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Adaptive Trajectory Planning and Optimization at Limits of Handling

Lars Svensson1, Monimoy Bujarbaruah2, Nitin R. Kapania3 and Martin Törngren1

Abstract— In this paper, we tackle the problem of trajectory
planning and control of a vehicle under locally varying traction
limitations, in the presence of suddenly appearing obstacles. We
employ concepts from adaptive model predictive control for
run-time adaptation of tire force constraints that are imposed
by local traction conditions. To solve the resulting optimization
problem for real-time control synthesis with such time varying
constraints, we propose a novel numerical scheme based on
Real Time Iteration Sequential Quadratic Programming (RTI-
SQP), which we call Sampling Augmented Adaptive RTI
(SAA-RTI). Sampling augmentation of conventional RTI-SQP
provides additional feasible candidate trajectories for warm-
starting the optimization procedure. Thus, the proposed SAA-
RTI algorithm enables real time constraint adaptation and
reduces sensitivity to local minima. Through extensive numer-
ical simulations we demonstrate that our method increases
the vehicle’s capacity to avoid accidents in scenarios with
unanticipated obstacles and locally varying traction, compared
to equivalent non-adaptive control schemes and traditional
planning and tracking approaches.

I. INTRODUCTION

Automated driving and advanced driver assistance systems

technology is developed and deployed around the world as

a means of improving safety and mobility. With deployment

increasing, the rate at which these systems are exposed to

critical traffic situations also increase. Such situations, e.g.

a late detected pedestrian in the vehicle path, or an unan-

ticipated lane change by a nearby vehicle require operation

at the handling limits of a vehicle to maximize the capacity

to avoid potential accidents. Conservative assumptions about

the physical capacity of the vehicle reduces the set of

considered maneuvers, which may lead to reduced safety

of passengers and road users. Also, the physical limitations

of the vehicle typically vary in time due to local road and

weather conditions, making motion planning and control in

critical situations a challenging task.

Research in motion planning and control of automated

road vehicles has matured rapidly in recent years and numer-

ous academic works have presented algorithms for motion

planning and control in general driving scenarios [1]–[4].

Due to computational limitations, the planning and control

problem is generally divided into hierarchical levels with

gradually decreasing planning horizon and increasing model

fidelity. A dynamic model including tire force modelling is

typically only used for trajectory tracking [1], [2], whereas
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local trajectory planning typically uses less sophisticated

models, such as the kinematic bicycle model or the point

mass model [3], [4]. Not being able to precisely represent the

dynamic limitations in the local planner presents a potential

problem when motion planning close to the dynamic limits

of the vehicle in one of two ways. First, over-estimating the

dynamic capabilities may lead to poor tracking performance

in the controller, possibly resulting in collision. Second,

under-estimating the dynamic capability may cause failure

to select an available collision free maneuver. Several works

have been proposed to mitigate this discrepancy by employ-

ing pre-computed motion primitives in the local planner for

which the dynamic limitations are considered [5], [6]. How-

ever, the dynamic capabilities of road vehicles are typically

prone to substantial local variations in terms of the tire-

road friction coefficient [7], rendering pre-computed motion

primitives suboptimal or infeasible in most cases. Hence,

accurate estimation of dynamic capabilities coupled with

adaptive optimal motion planning and control is required

to fully utilize the physical capabilities of the vehicle. We

hypothesize that adapting to local road conditions and acting

optimally with respect to the associated physical limitations

will improve the capacity of the vehicle to handle unforeseen

critical traffic situations.

In this paper, we propose an integrated framework for local

planning and control of a vehicle, in which the dynamic

constraints of the vehicle can be adapted at run-time. We

assume a state-of-the-art solution of the tire-road friction esti-

mation [7]–[9], and focus on subsequent motion planning and

control problem only, using the up-to-date friction estimate.

Our method utilizes a combination of state space sampling

[10] and adaptive model predictive control (MPC) [11], [12],

employed in a Real Time Iteration Sequential Quadratic

Programming (RTI-SQP) fashion [13]. The resulting unified

trajectory planning and optimization algorithm, which we

call Sampling Augmented Adaptive RTI (SAA-RTI), bears

the following contributions:

1) A sampling based strategy for traction adaptive motion

planning, which incorporates the knowledge of vehicle

model and operating constraints. For this planner, the

time-varying tire-road friction limitation is handled as

a time-varying adaptive input constraint.

2) A trajectory optimization scheme based on RTI-SQP for

optimizing planned trajectories from 1), in environments

with obstacles. The proposed scheme avoids potential

infeasibility and local minima, while utilizing full dy-

namic capabilities of the vehicle via the adaptive input

constraints from (1).
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We demonstrate through numerical simulations that our

SAA-RTI algorithm increases the vehicle’s capacity to avoid

obstacles in critical situations compared to an equivalent non-

adaptive method, as well as a traditional modular planning

and tracking scheme.

II. RELATED WORK

Research in motion planning and control at the handling

limits is influenced by research in the racing community.

Through the use of nonlinear programming, Perantoni et al.

[14] computes the time-optimal speed profile and racing line

for an entire race track, although computational limitations

require the trajectories to be computed offline. Kapania and

Gerdes [15] presents an experimentally validated algorithm

that reduces computational expense by breaking down the

combined lateral/longitudinal vehicle control problem into

two sequential subproblems that are solved iteratively.

Another optimization based approach to the autonomous

racing problem is to repeatedly solve a Constrained Finite

Time Optimal Control (CFTOC) problem online. Liniger et

al. [6] utilizes the Real Time Iteration Sequential Quadratic

Programming (RTI-SQP) paradigm [16] to jointly solve the

trajectory planning and control problems. Rosolia [17] ap-

plied learning MPC to minimize lap completion time, given

data from previous laps. Building on the experiences from

the racing application, Gray et al. [18] considered motion

planning at the handling limits for obstacle avoidance, gen-

erating a high-level motion plan from a four-wheel dynamic

model and a low-level plan using MPC. Zhang et al. [19]

re-formulate the collision avoidance constraints in the dual

variable space, which results in a smooth (but still, non-

convex) optimization problem. A predictive control approach

was also utilized by Funke et al. [20] and Brown et al. [21] to

provide collision-free trajectories while maintaining vehicle

stability. A practical drawback of purely optimization-based

motion planning techniques pointed out by Ziegler et al. [3]

is that they struggle in situations where the motion planning

problem contains discrete decision making (e.g. to go left

or right of an obstacle). In specific cases [6], [21], this

can be remedied by a high level path planner based on a

method such as dynamic programming. However, to the best

of our knowledge, a generalized solution for this problem

without loss of optimality w.r.t. the dynamic capabilities of

the vehicle has yet to be presented.

Hence for practicality, state space sampling methods such

as those presented by Howard et al. [10] are widely used

in industry for collision avoidance. The core concept of the

method is as follows. A grid is defined in the terminal state

of the planning horizon and a set of two point boundary

value problems are solved between the initial state and

each sampled terminal state, generating a trajectory set.

Dynamic constraints are not considered in the generation

of the trajectory set. Instead, a dynamic feasibility check

is done in conjunction with the collision check for each

trajectory. Werling et al extended the method by generating

the trajectory set in a road-aligned coordinate frame and by

introducing a terminal manifold to improve the selection of

terminal states [4]. It has been shown that the method is well

suited for planning in scenarios including discrete decisions.

However, even though it reliably produces feasible maneu-

vers, they are suboptimal w.r.t. the physical capabilities of

the vehicle.

An intuitive way to reduce suboptimality of the trajec-

tories in the set is to solve the two-point boundary value

problem offline, using a dynamic model. This method has

been demonstrated successfully in several previous works

[5], [6]. However, this approach prohibits online model

adaptation, since the trajectories in the pre-computed library

are computed based on a static vehicle representation.

On the other hand, to account for local variations in physi-

cal capabilities of the vehicle, we draw from developments in

the field of adaptive control. Predictive control under model

uncertainty has been well-studied recently [22]–[26]. Such

frameworks allow the system to dynamically re-plan safer

and more cost efficient trajectories with time, as additional

model information available from data is provided to the

MPC optimization problem. We leverage this notion of adap-

tive MPC in our work as well, by utilizing updated vehicle

model information to adapt the constraints to account for

time-varying traction limitations. With extensive numerical

examples, we highlight that this method of recursive model

adaptation in MPC improves the capacity to avoid obstacles

under time-varying road conditions.

III. PROBLEM FORMULATION

We tackle the problem of real-time trajectory planning

and control of a vehicle at its limits of handling, under

time varying traction limitations. The controller synthesis is

done by solving an optimization problem with time vary-

ing constraints in a receding horizon fashion in real time,

i.e., a solution is obtained fast enough to accommodate a

sufficiently fast replanning rate [1]. In the following section

we introduce the model and constraints of the optimization

problem.

Vehicle Model: Throughout this paper we consider a dy-

namic bicycle model expressed in a road aligned coordinate

frame. The state propagation is described in (1):

ṡ =
vx cos (∆ψ)− vy sin (∆ψ)

1− dκc
, (1a)

ḋ = vx sin (∆ψ) + vy cos (∆ψ), (1b)

∆ψ̇ = ψ̇ − κc
vx cos (∆ψ)− vy sin (∆ψ)

1− dκc
, (1c)

ψ̈ =
1

Iz
(lfFyf − lrFyr) , (1d)

v̇x =
1

m
Fx, (1e)

v̇y =
1

m
(Fyf + Fyr)− vxψ̇, (1f)

where s denotes the curvilinear abscissa i.e., the progression

of the vehicle along the centerline of the lane with curvature

κc at s. Variable d represents the normal distance from the

centerline at s to the center of mass of the vehicle. The



variable ∆ψ denotes the vehicle orientation relative to the

centerline tangent at s, and ψ̇, vx and vy denote yaw rate,

longitudinal and lateral velocities respectively. The inputs of

the model are Fyf, the lateral force on the front tire and Fx,

the combined longitudinal force on the front and rear tires.

The values m, Iz , lf and lr are physical vehicle parameters.

For the purposes of this paper we assume that effects of

longitudinal load transfer, bank angle and grade angle of the

road are small. We compactly write (1) as ẋ = fc(x, u),
where x = [s d ∆ψ ψ̇ vx vy]

⊤ and u = [Fyf Fx]
⊤. We then

discretize (1) using forward Euler discretization, xt+1 = xt+
Tsfc(xt, ut) with sampling time Ts, to get xt+1 = f(xt, ut).

Ideal Optimal Control Problem: For trajectory planning

and control synthesis, we wish to solve the following Con-

strained Finite Time Optimal Control (CFTOC) problem in

a receding horizon [27, Chapter 12] fashion at any time

instance t, for all t ≥ 0:

min
u0|t,··· ,uN−1|t

p(xN |t) +

N−1
∑

k=0

q(xk|t, uk|t)

s.t. xk+1|t = f
(

xk|t, uk|t
)

,

xk|t ∈ Xt, uk|t ∈ Ut(µt),
∀ k = 0, . . . , N − 1,
x0|t = xt, xN |t ∈ Xt,

(2)

where [x0|t, · · · , xN |t]
⊤ at time t, denote the predicted states

along a prediction horizon of length N , when the predicted

input sequence [u0|t, · · · , uN−1|t]
⊤ is applied through vehi-

cle model f(·, ·). The inputs uk|t for all k ∈ {0, . . . , N − 1}
are bounded by the sets Ut(µt) ⊆ R

m to account for

local dynamic limitations of the vehicle. µt is the identified

tire-road friction coefficient. The sets Xt ⊆ R
n represent

collision free states of the vehicle with respect to drivable

area, static and dynamic obstacles. Functions q(·, ·) and

p(·) denote the positive definite running cost and terminal

cost functions respectively. After solving (2) at each time

t, the first optimal input ut = u⋆0|t is to be applied in

closed loop to (1) and then (2) is to be solved at next

time t+ 1, as per the receding horizon strategy. Notice that

the problem (2) is formulated with time varying constraints

Ut(µt) and Xt. Time variation in Xt is required to represent

predicted movement of dynamic obstacles. Time variation in

Ut(µt) is introduced to account for variations in the physical

capabilities of the vehicle due to local traction variations.

Adaptive Constraints: The maximum horizontal force that

can be exerted between a tire and the road at time t

is determined by the normal force, Fz , and the tire-road

friction coefficient µt. The boundary of combined lateral and

longitudinal forces on a single tire is referred to as a friction

circle [9]. For our dynamic bicycle model we have that

F 2
yf + F 2

xf ≤ (µFzf)
2, F 2

yr + F 2
xr ≤ (µFzr)

2. (3)

Considering the control inputs of (1) and assuming that

effects of longitudinal load transfer are small, the friction

circle constraint is satisfied if the pair of control inputs Fyf

and Fx are inside an ellipse with half-axles µFzf and µFz .

For computational tractability of (2), we represent the input

constraints as a set of affine constraints. For that reason,

we determine a polytope U1(µ) that under-approximates the

ellipse. Lower and upper bounds in Fyf and Fx due to limits

in steering angle and motor torque are represented as a

second polytope U2. The final input constraint polytope is

computed as the intersection U(µ) = U1(µ) ∩ U2 = {u :
Hµu ≤ hµ}, illustrated in Fig. 1. In the next section, we use

Fig. 1: Adaptive input constraint polytope capturing local limita-
tions of tire forces. The size of U(µ) varies with the identified
parameter µ

these parametric (µ dependent) adapted input constraints to

formulate a trajectory planning and optimization algorithm,

which attempts to solve (2) in real-time.

IV. SAMPLING AUGMENTED ADAPTIVE RTI

There are two practical problems with the ideal optimal

control synthesis formulation in (2), namely:

(i) A direct solution to (2) using a nonlinear solver would

be prone to getting stuck in local minima, when the

problem contains discrete decision making (e.g., to go

left or right of an obstacle [3]). This can render the

approach computationally intractable.

(ii) Even if (2) is tractably reformulated, due to the adaptive

nature of the constraints, potential issues of feasibility

in solving the reformulation of (2) might arise [28], as

a result of discrepancy between constraints Ut(µt), Xt

and dynamics f(xt, ut).

To address these problems, we propose the Sampling Aug-

mented Adaptive RTI (SAA-RTI) algorithm, which decom-

poses the method of solving (2) into two distinct steps:

feasible trajectory planning and trajectory optimization. The

approach augments the existing RTI-SQP [16] strategy with

state space sampling [10]. The horizon and sampling time for

both trajectory planning and optimization steps are chosen

as N and Ts respectively, as in (2).

For the feasible trajectory planning step, we modify the

state space sampling method in [10] to handle the adaptive

nature of actuation constraints (defined in Section III, Fig. 1),

while satisfying vehicle dynamics (1). This incorporation of

real time constraint adaptation, repeatedly generates a large

set of feasible sampled trajectories at each time step. Unlike

conventional RTI-SQP, the presence of this set provides a

systematic method for warmstarting the subsequent trajec-

tory optimization, remedying problem (i) defined above.

In the trajectory optimization step, we define state con-

straints Xt w.r.t. deviations from feasible planned trajectories.



As both trajectory planner and optimizer use the same vehicle

model f(xt, ut) and adapted constraints Ut(µt), one planned

trajectory is guaranteed to be a feasible solution for the

trajectory optimization problem. Hence, (ii) is resolved. In

the following two sub-sections we elaborate the details of

these two aforementioned steps of the algorithm.

A. State Space Sampling and Trajectory Planning

To obtain a feasible and near-optimal solution to (2),

we first utilize state space sampling [10]. The purpose

of this step is to provide additional, feasible warm-

starting options for the subsequent trajectory optimiza-

tion problem, while being cognizant of time varia-

tions in operating constraints. At any time t, we first

compute the initial state of the vehicle in the road

aligned frame [s0|t, d0|t,∆ψ0|t, ψ̇0|t, (vx)0|t, (vy)0|t] 7→

[s0|t, d0|t, ṡ0|t, ḋ0|t, s̈0|t, d̈0|t]. We then define a set of ter-

minal states [sN |t, dN |t, ṡN |t, ḋN |t, s̈N |t, d̈N |t], where dN |t

denotes terminal lateral deviations from the lane centerline

at sN |t. Then, for each terminal state of the sampling based

planner, a trajectory from the initial to the terminal state is

determined by a piecewise affine function in s and a quintic

polynomial in d by solving a set of two point boundary

value problems. The coefficients of such a quintic polynomial

dk|t = a0+a1(k̃)+a2(k̃)
2+a3(k̃)

3+a4(k̃)
4+a5(k̃)

5 over

the planning horizon of length N , i.e, k ∈ {0, . . . , N − 1}
with k̃ = kTs (Ts is the sampling time defined in Section III),

can be efficiently computed by solving

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
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.

Computation of coefficients for piecewise affine sk|t, k ∈
{0, . . . , N} is trivial, and is omitted due to limited space.

Each trajectory from the planner is then transformed to

a state trajectory of the vehicle, satisfying dynamics (1)

smoothly. This transformation γ̂ = [s, d, ṡ, ḋ, s̈, d̈] 7→ x̂ =
[s, d,∆ψ, ψ̇, vx, vy] is computed in closed form. Calculations

are available in [4]. Following the above transformation

γ̂ 7→ x̂, we loop through the planned trajectory set at any

time t over a finite prediction horizon of length N , checking

feasibility of dynamic constraints (see Fig. 1) and collision

avoidance Xt . The adaptive force constraints are checked

by computing the equivalent tire forces of each trajectory

and checking them with respect to constraints Ut(µt). For

trajectories passing this check, we evaluate a cost metric

(essentially the to cost of (2). See Remark 2 for details)

J(X̂t) = x̂⊤N |tQf x̂N |t +

N−1
∑

k=0

x̂⊤k|tQx̂k|t + û⊤k|tRûk|t, (4)

where X̂t = {(x̂k|t, ûk|t), k ∈ {0, . . . , N}} denotes a

planned trajectory (suboptimal) rolled out by the state-

space sampling planner, which satisfies the vehicle dynamics

x̂k+1|t = f(x̂k|t, ûk|t), k ∈ {0, . . . , N}. The matrices

Q,Qf , R ≻ 0 are tuning matrices, selected such that the

cost reflects the overall objective. The lowest cost sampled

trajectory at t = 0 i.e. X̂⋆
0 = {(x̂⋆k|0, û

⋆
k|0), k ∈ {0, . . . , N}}

(where X̂⋆
0 = argmin

X
J(X̂0) = (x̂⋆

k|0, û
⋆
k|0), k ∈

{0, . . . , N}) is selected for the subsequent trajectory op-

timization at time t = 0 to obtain the optimal X⋆
0 =

{(x⋆
k|0, u

⋆
k|0), k ∈ {0, . . . , N}}. From t = 1 onward, X̂⋆

t =

argmin
X

(J(X̂t), J(X
⋆
t−1)). That is, the forward shifted opti-

mal trajectory X⋆
t−1 = {(x⋆

k|t−1, u
⋆
k|t−1), k ∈ {1, . . . , N}}

from the previous iteration of the trajectory optimization is

included in the selection on equal terms with the sampled

trajectories X̂t for the current time step.

Remark 1: In case X⋆
t−1 is selected as X̂⋆

t , the algorithm

behaves as standard RTI-SQP [16].

Although dynamically feasible and optimal within the

sampled set, X̂⋆
t will be suboptimal due to the structure

imposed by the polynomials defining the trajectory. We will

later illustrate this in Section V. Hence, we employ trajectory

optimization using RTI-SQP to obtain an optimal trajectory

X⋆
t from the initialized suboptimal trajectory X̂⋆

t for all

t ≥ 0, rather than simply tracking suboptimal X̂⋆
t .

B. Trajectory Optimization

As stated in problem (i) in the beginning of this section,

the ideal adaptive CFTOC problem (2) is non-convex, so

solvers are prone to getting stuck in local minima. How-

ever, solving (2) locally around the feasible but subopti-

mal trajectory X̂⋆
t can be done efficiently using a convex

Quadratic Program (QP) approximation. We obtain the QP

approximation of (2) through the linear time varying model

predictive control paradigm [16]. At any given time t, the

model and constraints in (2) are linearized around X̂⋆
t . Then,

for one iteration of the algorithm, the following reformulated

optimization problem is solved once at each time step t,

instead of solving (2):

min
∆u0|t,...,∆uN−1|t

J(xk|t, uk|t) + σ⊤
t βσt

s.t. xk+1|t=Ak|t(∆xk|t)+Bk|t(∆uk|t)+x̂
⋆
k+1|t,

H
µ
t uk|t ≤ h

µ
t ,

∀ k = 0, . . . , N − 1, and,

smin
k|t − σ

s
t ≤ sk|t ≤ s

max
k|t + σs

t ,

dmin
k|t − σ

d
t ≤ dk|t ≤ d

max
k|t + σd

t ,

(vmin
x )k|t − σ

vx
t ≤ (vx)k|t ≤ (vmax

x )k|t + σvx
t ,

∀ k = 0, . . . , N,
x0|t = xt,

σs
t ≥ 0, σd

t ≥ 0, σvx
t ≥ 0,

(5)

where [x1|t, · · · , xN |t] are predicted states obtained in open

loop at time t, after applying the predicted input se-

quence [u0|t, · · · , uN−1|t] to the linearized system, and

[∆xk|t,∆uk|t] = [xk|t − x̂⋆
k|t, uk|t − û⋆

k|t] for all k ∈

{0, . . . , N − 1}. The linearized system model matrices are

given as Ak|t = ∂f
∂x

∣

∣

∣

∣

(x̂⋆

k|t
,û⋆

k|t
)

, Bk|t = ∂f
∂u

∣

∣

∣

∣

(x̂⋆

k|t
,û⋆

k|t
)

,



for all k ∈ {0, . . . , N − 1} and state constraints X̂k|t =

{smin
k|t − σs

t ≤ sk|t ≤ smax
k|t + σs

t , dmin
k|t − σd

t ≤ dk|t ≤

dmax
k|t + σd

t , (vmin
x )k|t − σ

vx
t ≤ (vx)k|t ≤ (vmax

x )k|t + σvx
t }

for all k ∈ {0, . . . , N} in (5) are selected, such that the

deviation from X̂⋆
t is bounded. The constraints are softened

with slack variables σt to maintain feasibility of (5) and any

constraint violation is heavily penalized by β ≫ 0. The same

cost function J(·) as in the trajectory selection (shown in

(4)) is employed, with the addition of the term σ⊤
t βσt, with

σt = [σs
t , σ

d
t , σ

vx
t ]⊤, to account for slack variables in the soft

state constraints. After solving (5), we apply the first input

ut = u⋆0|t.

Remark 2: WLOG in (2), we choose p(xN |t) +
N−1
∑

k=0

q(xk|t, uk|t) = J(xk|t, uk|t) for (4) and (5).

We highlight that the novelty in (5) is two fold:

1) Inclusion of the adaptive constraint polytope U(µt) =
{u : H

µ
t u ≤ h

µ
t }, where U(µt) is recomputed at

every time t from the identified parameter µt as per the

method described in Section III, Fig. 1. This enables

the resulting optimal trajectory X⋆
t to fully utilize the

available tire force, given the current driving conditions.

This improves the vehicle’s capacity to avoid obstacles.

2) Inclusion of sampled trajectories X̂t to warmstart the

optimization problem (5) at each time t. This alleviates

the issue of local minima and potential infeasibility of

(5). Since the same vehicle model (1) and adaptive con-

straints (given by Ut(µt)) are applied in both trajectory

selection (Section IV-A) and the trajectory optimization

(Section IV-B) steps, one feasible solution to (5) is

guaranteed to exist at any time t, namely X̂⋆
t .

We summarize the proposed Sampling Augmented Adap-

tive RTI (SAA-RTI) algorithm in Algorithm 1. Let M

represent the map features, e.g., lane boundaries and static

obstacles, and O denote dynamic obstacles. At any time t,

we assume an existing tire-road friction estimate [7], [8]

µt, and Tt (defined as ∪∞i=1X̂
i
t) denotes the set of sampled

trajectories.

Algorithm 1 The SAA-RTI Algorithm

Input: xt, X
⋆
t−1, M , O

Output: X⋆
t

1: µt ← identifyFrictionCoefficient(xt)

2: Ut(µt) ← computeAdaptiveConstraints(µt)

3: Tt ← sampleStateTrajectories(xt,M )

4: for each trajectory X̂ i
t in [Tt, X

⋆
t−1] do

5: if (chkConstr(X̂ i
t ,Ut(µt)) ∧ chkColl(X̂ i

t , O)) then

6: J(X̂t) ← evaluateCost(X̂ i
t)

7: end if

8: end for

9: X̂⋆
t ← selectLowestCost(arg J(X̂⋆

t ))
10: Ak|t, Bk|t ← linearizeDynamicModel(X̂⋆

t )

11: X̂k|t ← computeStateConstraints(X̂⋆
t , O, M )

12: X⋆
t = (x⋆

k|t, u
⋆
k|t) ← opti(X̂⋆

t ,Ut(µt), X̂k|t, Ak|t, Bk|t)

13: return X⋆
t

Parameter Value

m 1500 kg

Iz 2250 kgm2

lf 1.04 m
lr 1.42 m

Cαf
160 kN/rad

Cαr 180 kN/rad

TABLE I: Static parameters of dynamic vehicle model used in
simulations

V. RESULTS AND DISCUSSION

In this section via thorough numerical analysis we demon-

strate two aspects of Algorithm 1:

(a) First, we compare adaptive (real time adaptation of con-

straints Ut(µt) defined in Section III) and non-adaptive

trajectory optimization by evaluating the realized closed

loop cost Jcl(x0) =
∞
∑

t=0
{J(xt, u

⋆
0|t) + σ⋆⊤

t βσ⋆
t }. We

generalize the results using Monte Carlo simulations

by computing its empirical mean J̄cl, and empirical

probability of colliding or veering off the road, denoted

as Pacc.

(b) Second, we highlight the advantage of SAA-RTI for

adaptive trajectory planning and optimization compared

to state-of-the-art methods in terms of optimality and

the ability to avoid local minima.

Simulations are conducted in closed loop with a nonlinear

bicycle model with model parameters stated in Table I. The

resulting quadratic programs are solved with the Gurobi

solver package in MATLAB.

A. Adaptive vs. Non-Adaptive Trajectory Optimization

Given the unavoidable local variations in the actual tire-

road friction µact, a non-adaptive motion planning strategy

will use (explicitly or implicitly) an assumed friction coeffi-

cient µasm, that at times differs significantly from µact. In our

first evaluation scenario, the vehicle is driving on a curved

section of road at a velocity of 15 m/s. An obstacle, which we

assume is stationary, appears suddenly 15 meters ahead of the

vehicle. Once the critical situation is detected, the goal of the

vehicle is to reduce its speed to zero as soon as possible and

come to a halt, while avoiding collision with high probability.

The road conditions are divided in two cases: wet road, with

µact = 0.55 and dry road, with µact = 0.95. The non-adaptive

trajectory optimization assumes a static friction estimate

µasm = 0.8 throughout, while our proposed SAA-RTI re-

estimates this value and accordingly adapts input constraints

Ut(µt) (see Fig. 1) in (5). To mimic the convergence time of

a friction estimation algorithm, we introduce a time delay of

100ms before the correct value of µ is applied in SAA-RTI.

Adapting to Lower Traction: First we compare non-

adaptive, Fig. 2a, vs. adaptive, Fig. 2b, trajectory optimiza-

tion in the case where the actual traction is below the default

assumption, µact < µasm. The realized closed loop cost Jcl

starting from the same initial state is comparable in the

two cases (4% difference), but in the non-adaptive case, the

vehicle develops notably more side slip during the maneuver.

The underlying cause for this is that the vehicle is unable to

realize the planned motions due to saturated tire forces, as

constraints are not adapted to match actual road conditions.
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(a) Wet road, not adapting, Jcl = 7.00
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(b) Wet road, adapting, Jcl = 6.71
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(c) Dry road, not adapting , Jcl = 4.80
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(d) Dry road, adapting, Jcl = 4.08

Fig. 2: Closed loop trajectories for comparison between adaptive
and non-adaptive trajectory planning and control. The vehicle is
depicted in gray, the suddenly appearing obstacle in red. In the
force plot to the right, blue crosses denote the commanded tire
forces and magenta circles denote actual tire forces. The solid and
dashed black lines represent the actual and assumed friction circles
respectively.

Fig. 2a (right) shows the discrepancy between commanded

tire forces (blue) and real tire forces (magenta) and the

resulting sliding motion of the vehicle (left). In Fig. 2b,

we see a notably lower discrepancy due to real time re-

estimation of µasm and subsequent constraint adaptation in

SAA-RTI. The associated trajectory indicates that in this

case, adapting gives reduced side-slip and enhanced stability

during the evasive maneuver.

Adapting to Higher Traction: Here we compare non-

adaptive Fig. 2c, vs. adaptive, Fig. 2d, trajectory optimization

in the case where the actual traction is above the default

assumption µact > µasm. We note that in this case, adapting

decreases the stopping distance and the velocity at which the

obstacle is passed, which is reflected by a 15% decrease in

Jcl. The cause for this is evident from the front tire force plot

in the right part of Fig. 2c. It reveals that the commanded

tire forces (blue) are saturated by the friction circle associated

with µasm (dashed black), and therefore the vehicle is unable

to fully utilize the available tire force without adaptation.

In Fig. 2d, we see that constraint adaptation remedies the

TABLE II: Results from Monte Carlo simulations of 1200 critical
obstacle avoidance scenarios with varying initial conditions, obsta-
cle positions, road conditions and control strategies. J̄cl denotes the
average closed loop cost over non-colliding trajectories and Pacc the
probability of colliding or exiting the road over all runs. For the
non-adaptive case, µasm = 0.8.

Road Conditions Strategy J̄cl Pacc

non-adaptive 5.33 42%
wet road: µact = 0.55

adaptive 5.37 38%

non-adaptive 3.84 13%
dry road: µact = 0.95

adaptive 3.37 9%

undesired saturation of commanded tire forces, resulting in

a quicker, safer maneuver.

Monte Carlo Analysis: We investigate the generality of

the above indications by performing 1200 Monte Carlo

simulations of varying scenarios. For three different initial

conditions (20m/s straight road, 15m/s curved road, 10m/s

tight curved road), an obstacle appears at a random position

in front of the vehicle. We compute performance metrics J̄cl

(i.e average closed loop cost of non-colliding runs) and Pacc,

the empirical probability over all runs of colliding or veering

off the road.

The results presented in Table II show that traction adap-

tive motion planning and control, improves the capacity to

avoid accidents both in dry and wet road conditions, by

enabling full utilization of available tire forces without loss

of control authority.

B. Optimality and Feasibility of SAA-RTI

In order to demonstrate the quality of realized trajectories,

we compare SAA-RTI with a standard modular approach

with separated trajectory planning and tracking [2], which

uses state space sampling of Section IV-A for planning

and MPC for tracking the planned trajectory (which is

argmin
X

J(X̂t)). We refer to the method as State Space Sam-

pling with MPC tracking (SSS-MPC). The key difference in

the two approaches is that instead of tracking a suboptimal

argmin
X

J(X̂t) from the planner, the SAA-RTI optimizes

the selected trajectory (see Section IV-A and Algorithm 1)

to obtain an optimal trajectory (X⋆
t , see Section IV-B and

Algorithm 1). As a result, in Fig. 3 we see that SAA-RTI

stops in a shorter distance and passes the obstacle at a lower

speed, which is reflected by a decrease in average closed

loop cost J̄cl, by 42.2 % over 100 runs with a randomly

instantiated obstacle.

Moreover, a direct solution of (2) using RTI-SQP is

sensitive to local minima. This phenomenon is highlighted

in Fig. 4. The fully converged SQP solution initialized to the

left of the obstacle has a significantly higher cost, 7.94, than

that of the solution initialized to the right of the obstacle,

which is 3.05. Thus, the solution to the left of the obstacle

constitutes a local minima of (2). We observe from Fig. 4

that SAA-RTI makes the discrete decision to go right of the

obstacle and has a closed loop cost 3.156 close to the global

optimum, avoiding the local minimum.
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Fig. 3: Comparison of closed loop trajectories between SAA-RTI
(blue) and SSS-MPC (orange)
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Fig. 4: Example of how SAA-RTI avoids local minima. Orange:
converged SQP solution initialized left of obstacle. Blue: converged
SQP solution initialized right of obstacle. Gray: Closed loop tra-
jectory of the vehicle controlled by SAA-RTI

VI. CONCLUSIONS

In order to make full use of the physical capacity of an

automated vehicle to avoid collisions in critical scenarios,

we propose an integrated framework for trajectory planning

and optimization that adapts to current traction limitations.

By updating information on operating conditions in the

integrated planning and optimization framework, we ensure

safe constraint adaptation and feasible trajectory generation

at the limits of handling. We demonstrate that traction

adaptive trajectory planning improves the capacity to avoid

accidents by fully utilizing the available tire forces, while

maintaining control authority of the vehicle. Furthermore,

by augmenting Real Time Iteration-Sequential Quadratic

Programming with state space sampling, our proposed opti-

mization based planning-control algorithm called SAA-RTI,

delivers an improvement in terms of feasibility and optimal-

ity, demonstrated with thorough Monte Carlo simulations.
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for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. 3, pp.
346–359, 2012.

[5] L. Svensson, L. Masson, N. Mohan, E. Ward, A. P. Brenden, L. Feng,
and M. Törngren, “Safe stop trajectory planning for highly automated
vehicles: An optimal control problem formulation,” in 2018 IEEE

Intelligent Vehicles Symposium (IV), June 2018, pp. 517–522.

[6] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications

and Methods, vol. 36, no. 5, pp. 628–647, 2015.
[7] R. Rajamani, G. Phanomchoeng, D. Piyabongkarn, and J. Y. Lew,

“Algorithms for real-time estimation of individual wheel tire-road fric-
tion coefficients,” IEEE/ASME Transactions on Mechatronics, vol. 17,
no. 6, pp. 1183–1195, Dec 2012.

[8] F. Gustafsson, “Slip-based tire-road friction estimation,” Automatica,
vol. 33, no. 6, pp. 1087–1099, 1997.

[9] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[10] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State
space sampling of feasible motions for high-performance mobile
robot navigation in complex environments,” Journal of Field Robotics,
vol. 25, no. 6-7, pp. 325–345, 2008.

[11] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path-tracking in challenging outdoor environments,” in 2014

IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 4029–4036.

[12] M. Bujarbaruah, X. Zhang, H. Tseng, and F. Borrelli, “Adaptive MPC
for Autonomous Lane Keeping,” in 14th International Symposium on

Advanced Vehicle Control (AVEC), July 2018.
[13] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
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