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Abstract— This paper presents the application of an iterative
learning control scheme to improve the position tracking per-
formance for an articulated soft robotic arm during aggressive
maneuvers. Two antagonistically arranged, inflatable bellows
actuate the robotic arm and provide high compliance while
enabling fast actuation. Switching valves are used for pressure
control of the soft actuators. A norm-optimal iterative learning
control scheme based on a linear model of the system is
presented and applied in parallel with a feedback controller.
The learning scheme is experimentally evaluated on an ag-
gressive trajectory involving set point shifts of 60 degrees
within 0.2 seconds. The effectiveness of the learning approach is
demonstrated by a reduction of the root-mean-square tracking
error from 13 degrees to less than 2 degrees after applying the
learning scheme for less than 30 iterations.

I. INTRODUCTION

Soft, inflatable robotic manipulators exhibit a number of
promising properties. High compliance and low inertia com-
bined with pneumatic actuation enable fast, but nevertheless
safe applications ([1], [2], [3] and [4]). However, accu-
rate position control is challenging with soft manipulators,
because they typically have a high number of potentially
coupled and uncontrollable degrees of freedom. Furthermore,
the dynamics of soft materials exhibit viscoelastic material
behavior, which is difficult to model from first principles.

One way to improve the tracking performance of soft,
inflatable manipulators is to combine soft structures with
rigid components. These hybrid designs typically have lower
overall compliance and higher inertia compared to their
entirely soft counterparts, but also a reduced number of
degrees of freedom [5]. Furthermore, the degrees of freedom
are limited to specific joints for articulated soft robots.
Thereby, the control authority of the remaining degrees of
freedom is generally higher, leading to an improved tracking
performance. Examples for such designs can be found in [6]
and [7].

Alternatively, advanced control approaches can be used to
improve the tracking performance of inflatable robotic ma-
nipulators. Learning-based open loop control, which purely
relies on mechanical feedback, is demonstrated in [8] for
a pneumatically-actuated soft manipulator. The authors of
[9] achieve a reduction in the tracking error by using
model predictive control for a fabric-based soft arm. The
control approach is extended in [10] to a nonlinear model
predictive controller based on a neural network to describe
the dynamics. Reinforcement learning is applied in [11]
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Fig. 1. The articulated soft robotic arm used for the experimental
evaluation. It consists of two antagonistically arranged soft bellow actuators
and a rigid backbone. The inflatable actuators are made from coated fabric
and attached to a lightweight structure built from a combination of 3D
printed parts and aluminum plates. The low inertia of the one degree of
freedom arm enables fast maneuvers.

to simultaneously optimize the accuracy of the controllable
stiffness and the position tracking of a manipulator intended
for assistive applications. A learned inverse kinematics model
is used in [12] to improve the position tracking accuracy
with a soft handling assistant. The authors of [13] use
iterative learning control (ILC) in combination with low-gain
feedback control to improve tracking performance, while
preserving the intrinsic compliance of soft robots. A method
based on ILC to learn grabbing tasks for a soft fluidic
elastomer manipulator is reported in [14].

In this paper, we propose an ILC scheme to improve
the tracking performance for an articulated soft robotic arm
(see Fig. 1). Instead of the commonly used proportional
valves (e.g. [7], [10]), we deploy switching valves to control
the pressure of the actuators (see also [15]). The hardware
limitations imposed by this type of valve are addressed by a
norm-optimal ILC approach, which is applied in parallel with
a feedback controller. The non-causal learning controller
is evaluated on repetitive, aggressive angle trajectories as
arising in, for example, pick and place applications.

The remainder of this paper is organized as follows: The
design of the robotic arm is discussed in Section II along with
the derivation of a simple model and a feedback controller.
The iterative learning control approach is outlined in Section
III and experimental results are presented in Section IV.
Finally, a conclusion is drawn in Section V.

II. ARTICULATED SOFT ROBOTIC ARM

The articulated soft robotic arm used for the experimental
evaluation is presented in the first part of this section. It
serves as a testbed for the study of control algorithms for this
type of system. While the number of degrees of freedom is
limited to one, it nevertheless exhibits the complex dynamics
inherent in this type of system, e.g. the nonlinear pressure
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dynamics and viscoelastic material behavior. A simple model
of the soft actuator and the robotic arm is derived in the
second part and a cascaded control architecture is discussed
in the last part of this section.

A. Design

The hybrid robotic arm consists of two soft bellow ac-
tuators and a rigid joint structure. The soft actuator is
discussed in the first part and the complete robotic arm in
the second part of this section. The design of the actuators
and the robotic arm is inspired by the one presented in [15].
However, several properties of the actuators and the robotic
arm are optimized.

A soft bellow actuator (Fig. 2) is made from thermoplastic
polyurethane coated nylon (Rivertex R© Riverseal R© 842). It
consists of twelve single cushions, which are connected by
an internal seam. Placing the inner seam off-center leads
to an expansion in the angular direction upon pressuriza-
tion. The fabric pieces are prepared with a cutting plotter
and processed with high frequency welding. Thereby, the
fabric sheets are clamped between two electrodes and a
high frequency alternating electromagnetic field is applied.
The material coating is heated over its full seam thickness,
eventually causing the fabric sheets to bond together (see [16]
for more details). Three high frequency weldable polyvinyl
chloride tubing flanges are welded to each bellow. Tubing is
glued to the flanges, which connect two tubes with the pres-
sure regulating valves and the third one with the pressure sen-
sor. Instead of the commonly employed proportional solenoid

Fig. 2. The bellow-type actuator made from polyurethane coated nylon in
fully inflated state. The actuator consists of twelve single cushions and the
front side measures 100×100mm in a deflated state. When fully inflated,
the maximum actuation range, is approximately 190 ◦. Two tubes connect
the actuator to the control valves, while the third one is used to measure
the pressure in the actuator.

valves, we use switching solenoid valves. While proportional
valves can continuously adjust the nozzle, switching valves
only have a binary state, namely fully open or fully closed.
Continuous adjustment of the mass flow (and consequently of
the pressure) is achieved by pulse width modulation (PWM).
Four 2/2-way switching valves (Festo MHJ10) are used per
actuator to control the pressure. Two valves are used as inlet
valves, placed between the source pressure and the actuator,

and two as outlet valves, placed between the actuator and
the environment. The pressure is measured in each actuator
and at the source using Bürkert 8230 pressure transducers.
The temperature is measured at the pressure supply using a
temperature sensor (Texas Instruments LM35).

Note that the four deployed switching valves cost 2.5 times
less than a proportional valve from the same manufacturer
(Festo MPYE), which is commonly used in soft robotics
applications (e.g. [7], [17]). However, the advantage in price
comes at the cost of a reduced flow capacity, which can be
limiting for fast maneuvers. A control approach to address
this limitation is presented in Section III.

With respect to the prototype presented in [15], the actua-
tion range is increased by using twelve instead of six single
cushions. Furthermore, the pressure is directly measured in
the actuator and not in the connecting tubes. Thereby, the
actuator volume filters the effect of the pressure ripples
caused by the switching valves and hence reduces valve jitter.
Note that doubling the volume of the actuator requires the
use of twice as many valves and connecting tubes in order to
retain a comparable time constant of the pressure dynamics
with respect to the smaller actuator.

The hybrid robotic arm consists of two bellow-type ac-
tuators, which are arranged antagonistically between a rigid
support structure consisting of two prisms (see Fig. 3). A
prism consists of two 3D printed triangles (polyamide PA12),
which are connected by aluminum plates. The first and last
cushion of each actuator are attached to the aluminum plates
of either the static or the moving prism. The two prisms
are connected by revolute joints, which are integrated into
the triangles. The angle of the arm is measured by a rotary
encoder (Novotechnik P4500) providing angle data with an
accuracy to one-tenth of a degree. Finally, a carbon fiber rod
is attached to the moving prism to form the arm.

α

Actuator B

Actuator A

Static
Prism

Moving
Prism

Rod

Fig. 3. Schematic drawing of the articulated soft robotic arm including two
actuators, namely A and B, the static and moving prisms, the rod and the
revolute joint indicated by the black circle. In the configuration shown, the
pressure in actuator A is higher than in actuator B, leading to a deflection
in the positive α-direction.

A pressure difference between actuators A and B leads to
a different expansion of the two actuators and consequently



to a torque on the moving prism. In order to maximize the
expansion of each actuator in the angular direction and hence
minimize the expansion in the radial direction, a strap is
attached around both actuators.

As a consequence of the increased angle range compared
to the design presented in [15], the spring-like retraction
forces of the deflated actuators are reduced. Therefore, the
required actuation pressure for a given angle is reduced as
well. The combination of 3D printed plastic parts with alu-
minum plates considerably reduces the inertia of the robotic
arm compared to the previous design. The hybrid design
presented combines the benefits of soft actuators, namely
high compliance and fast actuation, with the advantages of
classic robotic arms, namely that the expansion of the soft
actuators is concentrated in a single degree of freedom.

B. Modeling

The modeling of the robotic arm is described in this
section. It is important to note that, for all models discussed
here, the focus lies on simplicity rather than accuracy.
The motivation is to capture the principle dynamics and
compensate for inaccuracies and model uncertainties by a
learning-based control approach.

The model of the robotic arm can be divided into two sub-
systems. The pneumatic system including the soft actuator
and the valves is described first and the rigid body dynamics
of the robotic arm are discussed in a second part.

The pressure dynamics of the actuator can be derived from
first principles. Taking the time derivative of the ideal gas
law relates the change in pressure to the mass flow in or out
of the actuator and the change in volume and temperature.
We assume isothermal conditions and neglect changes in
the volume, which leads to the following expression for the
pressure dynamics of an actuator,

ṗ = ṁ
RT

V
+ Ṫ

mR

V
− V̇ p

V
≈ ṁRT

V
, (1)

where R denotes the ideal gas constant, m the air mass in the
actuator, ṁ the mass flow in or out of the actuator, T , Ṫ the
temperature and its derivative and V the volume and V̇ its
derivative. Given the isochoric assumption, the volume of the
actuator is approximated as constant, hence independent of
the angle of the robotic arm. The average volume is measured
to be 0.45 L. Note that the model presented here neglects
interactions with the antagonistic actuator and the elasticity
of the fabric material.

More sophisticated models of the pressure dynamics in-
cluding an identification of the angle dependent volume
relation were also investigated. However, it only slightly
improved the pressure control performance, but required
additional identification experiments. Therefore, we only use
a coarse approximation of the pressure dynamics in this work
and rely on the learning approach to compensate for the
approximation.

A static model of the valves employed is derived in [15],
which is also used in this work. The experimentally identified
model relates the mass flow of one actuator to the up and

downstream pressures of its valves and to the applied duty
cycles,

ṁ = fvalves(pu, pd, dcin, dcout), (2)

where pu and pd denote up and downstream pressure and
dcin, dcout the duty cycles of the inlet and outlet valves. For
the inlet valves, the upstream pressure corresponds to source
pressure and the downstream pressure to the controlled pres-
sure in the actuator. For the outlet valves, upstream pressure
is related to the pressure in the actuator and downstream
pressure to ambient pressure.

The rigid body dynamics of the robotic arm are assumed
to be driven by the pressure difference between the two
actuators, defined as ∆p = pA − pB. A positive pressure
difference, ∆p, accelerates the arm in the positive α-direction
(see Fig. 3). The dynamics of the robotic arm with ∆p as
input and the arm angle α as output, are identified using
system identification. The same identification procedure as
in [15] is applied. A continuous-time second-order model is
assumed for the dynamics of the robotic arm. More complex
models including the actuator pressures as states and the
set point pressure difference as an input are not considered
for the sake of simplicity and will be compensated by the
learning approach. The resulting transfer function is,

G(s) =
α(s)

∆p(s)
= κ

ω2
0

ω2
0 + 2δω0s+ s2

. (3)

The complex variable is denoted by s and the numeric values
of the parameters are κ = 7.91 rad/bar, ω0 = 14.14 1/s
and δ = 0.31 . The design improvements discussed in the
previous subsection are reflected in the parameter values
identified. Compared to the model presented in [15], the gain
of the transfer function, κ, is more than four times larger due
to the reduced spring-like retraction forces. The continuous
time model is discretized with a sampling time of 1/50 s
leading to the following linear-time-invariant system,[
x1(k)

x2(k)

]
=

[
0.96 0.18

−0.36 0.80

]
︸ ︷︷ ︸

:=A

[
x1(k−1)

x2(k−1)

]
+

[
0.09

0.91

]
︸ ︷︷ ︸

:=B

u(k−1)

y(k) =
[
1 0

]︸ ︷︷ ︸
:=C

[
x1(k)

x2(k)

]
, (4)

where k denotes the time index, (x1, x2) corresponds to the
state (α, α̇) normalized by (π, 10π 1/s) and u to the control
input ∆p (in Pa) normalized by 1e5 Pa. The arm deflection
α is directly measured by the rotary encoder. This model
will be used for the iterative learning control discussed in
Sec. III.

C. Control

A cascaded control architecture similar to [15] is applied
based on time scale separation of the faster pressure dy-
namics in an inner loop and the slower arm dynamics in
an outer loop (see Fig. 4). A proportional-integral-derivative
(PID) controller is used in the outer loop to compute a
required pressure difference, uPID, to reach a desired arm



angle. The PID controller includes a feed forward term to
improve tracking performance and has the following form,

uPID = kffyD + kp(yD − yj) + ki

∫
(yD − yj)dt+ kdẏ

j , (5)

where the time index is omitted for the ease of notation. The
desired angle is denoted by yD and the measured angle by yj .
The set point for the pressure difference is then translated to
the individual pressure set points for the inner control loops.
The underlying assumption is that set point changes of the
pressure can be tracked instantaneously by the inner control
loop. From the control input determined by (5), the set point
pressures are computed as,

pA,des = min(pmax,max(p0, p0 + uPID))

pB,des = min(pmax,max(p0, p0 − uPID)),
(6)

where p0 is the ambient air pressure and pmax the maximum
allowed pressure.

Next, we present the pressure controller based on the
model presented in the previous subsection. We describe
the control algorithm for actuator A, but it is analogously
implemented for actuator B. In order to smooth the effects
of the PWM, a moving average filter is used to filter the
measured pressures and hence reduce valve jitter. We assume
a first order model for the pressure dynamics,

ṗA =
1

τp
(pA,des − pA), (7)

where τp is the time constant of the desired pressure
dynamics and is used as a tuning parameter for the controller.
We combine this expression with (1) to obtain the desired
mass flow ṁ as a function of the current pressure deviation,

ṁA =
V

RTτp
(pA,des − pA). (8)

The valve model (2) is used to compute the required duty
cycles for both the in and outlet valves from the desired
mass flow and the known up and downstream pressures of
the valves. A detailed explanation of this procedure can be
found in [15]. Note that the number of valves is doubled
compared to [15], but the same duty cycles are applied to
both in and both outlet valves of actuator A and B.

III. ITERATIVE LEARNING CONTROL

In this section, we present an ILC scheme to improve the
angle tracking performance with the robotic arm. ILC is a
method to improve the tracking performance for repetitive
tasks ([18]). The tracking error from the previous iteration
is used to compensate for the disturbances in the current
iteration.

We apply a norm-optimal iterative learning control
(NOILC) scheme (see [19]), which is based on the linear
model derived in Section II and a quadratic cost function.
Since the NOILC approach can only account for repetitive
disturbances, it is applied in parallel with the previously
presented feedback controller, which compensates for non-
repetitive disturbances (as discussed in [18]). The resulting
control architecture is depicted in Fig. 4, where the super-
script index j is used to denote an iteration of the learning

−

ej

PID

uj pCtrl A

pCtrl B

Act A

Act B

Arm

NOILC

yD yj

pA

pB

uPID

Fig. 4. Control architecture with the NOILC scheme in parallel configu-
ration with the PID feedback controller in the outer control loop. The feed
forward signal of the PID controller is not depicted for the sake of clarity.
The input to the NOILC is the normalized error between the desired, yD,
and measured angle, yj . The current value of the correction signal uj is
added to the control input of the feedback controller, uPID, and forms the
input to the inner control loops. The pressure controllers (pCtrl A, pCtrl B)
adjust the pressures in each actuator (Act A, Act B). These pressures are
the inputs to the system (Arm).

scheme. The tracking error in iteration j is used to compute a
correction signal, which is added to the feedback controller in
the next iteration. The lifted-system framework (see [18]) is
used to derive the NOILC algorithm. The following variables
are introduced,

yD :=
(
yD(1), . . . , yD(N )

)
d :=

(
d(1), . . . , d(N )

)
yj :=

(
yj(1), . . . , yj(N )

)
uj :=

(
uj(0), . . . , uj(N−1)

)
ej :=

(
ej(1), . . . , ej(N )

)
all ∈ RN , (9)

where yD is the desired output and yj the measured output in
iteration j. The normalized error in iteration j is denoted by
ej , the repetitive disturbance by d and the correction signal
applied in iteration j by uj . The desired output yD is the
same for all iterations and the disturbance d is assumed to
be repetitive between successive iterations. Note that four
variables in (9) are shifted by one time step to account for
the one step time delay induced by the plant. The dimension
of the lifted-system, that is the number of time steps, N , is
defined by the time duration of the desired trajectory and the
sampling time of the NOILC approach, TILC.

Defining the lifted state matrix,

P =


CB 0 0 0

... CB 0

CAN−1B · · · CAB CB

 ∈ RN×N , (10)

allows us to express the dynamics in the lifted system
framework, namely,

yj = Puj + d

ej = yD − yj = yD − Puj − d
ej+1 = yD − Puj+1 − d

= ej − P (uj+1 − uj),

(11)

where we assume a zero initial condition for the state. The
principle idea in NOILC is to obtain the correction input
by minimizing a quadratic cost function of the predicted
tracking error of the next iteration. The linear model in
(11) is used to predict the tracking error one iteration
ahead. Additional terms can be added to the cost function
to improve the transient learning behavior. The following
objective function is used in this work,



J(uj+1) =
1

2
[ej+1TMej+1 + (uj+1−uj)TS(uj+1−uj)

+ uj+1TDTWDuj+1], (12)
where M , S, W are positive semi-definite cost matrices of
appropriate dimensions and

D =
1

TILC


−1 1 0. . . . . .

0 −1 1

−1 1

 ∈ RN×N (13)

approximates the derivative of the correction input, by the
first order Euler forward numerical differentiation. The first
term in (12) penalizes the predicted tracking error in the
next iteration and can be replaced by the last expression in
(11). The second term penalizes a change in the correction
input between successive iterations and the last term the
derivative of the correction input. These last two terms are
included to ensure a stable learning behavior by avoiding an
overcompensation of the disturbance. Including a cost on the
absolute change in correction input ensures that the NOILC
approach does not excessively compensate for the previous
tracking error before the computed correction input can show
effect. Penalizing the derivative of the correction input limits
the high frequency content of the correction input, which
is handled in traditional ILC approaches by the so-called
Q filters (see [18]). Constraints on the correction input are
neglected in the minimization of (12), such that the optimal
solution can be computed in closed form. The feasibility of
the solution is imposed by limiting the resulting pressure set
points in (6) to the feasible interval [p0, pmax] at a later stage.
The optimal solution is therefore given by,

uj+1? = argmin
uj+1

J(uj+1)

= (PTMP + S +DTWD)
−1

(PTMP + S)uj

+ (PTMP + S +DTWD)
−1
PTMej . (14)

Note that the inverse in (14) exists if the cost matrix S has
full rank. The correction input of the NOILC approach is
added to uPID as given in (5) for each time step,

ujtot(k) = uPID(k) + uj(k), k = 1, . . . , N, (15)

and consequently ujtot is used in (6) instead of uPID.
Simpler ILC approaches (e.g. model-free), such as PD-

type ILC (see [18]), were also investigated. However, con-
trary to the discussed NOILC approach they converged for
very aggressive trajectories (compare Sec. IV) only if the
high-frequency content of the correction signal was sup-
pressed significantly by tuning a Q filter accordingly. How-
ever, the Q filter clearly limited the possible improvement of
the tracking performance.

The previously introduced approach requires to store a
correction signal and we finish this section by investigating
how much that costs. Assuming a price of 0.03 USD per
gigabyte of permanent hard disk drive memory as of 2018
[20], a precision of two bytes to store the final correction
signal, and a sampling time TILC as stated in the next section,
it costs 1 USD to store 10.5 years of correction signal.

IV. EXPERIMENTAL RESULTS

In this section, we present the results from experimental
evaluations of the proposed NOILC scheme on the articulated
soft robotic arm.

The control algorithms are executed on a laptop computer
(Intel Core i7 CPU, 2.8 GHz) and the valves and sensors
are interfaced over a Labjack T7 Pro device. The pressure
controllers are executed at 200 Hz, the PID feedback con-
troller runs at 50 Hz and the NOILC scheme has a sampling
time of TILC = 1/50 s. The source pressure is set to 3 bar,
the maximum pressure constraint to pmax = 1.4 bar, the
time constant of the pressure controllers to τp = 1/50 s
and the PWM frequency is set to 200 Hz. The cost matrices
of the NOILC scheme are M = IN , S = 0.1 · IN and
W = 2e−5 · IN with IN ∈ RN×N being the identity matrix.

The reference trajectory to evaluate the learning scheme
has a duration of 8 s (resulting in N = 400) and includes
several set point jumps of 60 ◦ within 0.2 s and peak angular
accelerations of 12000 ◦/s2. It is computed from trapezoidal
angular velocity profiles, which limit the maximum angular
acceleration and correspondingly the excited frequency band.
The reader is referred to the video attachment to gain an
impression of the experiments conducted.

The results of the angle tracking experiment are shown in
Fig. 5. The tracking performance is improved significantly
by applying the NOILC scheme, with a reduced root-mean-
square (RMS) error from 13 ◦ to less than 2 ◦ after 30
iterations as can be seen in Fig. 6. The non-causality of the
NOILC scheme allows the elimination of the delay between
the angle response and the set point, which occurs when no
learning control is used.

When the feedback controller is used without any learning,
the robotic arm bounces back slightly after an initial steep re-
sponse when commanding an angle jump of 60 ◦. The reason
for this is that it compresses the deflating actuator, causing
the pressure in this actuator to temporarily increase and hence
the arm to bounce back. Note that if proportional valves were
deployed, the temporary pressure increase in the compressed
actuator would be less pronounced because of their higher
flow capacity. Considering the full pressure dynamics on the
other hand (i.e. not simplifying (1)) would not avoid the
pressure build-up, because the valves of the deflating actuator
are already fully open. The NOILC scheme compensates for
this effect by increasing the pressure difference for a short
period, which can be seen by the peaks in the total pressure
difference applied in iteration 30 (red curve) occurring at
t = {1.6, 2.6, 3.6, 4.6 s}.

Note that if the same control input is applied, the distur-
bances are repeatable over different iterations of the learning
scheme since they arise from unmodeled dynamics. Over
a single iteration, the behavior is also repeatable, as can
be seen for example by the similar angular response when
commanding a set point jump from −30 ◦ to 30 ◦ occurring
at t = {2.6, 4.6 s}.

A comparison between the commanded pressure differ-
ences reveals that the feedback controller without learning
has to rely on integral action to reach the set point, while



−30

−15

0

15

30
α

[◦
]

yD
y0

−30

−15

0

15

30

α
[◦

]

yD
y30

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

time [s]

∆
p

[b
ar

]

j = 0

j = 30

Fig. 5. Experimental results of the robotic arm tracking an angular set point
trajectory. The top plot shows the tracking performance when the feedback
controller is used only (no learning, iteration 0). In this case, the angle
initially follows the set point with a steep response, then slightly bounces
back and finally reaches the set point. The middle plot shows the improved
tracking performance after applying the NOILC scheme for 30 iterations.
The bottom plot depicts the total pressure difference applied in iteration 0
(blue) and iteration 30 (red) and reveals the importance of the non-casual
nature of the NOILC scheme, resulting in a shifted pressure difference input
anticipating the repetitive disturbances. For the entire trajectory, the total
pressure difference is never close to its maximum pressure constraint.
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Fig. 6. The RMS tracking error plotted over 30 iterations of applying the
NOILC scheme. The error decreases from 13 ◦ to less than 2 ◦ following
a monotonic trend and remains constant thereafter. I.e. no early stopping
is required. Deploying the learning approach for only 10 iterations already
accounts for 90% of the improvement achieved after 30 iterations.

the NOILC directly adjusts the pressure difference required
for a certain angular set point.

V. CONCLUSION

A norm-optimal ILC scheme has been presented to im-
prove the position tracking performance with an articulated
soft robotic arm. The non-causal learning scheme is based on
a simple model of the dynamics, which guides the learning
and brings advantages compared to simpler ILC approaches,
e.g. PD-type ILC. As opposed to a model-based feedback
controller, the tracking performance of the learning scheme
is not limited by the model accuracy. Results have shown that
performance can be improved significantly for an aggressive
trajectory. Learning a correction signal for different reference
trajectories is a practical alternative to both more expensive
valves and more advanced causal control approaches. Future
work includes the design of a fully inflatable system and will

investigate how learning control generalizes to systems with
multiple degrees of freedom.
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