rsina rsin(a + 0) rsin(a + B)
P1= h s P2= h > P3= h j (1)
7 COS Qv r cos(a + 0) rcos(a + 3)



As the UAV lies on (P> — p7), the 3D point, p, is:
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where {0, «, 3,7} are four unknown variables. Since the
UAV is stabilized with zero yaw, pitch and roll, & is assumed
to be zero. While a generic circle can be defined by three
given points, we only need two points to locate the UAV’s
position in the tunnel because we know the tunnel’s coarse
dimensions. We use the range sensor information along with
the tunnel radius as follows:

[lp — pill2 — di
[lp — p2|l2 — d2
lp=psllz—ds
cosf — T —{ditda)” 2—.7(:.171,+d2)
ngozfﬂ
(p—p3) x (p1+p2)

=0 (3)

This results in an over-constrained solution for {6, «, 3,7}
We use ordinary least squares (OLS) [26] to estimate the
parameters. This approach is robust to sensor failures as the
system is over-constrained, potentially saving resources when
deploying it.

D. Maximum Speed of UAV

If the UAV moves too fast while the camera is rotating,
there will be slivers of incomplete coverage where the camera
did not capture any data. In this section, we present our
framework to estimate the maximum distance the UAV is
allowed to move to avoid this undesirable outcome.

First, we estimate the maximum distance d that the UAV
can move between the two ‘“consecutive” images after a
complete rotation (Fig. 3(b)). The two captured images must
contain some overlap so they can be reconstructed without
having any dead space (black holes) between them. We
extrapolate the 3D points represented by the extreme pixel
locations - [0, 0]T and [0, nr)T - as follows:

o] f%+cz _ 0 B f)Z(f":—ch @
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where [X1,Y1, 2|7 and [X,, Yo, Zpr]T represent the 3D
points located on pixels - [0,0]7 and [0,nr)T respectively,
f represents the focal length of the camera and [c,,cy]
represents the optical center of the camera. Since we want
at least some overlap between two consecutive images, the
maximum distance that the UAV can move is represented by:

(nr—1)(rcos —rq)
f

where r; refers to the current distance between the UAV and
the tunnel center. Using law of sines as seen in Fig. 3(b), we

dmaz =AY = an - Yl = (5)

(a) SURF matching points

(b) RepMatch matching points

Fig. 4. We obtained 31 matching points using SURF, while RepMatch
resulted in 10, 651 matching points. We only display 1% RepMatch points
for visualization. We observe that SURF based matching struggles in
presence of repeated structures (floor tiles) while RepMatch gives us a more
accurate and dense point matching.

can estimate 6 as follows:

Qp T1 978
# = — — arcsin [ — sin(— 6
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where )}, refers to the horizontal field of view of the camera,
r1 refers to distance of the UAV from the center of the tunnel,
and r represents the tunnel radius. Thus, the maximum
horizontal movement allowed per 360° rotation is:

Q
Armaz = 2tan(7v) (rcosf —ry) @)

where €2, refers to the vertical field of view of the camera.
Given n images per full 360° rotation of the camera, the
maximum movement allowed per image is:

)
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Fig. 3(c) shows how this maximum distance varies as we
go farther from the tunnel center. Intuitively, the farther we
are from center, the slower UAV needs to be as the UAV is
closer to some sections of the tunnel and hence may not be
able to see the entire region if the UAV is moving too fast.

IV. 3D RECONSTRUCTION

Our 3D reconstruction algorithm improves camera pose
estimation for difficult scenes by using a geometry prior
along with other improvements during the bundle adjustment
process. We also present a texture mapping approach which
avoids memory overhead when processing and storing 3D
pointclouds.

A. Camera Pose Estimation

Camera pose refers to change in orientation and position
of the moving camera between two adjacent frames. It can
be estimated using SfM techniques [11]-[14]. First, local
features such as SIFT [27], SURF [28] or ORB [29] are
computed for each image. Subsequently, each feature is
matched with the best corresponding feature in the adjacent
image. Matches that are poor and fail a distance ratio test
(greater than 0.8) are rejected as false matches. Finally,
RANSAC is used to identify and reject outliers, and the
camera pose is estimated using the remaining inliers.

Unfortunately, current feature matching techniques strug-
gle with estimating accurate camera poses in presence of



(a) 36° rotational motion. (b) Translational motion.

Fig. 5. (a) RepMatch correctly identifies matching points resulting in a
good camera pose estimate. (b) In scenes where objects, such as trolley, are
static with respect to the camera, it incorrectly identifies them as matching
points resulting in a noisy camera pose. We avoid these wrong matches by
using a manual mask.

repeated structures such as floor tiles or brick walls. This is
because repetitive man-made structures, such as brick walls
or tiles, appear similar resulting in an inaccurate pose estima-
tion. Thus, we use RepMatch [20] to estimate camera pose
as it is shown to perform better in such situations. RepMatch
couples Bilateral Functions (BF) [16] and RANSAC outlier
rejection schemes by relaxing the ratio test. A comparison
of SURF and RepMatch feature point matching is shown in
Fig. 4.

B. Bundle Adjustment

Bundle Adjustment (BA) triangulates the matched points
to estimate their 3D location by minimizing the 2D projection
error across all images containing them. Since a maximum
of four images share a partial view with any given image,
it is critical to avoid any outliers as BA could fail due to
erroneous or noisy matching. To improve robustness in our
system, we perform a three-step pruning process:

o Pruningl: Mask out relatively static objects such as
UAV components in camera’s FOV. This is done by
utilizing prior knowledge of static objects locations and
camera’s FOV.

o Pruning2: Prune erroneous triangulated points that vio-
late the geometry prior. Any points that are triangulated
to be far away from expected geometry such as tunnel
walls are rejected.

o Pruning3: Reject matching points with large reprojec-
tion error as we are only interested in camera pose rather
than scene reconstruction.

For example, in Fig. 5 we mask out the ROI occupied by
trolley as it is static with respect to the moving camera
(Pruningl). Any triangulated points that are far off from the
estimated underpass region are rejected as well (Pruning?2).
Moreover, any points with significantly high reprojection
error are also thrown out (Pruning3). This three-step pruning
results in a significantly lower average reprojection error as
seen qualitatively in Fig. 6 and quantitatively in Table I on
our datasets described in Sec. V-B. For a fair comparison,
we do not show the results for Pruning3 since it removes the
matching points with high reprojection error after BA.
Standard Bundle Adjustment (SBA) works well in cylin-
drical dataset because the camera is stationary for one
complete rotation and only moved thereafter. SBA has no
issues with this setup because 90% of the frames have
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(a) Triangulated points before BA. (b) Points after 3-step pruning and BA.

Fig. 6. (a) 3D triangulated points lying on floor in the trolley dataset before
SBA (shown in green). (b) 3D triangulated points after three-step pruning
and BA. Points not lying close enough to the floor (in blue) are removed.
Our three-step pruning removes approximately 24,000 inaccurate points
out of 105,000 points in the trolley dataset.

no translation. However, in spiral dataset, the camera is
rotated significantly and translated for each image. The SBA
process becomes brittle because a few outliers can induce
major errors. Therefore, it is critical to remove these outliers
during the BA process. In the pruning, reconstructed points
that triangulate far away from geometry are removed. This
improves our results significantly.

Dataset: Cylindrical
SBA P1 P2 P14+ P2
Before BA || 22.83 | 34.33 | 36.18 30.81
After BA 0.74 0.74 0.65 0.63
Dataset: Spherical
Before BA || 46.54 | 62.63 | 51.46 79.68
After BA 41.88 | 0.69 1.65 3.25

TABLE 1. Ablation study of our Pruning process for BA. The 2D reprojec-
tion error before and after BA on our datasets is described in Sec. V-B. P1
refers to Pruningl, P2 refers to Pruning2, and P1+ P2 refers to performing
both Pruning1 and Pruning2 steps together. Our framework reduces the error
significantly when compared to Standard Bundle Adjustment (SBA).

C. Texture mapping

We can further exploit the geometry prior to save memory
and storage overhead. Instead of saving the fully-dense 3D
pointcloud data, we compute a cylindrical projection 2D
image for tunnels and multiple planes for indoor rooms and
underpasses [25]. These images are used in the Unity engine
[10] as texture maps to recreate the scene which allows the
user to navigate, zoom in and out of the scene for visual
inspection and anomaly detection [25].

V. EXPERIMENTAL RESULTS

We perform both synthetic experiments, as a proof of
concept, and real-data experiments to demonstrate the robust-
ness of our approach in various scenarios. We also compare
our results with state-of-the-art SfM method - MVE [24] -
using both synthetic and real data captured in an underpasses
that highlight the accuracy and robustness of our approach.
Using simulations allows us to capture groundtruth camera
trajectory along with 3D geometry of the tunnel to verify
the 3D reconstruction process and to determine the UAV’s
maximum speed. We display a few examples of the rendered
scenes in Unity for visualization.

The SLAM algorithms fail to estimate camera pose due
to significant rotational motion. Based on our experiments
in Unity, ORB-SLAM allows a maximum of 2° rotational
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Fig. 7. Cylindrical projection when the camera moves forward by (a) 18cm
(b)20cm per rotation. We only stitch the 0° and 180° images to highlight the
gaps between views. As the speed of the camera increases above maximum
estimated speed, we start observing holes in the cylindrical projection.

motion, in a 3m radius tunnel, per image for accurate camera
trajectory estimation. In comparison, we rotate our camera
approx. 36° per image. Hence, we do not show a visual
comparison with SLAM based reconstruction.

A. Synthetic Data Results

We used blender [30] to render a hollow cylinder and
imported it into Unity [10] to generate our synthetic data.
We texture-mapped a brick wall and a panoramic view of
Seattle’s skyline onto the inner face of the cylinder for
visualization purposes. The light source is fixed to look
vertically downwards, resulting in images captured with 0°
rotation to be brightly lit while the images captured with
180° rotation to be dark.

1) Varying the Speed of UAV: In this experiment, we vary
the speed of the UAV to empirically show that Eq. 8 provides
us with a reasonable bound for maximum UAV speed to
obtain a full panoramic stitch of the tunnel without any holes.
We simulated a camera with focal length 3800 pixels, FoV of
[Q4,82,] = [60°,101°], in a tunnel of radius 3m. Using Eq. 8,
we obtain a maximum allowable speed of approximately
18cm per rotation for the UAV. We simulated the camera to
move horizontally forward at 18cm per rotation and 20cm per
rotation. We only cylindrically project [25] the 0° and 180°
images to illustrate the impact of UAV’s speed on coverage
in Fig. 7. We obtain a seamless stitch without any holes when
the camera moves 18cm per rotation. However, as soon as
we increase the speed to 20 cm per rotation, we start seeing
gaps between the projected images as the camera is moving
too fast and certain sections of the tunnel are left unseen.

2) Comparison with MVE: In this experiment, we aim
to simulate UAV movements in real-world conditions and
compare our framework with MVE. A UAV is expected to
suffer from jitters and sideways movements while it tries to
balance itself and move forward in the tunnel.

The camera is positioned at the center of the simulated
cylindrical tunnel of 3m radius. Our baseline movement
and rotation in the three orthogonal directions are t =
[0,0.15,0]T and r = [0,0.524,0]7 respectively. With this
set-up, the ideal movement of the UAV is 15cm horizontally
forward (y direction) with a 30° rotation across y axis.
We add Gaussian noise with zero mean and variance of
[2,1,2]T to our translation and Gaussian noise with zero
mean and variance of 2° to our rotation per image. We
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(a) Simulated camera trajectory (b) Ideal 3D reconstruction using
(shown in red). groundtruth camera pose.

(c) MVE 3D reconstruction. (d) Our 3D reconstruction.

Fig. 8. We add random jitters and movements to the simulated camera’s
trajectory during the image capturing process. MVE outputs a semi-dense
reconstruction due to various areas lacking distinct feature points. Using
Repmatch [20] and dense reconstruction allow a more accurate and coherent
cylindrical projection of the scene.

run the simulation for ten camera rotations and record the
groundtruth translation and rotation of the camera per frame
as shown in Fig. 8(a-b). Two cylindrical projections are
computed from the data using MVE, and RepMatch.

The 3D pointcloud from MVE is used for cylindrical
projection to visualize the results in 2D as shown in Fig. 8(c).
In our second approach, we use RepMatch to perform
wide-baseline feature point matching across two consecutive
images to estimate the camera pose. This camera pose is
further used for 3D reconstruction and cylindrical projection
as shown in Fig. 8(d). While MVE pose estimation does
a good job, it outputs a semi-dense reconstruction due to
various areas lacking distinct feature points. RepMatch also
outputs an accurate camera pose resulting in a fully-dense
3D reconstruction which is essential for tasks such as visual
inspection and anomaly detection.

B. Real Data Results

We use a lightweight GoPro HERO4 camera a TeraRanger-
One range sensor to simultaneously capture an image and
scalar depth information. We calibrate the GoPro to obtain
its camera intrinsic and distortion parameters and take them
into account during our pose estimation and reconstruction
process.

The camera captures an image after rotating 36°, which
gives us ten images for every full 360° rotation. In lieu of
reconstructing an underground tunnel using a UAV (confi-
dential information), we demonstrate our imaging set-up in
an underpass mounted on a tripod stand. The underpass has a
flat horizontal floor, vertical walls on both sides and a cylin-
drical ceiling. We obtain a coarse geometry measurement to
serve as a geometry prior for our algorithm. An example of
the underpass is shown in Fig. 9(a).

We collect three different datasets using our set-up. In
the first dataset, namely “cylindrical dataset”, we rotate the
camera to capture a panoramic 360° view of the scene
before it is manually moved horizontally. In the second
dataset, the tripod stand is moved manually after each image
to obtain a “spiral dataset”. Finally, in the third “trolley
dataset”, we placed the tripod stand on a trolley and move
it manually while our rotating setup rotates the camera
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Fig. 9. (a) Underpass used to capture our dataset. (b) Our camera setup. (c)
Our camera rotating mechanism that closely simulates actual UAV’s camera
motion.
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(a) Cylindrical stitch.

(b) 3D display in Unity.

Fig. 10. We display the underpass as a cylindrical projection in 2D. The
scene is rendered in a tunnel-like cylinder for visualization.

and captures images sequentially. Spiral and trolley datasets
closely resemble actual data capturing process in the tunnel.

1) Cylindrical Dataset: We capture seventeen complete
rotations of the camera resulting in 170 images. We use
two different approaches to stitch the images after camera
pose estimation. In the first approach, we identify which
part of the underpass each pixel belongs to. Thereafter, it
is projected onto a unit cylinder as discussed in [25] which
gives us a panoramic cylindrical view of the scene. The
cyclic panoramic image is then wrapped around an internally
hollow cylinder to display the panoramic view in Unity as
shown in Fig. 10.

In the second approach, we utilize the known geometry of
the scene to identify if a pixel in an image lies on the floor,
right wall, left wall, or ceiling of the underpass and each
section is stitched separately. The walls are shown separately
for better view in Fig. 11(a-b). The stitched images for the
four sections are then textured onto four planes in Unity to
obtain a 3D representation of the scene as shown in Fig. 12.

2) Spiral Dataset: In our second dataset, the camera is
moved forward after every 36° of rotation, giving us a spiral
image capture as shown in Fig. 2(c). We capture fifty images
for this dataset which corresponds to five full rotations and
a forward movement of approximately 5m in the underpass.
Camera pose is estimated between consecutive frames as well
as between every tenth frame (1 and 11, 2 and 12 etc.) using
RepMatch and further refined using our modified BA.

Our experiments show that connections between every
tenth frame and aggressive outlier removal is critical for good
pose estimation. We stitch the images using the second ap-
proach discussed in cylindrical dataset section and Fig. 11(c-
d) shows the wall murals results.

3) Trolley dataset: In our third dataset, we use a trolley
to traverse the entire underpass while the camera rotates and
captures images. We capture 230 images in this process while
traversing approximately 22m.

We used the same processing pipeline as the second

(a) The Left wall of “Cylindrical (b) The Right wall of “Cylindrical
dataset” dataset”

(c) The Left wall of “Spiral (d) The Right wall of “Spiral
dataset” dataset”
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(f) The Right wall of “Trolley dataset”

Fig. 11. We display the 2D textures obtained by our framework of the
left and right walls for all three datasets. For the “Cylindrical dataset”, the
camera rotates rotates full 360° before it is manually moved forward. For
the “Spiral dataset” and “Trolley dataset”, manually moved forward per
frame while the camera rotates 36° automatically.

dataset. We observed that the lack of texture in the ceiling
can result in noisy pose estimation. However our aggressive
three-step pruning BA improves reconstruction results sig-
nificantly. Figure 6 shows the 3D reconstruction of match-
ing floor points with and without BA pruning to improve
camera pose. Fig. 11(e-f) shows result of the wall murals.
Figure 12 shows a side-by-side visual comparison of 3D
reconstruction of the three datasets using our framework
and MVE. We observe that MVE outputs a semi-dense
pointcloud for Cylindrical dataset and a sparse pointcloud for
both Spiral and Trolley datasets. Due to significant rotation
and minimal overlap between images, MVE is unable to
triangulate points in the latter two datasets. In comparison,
our framework handles these challenges well and outputs a
dense 3D reconstruction as seen in Fig. 12(b).

VI. CONCLUSION

We presented a system that fully reconstructs the given
scene using a spirally moving camera and displays the 3D
scene in Unity for an interactive display. The presented
method excels in scenes where prior geometrical information
is available. Our framework is capable of handling significant
rotational motion and reconstructing the scene with few
images in contrast with current state-of-the-art techniques.

In the future, we intend to infer scene geometry using
neural networks in place of providing a geometry prior
[31]. In addition, a seam-carving approach can be used to
compensate for exposure differences between consecutive
images. Alterntaively, a better designed UAV [32]-[34] can
be used to make the data capturign task less challenging.
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