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Abstract— This paper presents a novel tightly-coupled
keyframe-based Simultaneous Localization and Mapping
(SLAM) system with loop-closing and relocalization capabilities
targeted for the underwater domain.

Our previous work, SVIn, augmented the state-of-the-art
visual-inertial state estimation package OKVIS to accommodate
acoustic data from sonar in a non-linear optimization-based
framework. This paper addresses drift and loss of localization –
one of the main problems affecting other packages in underwa-
ter domain – by providing the following main contributions: a
robust initialization method to refine scale using depth measure-
ments, a fast preprocessing step to enhance the image quality,
and a real-time loop-closing and relocalization method using
bag of words. An additional contribution is the introduction of
depth measurements from a pressure sensor to the tightly-cou-
pled optimization formulation. Experimental results on datasets
collected with a custom-made underwater sensor suite and an
autonomous underwater vehicle from challenging underwater
environments with poor visibility demonstrate performance
never achieved before in terms of accuracy and robustness.

I. INTRODUCTION

Exploring and mapping underwater environments such
as caves, bridges, dams, and shipwrecks, are extremely
important tasks for the economy, conservation, and scientific
discovery [1]. Currently, most of the efforts are performed
by divers that need to take measurements manually using a
grid and measuring tape, or using hand-held sensors [2], and
data is post-processed afterwards. Autonomous Underwater
Vehicles (AUVs) present unique opportunities to automate
this process; however, there are several open problems that
still need to be addressed for reliable deployments, including
robust Simultaneous Localization and Mapping (SLAM), the
focus of this paper.

Most of the underwater navigation algorithms [3], [4],
[5], [6], [7] are based on acoustic sensors, such as Doppler
velocity log (DVL), Ultra-short Baseline (USBL), and sonar.
However, data collection with these sensors is expensive
and sometimes not suitable due to the highly unstructured
underwater environments. In recent years, many vision-
based state estimation algorithms have been developed using
monocular, stereo, or multi-camera system mostly for indoor
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Fig. 1. Underwater cave in Ginnie Springs, FL, where data have been
collected using an underwater stereo rig.

and outdoor environments. Vision is often combined with
Inertial Measurement Unit (IMU) for improved estimation of
pose in challenging environments, termed as Visual-Inertial
Odometry (VIO) [8], [9], [10], [11], [12]. However, the
underwater environment – e.g., see Fig. 1 – presents unique
challenges to vision-based state estimation. As shown in a
previous study [13], it is not straightforward to deploy the
available vision-based state estimation packages underwater.
In particular, suspended particulates, blurriness, and light and
color attenuation result in features that are not as clearly
defined as above water. Consequently results from different
vision-based state estimation packages show a significant
number of outliers resulting in inaccurate estimate or even
complete tracking loss.

In this paper, we propose SVIn2, a novel SLAM system
specifically targeted for underwater environments – e.g.,
wrecks and underwater caves – and easily adaptable for
different sensor configuration: acoustic (mechanical scanning
profiling sonar), visual (stereo camera), inertial (linear accel-
erations and angular velocities), and depth data. This makes
our system versatile and applicable on-board of different
sensor suites and underwater vehicles.

In our recent work, SVIn [14], acoustic, visual, and inertial
data is fused together to map different underwater structures
by augmenting the visual-inertial state estimation package
OKVIS [9]. This improves the trajectory estimate especially
when there is varying visibility underwater, as sonar provides
robust information about the presence of obstacles with
accurate scale. However, in long trajectories, drifts could
accumulate resulting in an erroneous trajectory.

SVIn [14] is extended by including an image enhancement
technique targeted to the underwater domain, introducing
depth measurements in the optimization process, loop-clo-
sure capabilities, and a more robust initialization. These addi-
tions enable the proposed approach to robustly and accurately
estimate the sensor’s trajectory, where every other approach
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has shown incorrect trajectories or loss of localization.
To validate the proposed approach, first, we assess the

performance of the proposed loop-closing method, by com-
paring it to other state-of-the-art systems on the EuRoC
micro-aerial vehicle public dataset [15], disabling the fusion
of sonar and depth measurements in our system. Second,
we test the proposed full system on several underwater
datasets in a diverse set of conditions. More specifically,
underwater data – consisting of visual, inertial, depth, and
acoustic measurements – has been collected using a custom
made sensor suite [16] from different locales; furthermore,
data collected by an Aqua2 underwater vehicle [17] include
visual, inertial, and depth measurements. The results on the
underwater datasets illustrate the loss of tracking and/or
failure to maintain consistent scale for other state-of-the-art
systems while our proposed method maintains correct scale
without diverging; for a comprehensive comparison please
refer to Joshi et al. [18].

The paper is structured as follows. The next section
discusses related work. Section III presents the mathemat-
ical formulation of the proposed system and describes the
approach developed for image preprocessing, pose initial-
ization, loop-closure, and relocalization. Section IV presents
results from a publicly available aerial dataset and a diverse
set of challenging underwater environments. We conclude
this paper with a discussion on lessons learned and directions
of future work.

II. RELATED WORK

Sonar based underwater SLAM and navigation systems
have been exploited for many years. Folkesson et al. [19]
used a blazed array sonar for real-time feature tracking.
A feature reacquisition system with a low-cost sonar and
navigation sensors was described in [20]. More recently,
Sunfish [21] – an underwater SLAM system using a multi-
beam sonar, an underwater dead-reckoning system based
on a fiber-optic gyroscope (FOG) IMU, acoustic DVL, and
pressure-depth sensors – has been developed for autonomous
cave exploration. Vision and visual-inertial based SLAM
systems also developed in [22], [23], [24] for underwater
reconstruction and navigation. Corke et al. [25] compared
acoustic and visual methods for underwater localization
showing the viability of using visual methods underwater
in some scenarios.

The literature presents many vision-based state estimation
techniques, which use either monocular or stereo cameras
and that are indirect (feature-based) or direct methods,
including, for example, MonoSLAM [26], PTAM [27], ORB-
SLAM [28], LSD-SLAM [29], and DSO [30]. In the follow-
ing, we highlight some of the state estimation systems which
use visual-inertial measurements and feature-based method.

To improve the pose estimate, vision-based state estima-
tion techniques have been augmented with IMU sensors,
whose data is fused together with visual information. A
class of approaches is based on the Kalman Filter, e.g.,
Multi-State Constraint Kalman Filter (MSCKF) [11] and its
stereo extension [12]; ROVIO [31]; REBiVO [32]. The other

spectrum of methods optimizes the sensor states, possibly
within a window, formulating the problem as a graph opti-
mization problem. For feature-based visual-inertial systems,
as in OKVIS [9] and Visual-Inertial ORB-SLAM [8], the
optimization function includes the IMU error term and the
reprojection error. The frontend tracking mechanism main-
tains a local map of features in a marginalization window
which are never used again once out of the window. VINS-
Mono [10] uses a similar approach and maintains a minimum
number of features for each image and existing features
are tracked by Kanade-Lucas-Tomasi (KLT) sparse optical
flow algorithm in local window. Delmerico and Scaramuzza
[33] did a comprehensive comparison specifically monitoring
resource usage by the different methods. While KLT sparse
features allow VINS-Mono running in real-time on low-
cost embedded systems, often results into tracking failure
in challenging environments, e.g., underwater environments
with low visibility. In addition, for loop detection additional
features and their descriptors are needed to be computed
for keyframes. An evaluation of features for the underwater
domain was presented in Shkurti et al. [34] and in Quattrini
Li et al. [35].

Loop closure – the capability of recognizing a place that
was seen before – is an important component to mitigate
the drift of the state estimate. FAB-MAP [36], [37] is an
appearance-based method to recognize places in a proba-
bilistic framework. ORB-SLAM [28] and its extension with
IMU [8] use bag-of-words (BoW) for loop closure and
relocalization. VINS-Mono also uses a BoW approach.

Note that all visual-inertial state estimation systems re-
quire proper initialization. VINS-Mono uses a loosely-
coupled sensor fusion method to align monocular vision
with inertial measurement for estimator initialization. ORB-
SLAM with IMU [8] performs initialization by first running
a monocular SLAM to observe the pose first and then, IMU
biases are estimated.

Given the modularity of OKVIS for adding new sensors
and robustness in tracking in underwater environment –
as demonstrated by fusing sonar data with Visual-Inertial
Odometry in Rahman et al. [14] – we extend OKVIS to
include also depth estimate, loop closure capabilities, and
a more robust initialization to specifically target underwater
environments.

III. PROPOSED METHOD

This section describes the proposed system, SVIn2, de-
picted in Fig. 2. The full proposed state estimation system
can operate with a robot that has stereo camera, IMU, sonar,
and depth sensor – the last two can be also disabled to
operate as a visual-inertial system.

Due to low visibility and dynamic obstacles, it is hard to
find good features to track. In addition to the underwater
vision constraints, e.g., light and color attenuation, vision-
based systems also suffer from poor contrast. Hence, we
augment the pipeline by adding an image preprocessing step,
where contrast adjustment along with histogram equalization
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Fig. 2. Block diagram of the proposed system, SVIn2; in yellow the
sensor input with frequency from the custom-made sensor suite, in green
the components from OKVIS, in red the contribution from our previous
work [14], and in blue the new contributions in this paper.

is applied to improve feature detection underwater. In partic-
ular, we use a Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) filter [38] in the image pre-processing step.

In the following, after defining the state, we describe
the proposed initialization, sensor fusion optimization, loop
closure and relocalization steps.

A. Notations and States

The full sensor suite is composed of the following co-
ordinate frames: Camera (stereo), IMU, Sonar (acoustic),
Depth, and World which are denoted as C, I , S, D, and
W respectively. The transformation between two arbitrary
coordinate frames X and Y is represented by a homogeneous
transformation matrix XTY = [XRY |XpY ] where XRY is
rotation matrix with corresponding quaternion XqY and XpY
is position vector.

Let us now define the robot R state xR that the system is
estimating as:

xR = [WpTI ,W qTI ,W vTI ,bg
T ,baT ]T (1)

which contains the position WpI , the attitude represented by
the quaternion WqI , the linear velocity W vI , all expressed
as the IMU reference frame I with respect to the world coor-
dinate W ; moreover, the state vector contains the gyroscopes
and accelerometers bias bg and ba.

The associated error-state vector is defined in minimal
coordinates, while the perturbation takes place in the tangent
space of the state manifold. The transformation from minimal
coordinates to tangent space can be done using a bijective
mapping [9], [39]:

δχR = [δpT , δαT , δvT , δbgT , δbaT ]T (2)

which represents the error for each component of the state
vector with δα ∈ R3 being the minimal perturbation for
rotation.

B. Tightly-coupled Non-Linear Optimization with Sonar-
Visual-Inertial-Depth measurements

For the tightly-coupled non-linear optimization, we use the
following cost function J(x), which includes the reprojection
error er and the IMU error es with the addition of the sonar
error et (see [14]), and the depth error eu:

J(x) =

2∑
i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,k
T

r Pkrei,j,kr +

K−1∑
k=1

ek
T

s Pkseks

+

K−1∑
k=1

ek
T

t Pkt ekt +

K−1∑
k=1

ek
T

u P ku e
k
u (3)

where i denotes the camera index – i.e., left (i = 1) or right
(i = 2) camera in a stereo camera system with landmark
index j observed in the kth camera frame. Pkr , Pks , Pkt , and
P ku represent the information matrix of visual landmarks,
IMU, sonar range, and depth measurement for the kth frame
respectively.

For completeness, we briefly discuss each error term –
see [9] and [14] for more details. The reprojection error
describes the difference between a keypoint measurement in
camera coordinate frame C and the corresponding landmark
projection according to the stereo projection model. The IMU
error term combines all accelerometer and gyroscope mea-
surements by IMU pre-integration [39] between successive
camera measurements and represents the pose, speed and
bias error between the prediction based on previous and
current states. Both reprojection error and IMU error term
follow the formulation by Leutenegger et al. [9].

The concept behind calculating the sonar range error,
introduced in our previous work [14], is that, if the sonar
detects any obstacle at some distance, it is more likely
that the visual features would be located on the surface of
that obstacle, and thus will be approximately at the same
distance. The step involves computing a visual patch detected
in close proximity of each sonar point to introduce an
extra constraint, using the distance of the sonar point to the
patch. Here, we assume that the visual-feature based patch
is small enough and approximately coplanar with the sonar
point. As such, given the sonar measurement zkt , the error
term ekt (WpkI , zkt ) is based on the difference between those
two distances which is used to correct the position WpkI .
We assume an approximate normal conditional probability
density function f with zero mean and Wk

t variance, and the
conditional covariance Q(δp̂k|zkt ), updated iteratively as new
sensor measurements are integrated:

f(ekt |WpkI ) ≈ N (0,Wk
t ) (4)

The information matrix is:

Pkt = Wk
t

−1
=

 ∂ekt
∂δp̂k

Q(δp̂k|zkt )
∂ekt
∂δp̂k

T
−1 (5)

The Jacobian can be derived by differentiating the expected
range r measurement with respect to the robot position:

∂ekt
∂δp̂k

=
[
−lx+W px

r ,
−ly+W py

r , −lz+W pz
r

]
(6)

where W l = [lx, ly, lz, 1] represents the sonar landmark in
homogeneous coordinate and can be calculated by a simple



geometric transformation in world coordinates given range
r and head-position θ from the sonar measurements:

W l = (WTIITS [I3|r cos(θ), r sin(θ), 0]
T
S ) (7)

The pressure sensor, introduced in this paper, provides
accurate depth measurements based on water pressure. Depth
values are extracted along the gravity direction which is
aligned with the z of the world W – observable due to the
tightly coupled IMU integration. The depth data at time k is
given by1:

W pzD
k = dk − d0 (8)

With depth measurement zku, the depth error term
eku(W pzI

k, zku) can be calculated as the difference between
the robot position along the z direction and the depth data
to correct the position of the robot. The error term can be
defined as:

eku(W pzI
k, zku) = |W pzkI −W pz

k
D| (9)

The information matrix calculation follows a similar ap-
proach as the sonar and the Jacobian is straight-forward to
derive.

All the error terms are added in the Ceres Solver non-
linear optimization framework [40] to formulate error-state
(Eq. (2)) and estimate the robot state (Eq. (1)).

C. Initialization: Two-step Scale Refinement

A robust and accurate initialization is required for the
success of tightly-coupled non-linear systems, as described
in [8] and [10]. For underwater deployments, this becomes
even more important as vision is often occluded as well as
is negatively affected by the lack of features for tracking.
Indeed, from our comparative study of visual-inertial based
state estimation systems [18], in underwater datasets, most
of the state-of-the-art systems either fail to initialize or
make wrong initialization resulting into divergence. Hence,
we propose a robust initialization method using the sensory
information from stereo camera, IMU, and depth for under-
water state estimation. The reason behind using all these
three sensors is to introduce constraints on scale to have
a more accurate estimation on initialization. Note that no
acoustic measurements have been used because the sonar
range and visual features contain a temporal difference,
which would not allow to have any match between acoustic
and visual features, if the robot is not moving. This is due
to the fact that the sonar scans on a plane over 360° around
the robot and camera detects features in front of the robot
[14]; see Fig. 3.

The proposed initialization works as follows. First, we
make sure that the system only initializes when a minimum
number of visual features are present to track (in our exper-
iments 15 worked well). Second, the two-step refinement of
the initial scale from the stereo vision takes place.

1More precisely, W pzD
k = (dk − d0)+ init disp from IMU to account

for the initial displacement along z axis from IMU, which is the main
reference frame used by visual SLAM to track the sensor suite/robot.

Fig. 3. Custom made sensor suite mounted on a dual DPV. Sonar scans
around the sensor while the cameras see in front.

The depth sensor provides accurate depth measurements
which are used to refine the initial scale factor from stereo
camera. Including a scale factor s1, the transformation be-
tween camera C and depth sensor D can be expressed as

W pzD = s1 ∗W pzC + WRzCCpD (10)

For keyframe k, solving Eq. (10) for s1, provides the first
refinement r1 of the initial stereo scale Wpr1C , i.e.,

Wpr1C = s1 ∗WpC (11)

In the second step, the refined measurement from stereo
camera in Eq. (11) is aligned with the IMU pre-integral
values. Similarly, the transformation between camera C and
IMU I with scale factor s2 can be expressed as:

WpI = s2 ∗Wpr1C + WRCCpI (12)

In addition to refining the scale, we also approximate
initial velocity and gravity vector similar to the method
described in [10]. The state prediction from IMU integration
x̂i+1
R (xiR, ziI) with IMU measurements ziI in OKVIS [9] with

conditional covariance Q(δx̂i+1
R |xiR, ziI) can be written as

(the details about IMU pre-integration can be found in [39]):

W p̂i+1
I = WpiI +W viI∆ti +

1

2
W g∆ti

2 +W RiIα
i+1
Ii

W v̂i+1
I = W viI +W g∆ti +W RiIβ

i+1
Ii

W q̂i+1
I = γi+1

Ii
(13)

where αi+1
Ii

, βi+1
Ii

, and γi+1
Ii

are IMU pre-integration terms
defining the motion between two consecutive keyframes i
and i+1 in time interval ∆ti and can be obtained only from
the IMU measurements. Eq. (13) can be re-arranged with
respect to αi+1

Ii
, βi+1

Ii
as follows:

αi+1
Ii

= IRiW (W p̂i+1
I −W piI −W viI∆ti −

1

2
W g∆ti

2)

βi+1
Ii

= IRiW (W v̂i+1
I −W viI −W g∆ti) (14)

Substituting Eq. (12) into Eq. (14), we can estimate χS =
[viI , v

i+1
I ,W g, s2]T by solving the linear least square problem

in the following form:



min
χS

∑
i∈K

∥∥∥ẑi+1
Si
−Hi+1

Si
χS

∥∥∥2 (15)

where ẑi+1
Si

=[
α̂i+1
Ii
− IRiWWRi+1

C Cpi+1
I + IRiCCpiI

β̂
i+1

Ii

]
and Hi+1

Si
=

[
−I∆ti 0 − 1

2 IRiW∆ti
2

IRiW (Wpr1
i+1
C −Wpr1iC)

−I IRiWWRi+1
I −IRiW∆ti 0

]
D. Loop-closing and Relocalization

In a sliding window and marginalization based opti-
mization method, drift accumulates over time on the pose
estimate. A global optimization and relocalization scheme
is necessary to eliminate this drift and to achieve global
consistency. We adapt DBoW2 [41], a bag of binary words
(BoW) place recognition module, and augment OKVIS for
loop detection and relocalization. For each keyframe, only
the descriptors of the keypoints detected during the local
tracking are used to build the BoW database. No new features
will be detected in the loop closure step.

A pose-graph is maintained to represent the connec-
tion between keyframes. In particular, a node represents a
keyframe and an edge between two keyframes exists if the
matched keypoints ratio between them is more than 0.75.
In practice, this results into a very sparse graph. With each
new keyframe in the pose-graph, the loop-closing module
searches for candidates in the bag of words database. A
query for detecting loops to the BoW database only returns
the candidates outside the current marginalization window
and having greater than or equal to score than the neigh-
bor keyframes of that node in the pose-graph. If loop is
detected, the candidate with the highest score is retained
and feature correspondences between the current keyframe
in the local window and the loop candidate keyframes are
obtained to establish connection between them. The pose-
graph is consequently updated with loop information. A
2D-2D descriptor matching and a 3D-2D matching between
the known landmark in the current window keyframe and
loop candidate with outlier rejection by PnP RANSAC is
performed to obtain the geometric validation.

When a loop is detected, the global relocalization module
aligns the current keyframe pose in the local window with the
pose of the loop keyframe in the pose-graph by sending back
the drift in pose to the windowed sonar-visual-inertial-depth
optimization thread. Also, an additional optimization step,
similar to Eq. (3), is taken only with the matched landmarks
with loop candidate for calculating the sonar error term and
reprojection error:

J(x) =

2∑
i=1

K∑
k=1

∑
j∈Loop(i,k)

ei,j,k
T

r Pkrei,j,kr +

K−1∑
k=1

ek
T

t Pkt ekt

(16)

After loop detection, a 6-DoF (position, xp and rotation,
xq) pose-graph optimization takes place to optimize over rel-
ative constraints between poses to correct drift. The relative
transformation between two poses Ti and Tj for current
keyframe in the current window i and keyframe j (either
loop candidate keyframe or connected keyframe) can be
calculated from ∆Tij = TjTi−1. The error term, ei,jxp,xq

between keyframes i and j is formulated minimally in the
tangent space:

ei,jxp,xq
= ∆TijT̂iT̂j

−1
(17)

where (̂.) denotes the estimated values obtained from local
sonar-visual-inertial-depth optimization. The cost function to
minimize is given by

J(xp, xq) =
∑
i,j

ei,jxp,xq

TPi,jxp,xq
ei,jxp,xq

+
∑

(i,j)∈Loop

ρ(ei,jxp,xq

TPi,jxp,xq
ei,jxp,xq

) (18)

where Pi,jxp,xq
is the information matrix set to identity, as

in [42], and ρ is the Huber loss function to potentially down-
weigh any incorrect loops.

IV. EXPERIMENTAL RESULTS

The proposed state estimation system, SVIn2, is quan-
titatively validated first on a standard dataset, to ensure
that loop closure and the initialization work also above
water. Moreover, it is compared to other state-of-the-art
methods, i.e., VINS-Mono [10], the basic OKVIS [9], and
the MSCKF [11] implementation from the GRASP lab [43].
Second, we qualitatively test the proposed approach on
several different datasets collected utilizing a custom made
sensor suite [16] and an Aqua2 AUV [17].

A. Validation on Standard dataset

Here, we present results on the EuRoC dataset [15], one
of the benchmark datasets used by many visual-inertial state
estimation systems, including OKVIS (Stereo), VINS-Mono,
and MSCKF. To compare the performance, we disable depth
and sonar integration in our method and only assess the loop-
closure scheme.

Following the current benchmarking practices, an align-
ment is performed between ground truth and estimated tra-
jectory, by minimizing the least mean square errors between
estimate/ground-truth locations, which are temporally close,
varying rotation and translation, according to the method
from [44]. The resulting metric is the Root Mean Square
Error (RMSE) for the translation, shown in Table I for
several Machine Hall sequences in the EuRoC dataset. For
each package, every sequence has been run 5 times and the
best run (according to RMSE) has been shown. Our method
shows reduced RMSE in every sequence from OKVIS,
validating the improvement of pose-estimation after loop-
closing. SVIn2 has also less RMSE than MSCKF and slightly
higher in some sequences, but comparable, to results from
VINS-Mono. Fig. 4 shows the trajectories for each method



TABLE I
THE BEST ABSOLUTE TRAJECTORY ERROR (RMSE) IN METERS FOR

EACH MACHINE HALL EUROC SEQUENCE.
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MH 01 0.13 0.15 0.07 0.21
MH 02 0.08 0.14 0.08 0.24
MH 03 0.07 0.12 0.05 0.24
MH 04 0.13 0.18 0.15 0.46
MH 05 0.15 0.24 0.11 0.54
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Fig. 4. Trajectories on the MH 04 sequence of the EuRoC dataset.

together with the ground truth for the Machine Hall 04
Difficult sequence.

B. Underwater datasets

Our proposed state estimation system – SVIn2 – is targeted
for the underwater environment, where sonar and depth can
be fused together with the visual-inertial data. The stereo
cameras are configured to capture frames at 15 fps, IMU
at 100 Hz, Sonar at 100 Hz, and Depth sensor at 1 Hz.
Here, we show results from four different datasets in three
different underwater environments. First, a sunken bus in
Fantasy Lake (NC), where data was collected by a diver
with a custom-made underwater sensor suite [16]. The diver
started from outside the bus, performed a loop around and
entered in it from the back door, exited across and finished
at the front-top of the bus. The images are affected by
haze and low visibility. Second and third, data from an
underwater cavern in Ginnie Springs (FL) is collected again
by a diver with the same sensor suite as for the sunken
bus. The diver performed several loops, around one spot in
the second dataset – Cavern1 – and two spots in the third
dataset – Cavern2 – inside the cavern. The environment is
affected by complete absence of natural light. Fourth, an
AUV – Aqua2 robot – collected data over a fake underwater
cemetery in Lake Jocassee (SC) and performed several loops
around the tombstones in a square pattern. The visibility,
as well as brightness and contrast, was very low. In the
underwater datasets, it is a challenge to get any ground
truth, because it is a GPS-denied unstructured environment.
As such, the evaluation is qualitative, with a rough estimate
on the size of the environment measured beforehand by the

Fig. 5. The Aqua2 AUV [17] equipped with the scanning sonar collecting
data over the coral reef.

divers collecting the data.
Figs. 6-9 show the trajectories from SVIn2, OKVIS, and

VINS-Mono in the datasets just described. MSCKF was able
to keep track only for some small segments in all the datasets,
hence excluded from the plots. For a fair comparison, when
the trajectories were compared against each other, sonar and
depth were disabled in SVIn2. All trajectories are plotted
keeping the original scale produced by each package.

Fig. 6 shows the results for the submerged bus dataset.
VINS-Mono lost track when the exposure increased for quite
some time. It tried to re-initialize, but it was not able to track
successfully. Even using histogram equalization or a contrast
adjusted histogram equalization filter, VINS-Mono was not
able to track. Even if the scale drifted, OKVIS was able to
track using a contrast adjusted histogram equalization filter
in the image pre-processing step. Without the filter, it lost
track at the high exposure location. The proposed method
was able to track, detect, and correct the loop, successfully.

In Cavern1 – see Fig. 7 – VINS-Mono tracked successfully
the whole time. However, as can be noticed in Fig. 7(c), the
scale was incorrect based on empirical observations during
data collection. OKVIS instead produced a good trajectory,
and SVIn2 was also able to detect and close the loops.

In Cavern2 (Fig. 8), VINS-Mono lost track at the be-
ginning, reinitialized, was able to track for some time, and
detected a loop, before losing track again. VINS-Mono had
similar behavior even if the images were pre-processed
with different filters. OKVIS tracked well, but as drifts
accumulated over time, it was not able to join the current
pose with a previous pose where a loop was expected. SVIn2
was able to track and reduce the drift in the trajectory with
successful loop closure.

In the cemetery dataset – Fig. 9 – both VINS-Mono and
OKVIS were able to track, but VINS-Mono was not able to
reduce the drift in trajectory, while SVIn2 was able to fuse
and correct the loops.

V. CONCLUSIONS

In this paper, we presented SVIn2, a state estimation
system with robust initialization, sensor fusion of depth,
sonar, visual, and inertial data, and loop closure capabilities.
While the proposed system can also work out of the water,
by disabling the sensors that are not applicable, our system
is specifically targeted for underwater environments. Experi-
mental results in a standard benchmark dataset and different
underwater datasets demonstrate excellent performance.



(a) (b) (c)

Fig. 6. (a) Submerged bus, Fantasy Lake, NC, USA with a 53 m trajectory; trajectories from SVIn2 with all sensors enabled shown in rviz (b) and
aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c) are displayed.

(a) (b) (c)

Fig. 7. (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a unique loop covering a 87 m trajectory; trajectories from SVIn2 with all
sensors enabled shown in rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c) are displayed.

(a) (b) (c)

Fig. 8. (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with two loops in different areas covering a 155 m trajectory; trajectories from SVIn2
with all sensors enabled shown in rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c) are displayed.

(a) (b) (c)

Fig. 9. (a) Aqua2 in a fake cemetery, Lake Jocassee, SC, USA with a 80 m trajectory; trajectories from SVIn2 with visual, inertial, and depth sensor
(no sonar data has been used) shown in rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c) are
displayed.

Utilizing the insights gained from implementing the pro-
posed approach, an online adaptation of the discussed frame-
work for the limited computational resources of the Aqua2
AUV [17] is currently under consideration; see Fig. 5. It

is worth noting that maintaining the proper attitude of the
traversed trajectory and providing an estimate of the distance
traveled will greatly enhance the autonomous capabilities
of the vehicle [45]. Furthermore, accurately modeling the



surrounding structures would enable Aqua2, as well as
other vision based underwater vehicles to operate near, and
through, a variety of underwater structures, such as caves,
shipwrecks, and canyons.
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[41] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” IEEE Trans. Robot., vol. 28,
no. 5, pp. 1188–1197, 2012.

[42] H. Strasdat, “Local accuracy and global consistency for efficient visual
slam,” Ph.D. dissertation, Citeseer, 2012.

[43] Research group of Prof. Kostas Daniilidis, “Monocular MSCKF ROS
node,” https://github.com/daniilidis-group/msckf mono, 2018.

[44] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 13, no. 4, pp. 376–380, 1991.

[45] J. Sattar, G. Dudek, O. Chiu, I. Rekleitis, P. Giguere, A. Mills,
N. Plamondon, C. Prahacs, Y. Girdhar, M. Nahon, and J.-P. Lobos,
“Enabling autonomous capabilities in underwater robotics,” in Proc.
IROS, 2008, pp. 3628–3634.

http://ceres-solver.org
http://ceres-solver.org
https://github.com/daniilidis-group/msckf_mono

	I INTRODUCTION
	II RELATED WORK
	III Proposed Method
	III-A Notations and States
	III-B Tightly-coupled Non-Linear Optimization with Sonar-Visual-Inertial-Depth measurements
	III-C Initialization: Two-step Scale Refinement
	III-D Loop-closing and Relocalization

	IV EXPERIMENTAL RESULTS
	IV-A Validation on Standard dataset
	IV-B Underwater datasets

	V CONCLUSIONS
	References

