
Online Motion Planning Over Multiple Homotopy Classes with
Gaussian Process Inference

Keshav Kolur*, Sahit Chintalapudi*, Byron Boots, and Mustafa Mukadam

Abstract— Efficient planning in dynamic and uncertain envi-
ronments is a fundamental challenge in robotics. In the context
of trajectory optimization, the feasibility of paths can change
as the environment evolves. Therefore, it can be beneficial
to reason about multiple possible paths simultaneously. We
build on prior work that considers graph-based trajectories
to find solutions in multiple homotopy classes concurrently.
Specifically, we extend this previous work to an online setting
where the unreachable (in time) part of the graph is pruned
and the remaining graph is reoptimized at every time step. As
the robot moves within the graph on the path that is most
promising, the pruning and reoptimization allows us to retain
candidate paths that may become more viable in the future
as the environment changes, essentially enabling the robot
to dynamically switch between numerous homotopy classes.
We compare our approach against prior work without the
homotopy switching capability and show improved performance
across several metrics in simulation with a 2D robot in
multiple dynamic environments under noisy measurements and
execution.

I. INTRODUCTION & RELATED WORK

Motion planning is a core problem for robotic systems
that must successfully navigate their surroundings. In un-
certain and dynamic environments, the planning problem
becomes especially challenging since a previously feasible
solution can quickly become infeasible and must be recom-
puted. Broadly speaking, motion planning approaches can
be grouped into the categories of search, sampling, and
optimization.

Search-based algorithms, such as A* [1] guarantee com-
pleteness and optimality, but quickly succumb to the curse
of dimensionality as discretization of the environment is
necessary. Sampling-based algorithms, including PRM [2]
and RRT [3], are probabilistically complete, generalize better
to higher dimensional problems, and have been extended to
provide (asymptotic) optimality [4]. While these methods are
well suited to solve complex problems in environments like
2D mazes, in practice they tend to be very computationally
expensive for high dimensional systems and require addi-
tional post-processing to smooth the solutions. Conversely,
trajectory optimization algorithms initialize a trajectory from
start to goal state and then optimize the path by minimizing
some cost function [5], [6]. GPMP2 [7] represents smooth,
continuous trajectories as samples from a Gaussian Process
(GP) and solves the motion planning problem by perform-
ing probabilistic inference on a factor graph. While these

*Equal contribution.
The authors are with the Robot Learning Lab, Georgia Institute of Tech-

nology, USA. Email: {kkolur3, schintalapudi}@gatech.edu.

(a) (b)

Fig. 1: POSH being used in a dynamic environment where the
robot (gray circle) is tasked to reach the goal (green circle) while
avoiding obstacles (gray squares). At some time step i In (a) the
robot has traveled along the green path when POSH returns a
new best (lowest-cost and feasible) trajectory (red). This represents
a homotopy switch from the previous best trajectory (black). It
executes the first step of this new trajectory and then at the next
time step i + 1 in (b) POSH again returns a new best trajectory
(red) that is in a different homotopy class.

methods are much faster for high dimensional systems, they
are sensitive to initialization and can get stuck in poor local
optima. In practice, straight-line initializations have been
shown to work well and random restarts are performed if
that fails [5], [6]. Initializing with a feasible solution from a
sampling-based planner is also an option [5], but this incurs
extra computational burden.

Recently, hybrid approaches to planning have attempted
to combine the complimentary benefits of different planning
schemes. For example, BIT* [8] combines graph-based and
sample-based planning by using a heuristic function to guide
a series of random geometric graphs towards the goal state.
Its successor, RABIT* [9] performs BIT* while running
trajectory optimization when constructing edges between
samples, thus reducing sampling complexity by decreasing
the number of samples discarded. GPMP-GRAPH [10], an
extension of GPMP2 [11], constructs a graph of intercon-
nected trajectory initializations, similar to the one shown in
Fig. 1, on a factor graph that when optimized can simul-
taneously evaluate an exponential number of initializations.
After optimization, any path through this graph provides a
feasible trajectory. Thus, it has the ability to find solutions
in multiple unique homotopy-classes all at once.

While these planning approaches are typically employed in
static environments, a number of algorithms [12] have been
proposed to handle navigating dynamic environments. Life-
long Planning A* [13], D* lite [14] and comparable online

ar
X

iv
:1

90
8.

00
64

1v
1

 [
cs

.R
O

]
 1

 A
ug

 2
01

9

planning algorithms outperform repeatedly replanning from
scratch by incrementally finding shortest paths on a graph
with changing edge costs. RRT-X [15] an extension of RRT
is suited to environments with moving obstacles and provides
comparable runtime performance. RAMP [16] draws from
evolutionary computation by maintaining a population of tra-
jectories and evaluating their respective quality (fitness) with
respect to a cost function and has been shown to discover and
exploit new homotopies. Since solutions can go in and out
of feasibility as the environment changes access to solutions
in multiple homotopy classes is beneficial. However, there
exists a gap in current research with respect to solving the
online planning problem by leveraging trajectories across
different homotopy classes.

In this work, we present a novel trajectory optimization al-
gorithm, Planning Online by Switching Homotopies (POSH),
to handle such scenarios. We build on GPMP-GRAPH [10]
where multiple trajectories are inter-connected and repre-
sented as a factor graph upon which probabilistic inference is
performed to optimize the entire graph. However, instead of
retaining the same optimized trajectory from the initial time
step for execution as GPMP-GRAPH does, POSH maintains
and updates the entire graph at every time step. Specifically,
at any time step the graph is pruned to remove unreachable
(in time) states and is then reoptimized considering changes
in the environment to find the new optimal trajectory. This
grants our algorithm the unique ability to dynamically switch
between different homotopy classes as illustrated in Fig. 1
and allows it to better contend with dynamic environments
as demonstrated by our experiments.

II. BACKGROUND

In this section we review GPMP-GRAPH, closely follow-
ing the explanation of Huang et al. [10], as well as other
concepts, such as homotopy classes and their application to
motion planning, necessary to explain our approach.

A. GPMP-GRAPH

GPMP-GRAPH is a graph-based trajectory optimization
algorithm designed to address the local minima problem
by evaluating an exponential number of initializations si-
multaneously and, as a consequence, finding solutions in
multiple homotopy classes. The graph is constructed as
a series of chains between the start and goal state, with
connections between the chains. Optimization happens over
the entire graph, yielding improvements in planning time
over sequentially optimizing a single chain with different
initializations [10].

GPMP-GRAPH treats the motion planning problem as
probabilistic inference. Given desired events e, it finds the
maximum a posteriori (MAP) trajectory x∗

x∗ = arg max
x

p(x|e) = arg max
x

p(x)l(x; e)

where p(x) is the prior distribution over trajectories and
l(x; e) is the likelihood.

Continuous-time trajectories are represented as samples
from a vector-valued Gaussian process (GP) x(t) ∼

t0 t1 t2 t3 t4

Fig. 2: Factor Graph consisting of three Gauss-Markov Chains as
illustrated in [10]. The white circles represent support states. Black
squares are collision factors and black circles are GP priors factors.
Interpolated collision factors are omitted for clarity.

GP(µ(t),K(t, t′)) where µ(t) is a vector-valued mean func-
tion and K(t, t′) is a matrix-valued covariance function. Fol-
lowing the definition of GP, trajectories can be parameterized
at discrete times t = {t0, . . . , tn} to be jointly Gaussian
distributed

x = [x0, . . . , xn]T ∼ N (µ,K)

where:

µ = [µ(t0), . . . , µ(tn)], K = [K(ti, tj)]i,j,0≤i,j≤n

The values x0, . . . , xn are referred to as support states and
correspond to x(0), . . . , x(n). This defines a prior distribu-
tion over trajectories

p(x) ∝ exp

{
− 1

2
||x− µ||2K

}
In practice, this distribution can be constructed from robot
dynamics, for example, modeled as a linear time-varying
stochastic differential equation (LTV-SDE)

ẋ(t) = A(t)x(t) + u(t) + F (t)w(t)

where A, F are system matrices, u is a known control
input, and w(t) ∝ GP(0, Qcδ(t − t′)) is a white noise
process with Qc being the power spectral density matrix
of the system and δ being Dirac delta function. The first-
and second-order moments of the solution to this SDE yield
the mean and covariance of the GP, respectively. The prior
penalizes the trajectory from deviations from the mean to
maintain smoothness in the solutions. The likelihood l(x; e),
handles costs like obstacle avoidance and any other motion
constraints.

The posterior distribution p(x|e) can be represented as
a factor graph. A factor graph is a bipartite graph G =
{Θ, F, E}, where Θ is a set of variables, F is a set of factors,
and E is the set of edges connecting F to Θ. Then the
posterior can be factorized as

p(x|e) =
∏
ti

fgpi (xi, xi+1)fobsi (xi)
∏
τ

f intpi,τ (xi, xi+1)

where fgpi is a binary factor connecting consecutive states,
fobsi is a unary collision likelihood factor, and f intpi,τ is a

collision likelihood factor for a state at τ between consecu-
tive support states. This factor graph has a sparse structure
which can be exploited for rapidly solving the optimization
problem [7].

So far this is identical to GPMP2 [7], however GPMP-
GRAPH constructs such a factor graph with multiple ini-
tial trajectories (chains), each with its own set of support
states. Adjacent chains have interconnected support states
with a GP prior factor and interpolated factors between
two states from two different chains, allowing the robot
to switch between chains. An example graph construction
with three chains and interconnections is shown in Fig. 2.
The graph’s variables (corresponding to trajectory waypoints)
are optimized using the Levenberg-Marquardt algorithm to
maximize their probability given the desired events, such as
being collision free and conforming to motion constraints.
Then, from the optimized graph we can find the trajectory
with the lowest cost or the trajectory that conforms to any
predefined homotopy constraints set by the user. For more
details please refer to [10].

GPMP-GRAPH suffers in practical performance because
it is unable to exploit the different homotopy classes it identi-
fies when the environment changes. By constructing a factor
graph with multiple chains and then allowing those chains to
converge to low-cost solutions in different homotopy-classes,
the algorithm has many feasible trajectories available to it.
However, dynamic obstacles may cause an initially good
trajectory to decrease in quality if the obstacle moves in
the way of the trajectory. Only optimizing the chain that the
robot is on at that time may not allow the robot to switch
homotopies, leading to collisions with the moving obstacle
or inefficient solutions.

B. Homotopy Classes

GPMP-GRAPH improves upon its predecessor GPMP2,
by initially considering multiple homotopy classes when
optimizing over different initial trajectories in parallel. Two
continuous functions over the real numbers x1, x2 : R → R
are said to be homotopically equivalent if there exists a
continuous function

h : R× [0, 1]→ R

such that h(t, 0) = x1(t) and h(t, 1) = x2(t), t ∈ R.
In the context of motion planning, it is said that two
trajectories (with a fixed start and end state) belong to the
same homotopy class if one trajectory can be continuously
deformed into the other without intersecting an obstacle [17].
This deformation is given by the homotopy function h.

We use the concept of h-signature to identify the frequency
at which the robot changes the homotopy class of its trajec-
tory. An h-signature is a unique identifier for a homotopy
class in an environment. Two trajectories have the same h-
signature if and only if they belong to the same homotopy
class [18]. The h-signature for a trajectory is determined by
extending a vertical ray upwards towards y = +∞ from the
center of each obstacle and assigning a letter tk to obstacle
k. We iterate through each point in the trajectory x from

start to goal and check at every time step t if the trajectory
crosses a ray between t and t − 1. If the trajectory crosses
obstacle k from left to right we append tk to the h-signature
of the trajectory and if the trajectory crosses obstacle k from
right to left we append t̄k to the trajectory. The final h-
signature is produced by reducing this signature by removing
all instances of tk t̄k or t̄ktk in the signature. [18] proves that
this procedure yields a signature that uniquely corresponds
to a homotopy class in the environment.

By identifying trajectories in different homotopy classes,
POSH is finding solutions to the problem that do not deform
into each other. This is useful because trajectory-optimization
methods like GPMP-GRAPH typically will not deform a
solution through an obstacle, preferring to get caught in a
local minima in the current homotopy class. By designing
POSH such that trajectories in multiple homotopy-classes
are maintained, the planner will better be able to adapt to
changes in the environment that render the current trajectory
suboptimal.

III. PLANNING ONLINE BY SWITCHING HOMOTOPIES

We begin by motivating POSH with our key insight
that switching homotopy classes is essential to navigating
changing environments. Then we present our algorithm and
its implementation details.

A. Motivation

In Fig. 5 we see GPMP-GRAPH try to navigate through a
2-Dimensional environment with a moving obstacle. While
at time step 1 the robot seems to have found a high quality
trajectory, changes in the environment start to degrade that
trajectory. Namely, reoptimizing a single chain means that
the robot will consider only its current homotopy-class, as
deforming the trajectory through an obstacle would lead to an
increase in trajectory cost. As a consequence, the trajectory
is pushed further into a corner as the obstacle approaches,
leading to multiple collisions in the trajectory. Intuitively,
it seems reasonable to travel along the left of the moving
obstacle if it is moving closer, however such a solution would
be in a different homotopy class. For this reason, we should
maintain and reoptimize trajectories in both the homotopy
classes, the one to the right of the obstacle and the one to
the left of the obstacle. Then, at every time step the robot
can replan a solution to the goal state using the reoptimized
chains of the factor graph. As the obstacle moves closer, the
low-quality trajectory to the right of the obstacle will suffer
a higher cost than a trajectory that moves to the left of the
obstacle. Thus, the robot will now respond to this change
in trajectory quality by changing the homotopy class mid-
execution to avoid collision.

B. Algorithm

POSH is summarized by Algorithm 1. The initial obstacle
positions are obtained to create the initial SDF as shown
by line 1. In line 2, a factor graph is constructed given
initial robot states, a signed distance field (SDF) of the
environment, and parameters like smoothness prior (desired

(a) (b) (c) (d)

Fig. 3: In (a), the gray circle and green circle represent the robot and goal state respectively. The graph is warm-started from its previous
state. In (b), the graph is reoptimized and then A* is used to find a low-cost trajectory (red) on the graph. In (c), edges that will no
longer be traversable (dashed blue lines) after executing the first control are pruned. Finally in (d), the robot executes its first control as
the environment changes. We see that POSH finds a trajectory in a new homotopy class (red) after reoptimizing.

Algorithm 1 POSH

1: SDF ← initial obstacle poses
2: factor graph← {parameters, robot states, SDF}
3: for t = 1, . . . , T do
4: factor graph.optimize()
5: x← A∗(factor graph)
6: factor graph.prune unreachable()
7: execute step(x)
8: SDF.update(obstacle poses)
9: end for

trade-off between smoothness and collision avoidance) and
ratio of interconnections (ranges from 0 i.e. no connections
to 1 i.e. every state is interconnected). Given a number
of desired trajectories (chains) to be interconnected and a
number of time steps, the locations of the initial support
states are computed by constructing a series of ellipses with
the major radius stretching from the start state to the goal
state and varying minor radii as shown in Fig. 4a. Based
on the desired ratio of interconnections, states in spatially
nearby chains are then interconnected to allow switching
between them (see Fig. 4b and Fig. 4c). In line 4, given
the initial graph and SDF, POSH employs the Levenberg-
Marquardt algorithm to optimize the factor graph.

Up to this step, POSH has executed the same steps
as GPMP-GRAPH would in solving the motion planning
problem. Following this, GPMP-GRAPH simply executes the
steps in the most feasible trajectory initially obtained and re-
optimize this same trajectory at every time step until the goal
configuration is reached. However, as discussed earlier this
is insufficient to successfully plan in a stochastic, dynamic
environment. POSH reoptimizes the entire graph with an
updated SDF and re-calculates the most feasible trajectory.
These steps, shown in lines 4-8 in Algorithm 1, are executed
at every time step until the goal state is reached.

We use the example in Fig. 3 to illustrates the process
POSH follows. Fig. 3a shows the graph before an iteration
of optimization. The robot is the gray circle in the bottom
left and the green circle in the top right is the goal state. The
graph’s current state represents the optimal graph configura-

(a) (b) (c)

Fig. 4: Possible graph initializations with (a) no connection be-
tween chains, (b) connections between chains at every other state,
and (c) fully connected chains. The robot is the gray circle and the
goal state is the green circle.

tion found given the SDF at the last time step. In Fig. 3b,
POSH re-optimizes the factor graph based on the updated
SDF. Then, as shown in line 5 of Algorithm 1, A* is run
on this updated, optimized factor graph to return the lowest
cost trajectory (plotted in red). Because A* is complete and
optimal, and the graph connects the start and goal states, it
is guaranteed that the returned solution will be the lowest
cost solution out of possible feasible trajectories encoded in
the graph.

This is followed by line 6, in which POSH runs depth first
search (DFS) to prune away a subgraph of the factor graph to
only maintain the reachable states. Given the current state as
the root and the goal state, DFS determines which support
states are unreachable in time and are therefore irrelevant.
In Fig. 3c, the pruned away subgraph is shown with dashed
blue lines. By executing the first step (line 7 of Algorithm
1) in the trajectory returned by A* in Fig. 3c, the robot
arrives at its new position depicted in Fig. 3d. At the next
time step, the obstacle moves closer to the trajectory the
robot was planning to take as Fig. 3d shows. Then in line 8
the SDF is updated given changes in the environment. After
running another iteration of optimization and A*, the robot
now identifies a new trajectory in a different homotopy class
that is lower cost and feasible. By doing so, POSH avoids
the local minima problem that GPMP-GRAPH is unable to
contend with as seen in Fig. 5, resulting in a collision. On
the other hand, POSH successfully adapts to the dynamic
environment by switching homotopies. This process repeats
until the robot has reached the goal.

C. Implementation Details

POSH is implemented by building on the GTSAM [19]
and GPMP2 library. The factor graph is optimized using
the Levenberg-Marquardt algorithm initialized with λ =
10−5. In order to successfully plan in a stochastic, dynamic
environment, POSH must optimize the factor graph based on
an updated SDF and determine the most feasible trajectory.
Only the first step is executed as this trajectory might not
be feasible for future configurations of the environment. To
replan efficiently at the next time step, the relevant portions
of the optimized factor graph must be retained so that the
graph is not reconstructed from scratch. POSH accomplishes
this by generating a spanning tree of the graph rooted at the
first state in the most feasible trajectory, before navigating
to it. The subgraph of the factor graph that does not belong
to this spanning tree is pruned away as the states in this
subgraph become unreachable in the next time step. Addi-
tionally, to replan quicker, the next optimization of the graph
is warm-started with the state of the previously initialized
factor graph. This results in Levenberg-Marquardt taking less
time to optimize the factor graph, since the initialization of
the graph was a local minima of the cost function at the
last time step, assuming the environment did not drastically
change between time steps.

IV. RESULTS

We benchmark POSH against GPMP2 and GPMP-
GRAPH, two trajectory optimization methods within the
same family on multiple 2D dynamic environments1. GPMP2
and GPMP-GRAPH are set up as a single chain and inter-
connected multi-chain graphs respectively. At each time step
the GPMP2 chain is optimized and a step is taken on the
optimized path. Then, the past state is pruned, the noisy
state measurement is added, and the chain is reoptimized
for the next time step. Since GPMP-GRAPH is an offline
batch method, to keep comparisons fair, we will optimize
the full multi-chain graph at the first time step to get an
optimal sequence of states (a chain), while the other states
are pruned away. From then on it is treated as a GPMP2
chain and is optimized accordingly at every time step. In
contrast, POSH will continue to keep a pruned graph after
every time step to be reoptimized.

These algorithms’ performance are tested on two simu-
lated 2D datasets, a dynamic forest and narrow passageway
environment. In both environments, the holonomic robot,
starting from some initial state, is tasked with reaching the
goal while avoiding obstacles. The robot is also subjected to
stochastic executions and noisy measurements i.e. the robot’s
position at every time step is perturbed to simulate execution
noise and localization noise is injected into state measure-
ments respectively. Sections IV-A and IV-B will describe
the narrow passageway and dynamic forest environments
respectively as well as analyze the algorithms’ performance
in each. We record the following metrics averaged across

1A video of the experiments is available at
https://youtu.be/FtUI9VR3iWI

TABLE I: Benchmark results on narrow passage dataset.

Metric POSH GPMP-GRAPH GPMP2

Success Rate (%) 100 10 10
Collision Intensity (%) 0 6.5 7.5

Distance (m) 26.7 31.6 33.8
Homotopy Switches 1.2 0.2 1.1

multiple runs in each environment: (i) success rate to quan-
tify the runs where the robot gets to the goal without any
collisions, (ii) collision intensity to quantify the percentage
of the trajectory spent in collisions when they occur, (iii)
total distance traveled indicative of smoothness in the path,
and (iv) total number of homotopy switches made from
reoptimizing at each time step.

For all algorithms, the safety distance, ε, and obstacle cost
weight, σobs (represents the trade-off between a trajectory
smoothness and collision avoidance), are kept constant. The
execution prior (initial state) and localization noise levels
are all kept constant as well. To account for stochasticity,
each algorithm’s performance was averaged over 10 Monte-
Carlo runs for each experiment. One narrow passageway
environment and 13 dynamic forest environments were used
to test the algorithms’ performance. In the case of GPMP-
GRAPH and POSH, hyperparameters like, the number of
chains NI , the ratio of interconnections between chains RI ,
and GP prior noise applied to the interconnections between
chains QI , are tuned to give good performance for the
respective algorithm.

A. Dynamic Narrow Passageway Benchmark

The dynamic narrow passageway consists of an obstacle
moving back-and-forth with constant velocity in a 1D mo-
tion (left to right then right to left) in front of a narrow
passageway that contains two entrances as shown in Fig. 5.
As this obstacle moves in front of the passageway it will
alternately block one of the entrances. This environment is
used to test the algorithms’ online planning capabilities in
a controlled setting. As we argued previously the ability to
switch homotopies will become important in such a scenario.

The results are summarized in Table I. POSH is able
to successfully plan 100% in narrow passage environment,
while executing on average 1-2 homotopy switches to ex-
plore the both passage entrances. As a result, it also mini-
mizes distance traveled due to this early, prudent homotopy
switch. On the other hand, GPMP2 and GPMP-GRAPH are
largely unsuccessful at solving this problem as they fail
to successfully find collision free paths. While at first, the
optimal path from start to goal is obvious for GPMP2, the
moving obstacle quickly eliminates this as a viable path,
forcing the algorithms’ to improvise or fail. They get stuck
in local minima as seen in Fig. 5 where the object’s lateral
motion continues to push the trajectory to the side until
finding a collision free path is no longer possible under the
given temporal and physical constraints. GPMP-GRAPH’s
initial solution that spans multiple chains also succumbs to
the same issue since it is reduced to a single chain graph

https://youtu.be/FtUI9VR3iWI

(a) t = 1 (b) t = 4 (c) t = 5 (d) t = 10

Fig. 5: GPMP-GRAPH in (a) finds the lowest-cost trajectory (red) from the initial graph construction of 2 chains. It optimizes and follows
this path at each time step, shown in green. In (b)-(c) the optimized path (red) continues to get pushed laterally due to the moving object,
forcing the robot to collide with the obstacle. The final trajectory in (d) shows the robot colliding with the passageway as a result of
being unable to successfully plan around the moving obstacle.

after the first time step. On the other hand, Fig. 3 shows
that POSH contends with this local minima problem by
utilizing a multi-chain factor graph to explore a path in
the other homotopy class once it becomes more viable than
the previously desirable homotopy. It is important to note
that the homotopy switches made by GPMP-GRAPH and
GPMP2 are a result of the dynamic environment changing
the optimized path’s h-signature rather than an intended
algorithmic or strategic homotopy switch.

B. Dynamic Forest Benchmark
The dynamic forest environment consists of numerous

objects exhibiting random 2D motion. This environment is
simulated given a number of obstacles, their initial state and
a random bounded acceleration applied at each time step.
The dynamic forest is shown in Fig. 1. It is employed to
benchmark the ability of the algorithms to contend with a
harder replanning problem.

The dynamic forest benchmark results are shown in Ta-
ble II. Our algorithm generates paths that are more successful
and when it fails it spends less time on average in collision.
Again, this can be attributed to POSH constantly replanning
and reoptimizing the multi-chain factor graph instead of
sticking with a single chain factor graph, allowing for online
homotopy switching. This process can be seen in Fig. 6
and Fig. 1. Since there are many more paths for POSH
to consider, it returns a feasible path more often than the
two other algorithms. In Fig. 1, the black line represents the
trajectory considered best at the previous time step while
the red line represents the trajectory considered best at the
current time step. Fig. 1a signifies a homotopy switch as the
red and black lines cannot be continuously deformed into
each other without colliding with obstacles. Fig. 1b shows
the robot executing the first step of the red path from Fig. 1a
while again considering another homotopy switch.

Note that GPMP2’s on average shorter distance traveled
can be attributed to the straight line initialization that char-
acterizes the region around the local minima, but this also
results in a greater collision intensity and a much lower
success rate.

TABLE II: Benchmark results on dynamic forest dataset.

Metric POSH GPMP-GRAPH GPMP2

Success Rate (%) 29.23 11.92 8.46
Collision Intensity (%) 1.9 5.1 8.3

Distance (m) 59.05 66.52 53.41
Homotopy Switches 5.15 4.23 3.54

Avg. Comp. Time (s) at t = 0 0.221 0.020 0.0197
Avg. Comp. Time (s) at any t > 0 0.077 0.029 0.028

TABLE III: Performance of POSH with varying number of
chains on dynamic forest dataset.

Metric NI=2 NI=4 NI=6

Success Rate (%) 22.31 29.23 18.85
Collision Intensity (%) 1.9 1.9 2.2

Distance (m) 59.1 59.0 60.6
Homotopy Switches 5.23 5.15 4.38

We also analyze the performance of POSH on factor
graphs with different numbers of chains, NI = 2, NI = 4,
and NI = 6. The results in Table III indicate that there
is a sweet spot in the middle (at NI = 4) to get the best
performance. An example with four chains is visualized in
Fig. 6. The two chain factor graph will have fallen into
two of the four homotopy classes that the four chain factor
graph will have, thus exhibiting similar metrics. The six
chain factor graph exhibits a reduction in performance due
to chains collapsing into redundant homotopy classes as
a result of QI and the number of time steps making the
optimization problem too constrained. It is also important
to consider the algorithmic computation time when deciding
on the number of chains to include in the factor graph as
increasing number of chains increases computation time.
Ideally the computation time should be smaller than the time
length of the trajectory between two time steps (δt) for POSH
to be applicable online, which was indeed the case in our
experiments. Table II shows the average computation times
for the first iteration at t = 0 and for any other iteration at
t > 0, where δt = 0.5s.

(a) t = 1 (b) t = 6 (c) t = 10 (d) t = 21

Fig. 6: POSH successfully returns a collision free trajectory utilizing 4 chains. At each consecutive time-step t, the robot (gray circle)
prunes away unreachable portion of the graph and reoptimizes the remaining graph until it reaches the goal state (green circle). The path
the robot has traveled so far is shown green and the lowest-cost trajectory going forward is shown in red.

V. DISCUSSION

In this paper, we introduced POSH, a novel online graph-
based trajectory optimization planning algorithm. It builds
on recent inference based trajectory optimization techniques
to add capability to plan online and dynamically switch
homotopies. We found that POSH can leverage knowledge
of distinct trajectories across different homotopy classes
to dynamically select a low cost solution in light of new
information about the environment. In dynamic environments
with moving obstacles, previous trajectory-optimization ap-
proaches are collision-prone as they become stuck in a local
minima. Rather than committing to a low-quality trajectory
in a local minima, POSH successfully generates smooth
and collision-free trajectories by maintaining and optimizing
multiple interconnected solutions to the planning problem.

Our work is currently limited to a finite time horizon
setting i.e. the number of discretized time steps we are
planning over is fixed. For long range tasks in dynamic
environments, occasionally a receding horizon formulation
is more beneficial to avoid wasting computation on latter
portions of the plan far ahead in the future. Extending our
approach to such settings can further improve its capability
and applicability. POSH (and GPMP-GRAPH) can some-
times suffer from different trajectories collapsing into the
same homotopy class. To contend with this problem it will be
beneficial to further investigate principled ways of integrating
sampling strategies for new support states such that POSH
not only prunes unreachable states, but also add new states
at every time step to allow for diversity and exploration.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” Robotics and Automation, IEEE Transactions on, vol. 12,
no. 4, pp. 566–580, 1996.

[3] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[4] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, 2010.

[5] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[6] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[7] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference.”
The International Journal of Robotics Research (IJRR), 2018.

[8] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 3067–3074.

[9] S. Choudhury, J. Gammell, T. Barfoot, and S. Srinivasa, “Regionally
accelerated batch informed trees (RABIT*): A framework to integrate
local information into optimal path planning,” in Proceedings of the
2016 IEEE Conference on Robotics and Automation (ICRA), 2016.

[10] E. Huang, M. Mukadam, Z. Liu, and B. Boots, “Motion planning
with graph-based trajectories and Gaussian process inference.” in
Proceedings of the 2017 IEEE Conference on Robotics and Automation
(ICRA), 2017.

[11] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning
as probabilistic inference using Gaussian processes and factor graphs,”
in Proceedings of Robotics: Science and Systems (RSS), 2016.

[12] C. Park, J. Pan, and D. Manocha, “Itomp: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
ICAPS 2012 - Proceedings of the 22nd International Conference on
Automated Planning and Scheduling, 06 2012.

[13] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a,”
Artificial Intelligence, vol. 155, no. 1, pp. 93 – 146, 2004.

[14] X. Sun, W. Yeoh, and S. Koenig, “Moving target d* lite,” in 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3, 2010,
pp. 67–74.

[15] M. W. Otte and E. Frazzoli, “Rrtx: Real-time motion plan-
ning/replanning for environments with unpredictable obstacles,” in
WAFR, 2014.

[16] J. Vannoy and J. Xiao, “Real-time adaptive motion planning (ramp)
of mobile manipulators in dynamic environments with unforeseen
changes,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1199–
1212, Oct 2008.

[17] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological con-
straints in search-based robot path planning,” Autonomous Robots,
vol. 33, no. 3, pp. 273–290, 2012.

[18] D. Grigoriev and A. Slissenko, “Polytime algorithm for the shortest
path in a homotopy class amidst semi-algebraic obstacles in the
plane,” in Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC, 01 1998.

[19] F. Dellaert, “Factor graphs and GTSAM: a hands-on introduction,”
Georgia Tech Technical Report, GT-RIM-CP&R-2012-002, Tech.
Rep., 2012.

	I Introduction & Related Work
	II Background
	II-A GPMP-GRAPH
	II-B Homotopy Classes

	III Planning Online by Switching Homotopies
	III-A Motivation
	III-B Algorithm
	III-C Implementation Details

	IV Results
	IV-A Dynamic Narrow Passageway Benchmark
	IV-B Dynamic Forest Benchmark

	V Discussion
	References

