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SuMa++: Efficient LiDAR-based Semantic SLAM

Xieyuanli Chen Andres Milioto Emanuele Palazzolo Philippe Giguere

Abstract— Reliable and accurate localization and mapping
are key components of most autonomous systems. Besides geo-
metric information about the mapped environment, the seman-
tics plays an important role to enable intelligent navigation be-
haviors. In most realistic environments, this task is particularly
complicated due to dynamics caused by moving objects, which
can corrupt the mapping step or derail localization. In this
paper, we propose an extension of a recently published surfel-
based mapping approach exploiting three-dimensional laser
range scans by integrating semantic information to facilitate
the mapping process. The semantic information is efficiently
extracted by a fully convolutional neural network and rendered
on a spherical projection of the laser range data. This computed
semantic segmentation results in point-wise labels for the whole
scan, allowing us to build a semantically-enriched map with
labeled surfels. This semantic map enables us to reliably
filter moving objects, but also improve the projective scan
matching via semantic constraints. Our experimental evaluation
on challenging highways sequences from KITTI dataset with
very few static structures and a large amount of moving
cars shows the advantage of our semantic SLAM approach
in comparison to a purely geometric, state-of-the-art approach.

I. INTRODUCTION

Accurate localization and reliable mapping of unknown
environments are fundamental for most autonomous vehicles.
Such systems often operate in highly dynamic environments,
which makes the generation of consistent maps more diffi-
cult. Furthermore, semantic information about the mapped
area is needed to enable intelligent navigation behavior. For
example, a self-driving car must be able to reliably find a
location to legally park, or pull over in places where a safe
exit of the passengers is possible — even in locations that
were never seen, and thus not accurately mapped before.

In this work, we propose a novel approach to simulta-
neous localization and mapping (SLAM) able to generate
such semantic maps by using three-dimensional laser range
scans. Our approach exploits ideas from a modern LiDAR
SLAM pipeline [2] and incorporates semantic information
obtained from a semantic segmentation generated by a Fully
Convolutional Neural Network (FCN) [20]. This allows us
to generate high-quality semantic maps, while at the same
time improve the geometry of the map and the quality of the
odometry.

The FCN provides class labels for each point of the laser
range scan. We perform highly efficient processing of the
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Fig. 1: Semantic map of the KITTI dataset generated with our
approach using only LiDAR scans. The map is represented by
surfels that have a class label indicated by the respective color.
Overall, our semantic SLAM pipeline is able to provide high-quality
semantic maps with higher metric accuracy than its non-semantic
counterpart.

point cloud by first using a spherical projection. Classifi-
cation results on this two-dimensional spherical projection
are then back-projected to the three-dimensional point cloud.
However, the back-projection introduces artifacts, which we
reduce by a two-step process of an erosion followed by
depth-based flood-fill of the semantic labels. The semantic
labels are then integrated into the surfel-based map represen-
tation and exploited to better register new observations to the
already built map. We furthermore use the semantics to filter
moving objects by checking semantic consistency between
the new observation and the world model when updating



the map. In this way, we reduce the risk of integrating
dynamic objects into the map. Fig. [I| shows an example
of our semantic map representation. The semantic classes
are generated by the FCN of Milioto et al. [20], which was
trained using the SemanticKITTI dataset by Behley et al. [1].
The main contribution of this paper is an approach to
integrate semantics into a surfel-based map representation
and a method to filter dynamic objects exploiting these
semantic labels. In sum, we claim that we are (i) able to
accurately map an environment especially in situations with
a large number of moving objects and we are (ii) able to
achieve a better performance than the same mapping system
simply removing possibly moving objects in general envi-
ronments, including urban, countryside, and highway scenes.
We experimentally evaluated our approach on challenging
sequences of KITTI [10] and show superior performance
of our semantic surfel-mapping approach, called SuMa++,
compared to purely geometric surfel-based mapping and
compared mapping removing all potentially moving objects
based on class labels. The source code of our approach is
available at:
https://github.com/PRBonn/semantic_suma/

II. RELATED WORK

Odometry estimation and SLAM are classical topics in
robotics with a large body of scientific work covered by
several overview articles [?], [6], [27]. Here, we mainly
concentrate on related work for semantic SLAM based on
learning approaches and dynamic scenes.

Motivated by the advances of deep learning and Convo-
Iutional Neural Networks (CNNs) for scene understanding,
there have been many semantic SLAM techniques exploiting
this information using cameras [5], [30], cameras + IMU
data [4], stereo cameras [9], [14], [17], [32], [37], or RGB-D
sensors [3], [18], [19], [25], [26], [28], [38]. Most of these
approaches were only applied indoors and use either an
object detector or a semantic segmentation of the camera
image. In contrast, we only use laser range data and exploit
information from a semantic segmentation operating on
depth images generated from LiDAR scans.

There exists also a large body of literature tackling lo-
calization and mapping changing environments, for example
by filtering moving objects [13], considering residuals in
matching [21], or by exploiting sequence information [33].
To achieve outdoor large-scale semantic SLAM, one can
also combine 3D LiDAR sensors with RGB cameras. Yan
et al. [36] associate 2D images and 3D points to improve
the segmentation for detecting moving objects. Wang and
Kim [34] use images and 3D point clouds from the KITTI
dataset [10] to jointly estimate road layout and segment
urban scenes semantically by applying a relative location
prior. Jeong et al. [11], [12] also propose a multi-modal
sensor-based semantic 3D mapping system to improve the
segmentation results in terms of the intersection-over-union
(IoU) metric, in large-scale environments as well as in envi-
ronments with few features. Liang et al. [16] propose a novel
3D object detector that can exploit both LiDAR and camera

data to perform accurate object localization. All of these
approaches focus on combining 3D LiDAR and cameras to
improve the object detection, semantic segmentation, or 3D
reconstruction.

The recent work by Parkison et al. [22] develops a point
cloud registration algorithm by directly incorporating image-
based semantic information into the estimation of the relative
transformation between two point clouds. A subsequent work
by Zaganidis et al. [39] realizes both LiDAR combined
with images and LiDAR only semantic 3D point cloud
registration. Both approaches use semantic information to
improve pose estimation, but they cannot be used for online
operation because of the long processing time.

The most similar approaches to the one proposed in this
paper are Sun et al. [29] and Dubé et al. [8], which realize
semantic SLAM using only a single LiDAR sensor. Sun
et al. [29] present a semantic mapping approach, which
is formulated as a sequence-to-sequence encoding-decoding
problem. Dubé et al. [8] propose an approach called SegMap,
which is based on segments extracted from the point cloud
and assigns semantic labels to them. They mainly aim at
extracting meaningful features for the global retrieval and
multi-robot collaborative SLAM with very limited types of
semantic classes. In contrast to them, we focus on generating
a semantic map with an abundance of semantic classes and
using these semantics to filter outliers caused by dynamic
objects, like moving vehicles and humans, to improve both
mapping and odometry accuracy.

III. OUR APPROACH

The foundation of our semantic SLAM approach is our
Surfel-based Mapping (SuMa) [2] pipeline, which we extend
by integrating semantic information provided by a semantic
segmentation using the FCN RangeNet++ [20] as illustrated
in Fig.[2] The point-wise labels are provided by RangeNet++
using spherical projections of the point clouds. This infor-
mation is then used to filter dynamic objects and to add
semantic constraints to the scan registration, which improves
the robustness and accuracy of the pose estimation by SuMa.

A. Notation

We denote the transformation of a point p4 in coordi-
nate frame A to a point pp in coordinate frame B by
Tpa € R¥*4, such that pg = Tpapa. Let Rpa € SO(3)
and tp4 € R® denote the corresponding rotational and
translational part of transformation Tp 4.

We call the coordinate frame at timestep ¢ as Cy. Each
variable in coordinate frame C}; is associated to the world
frame W by a pose Twe, € R**4, transforming the
observed point cloud into the world coordinate frame.

B. Surfel-based Mapping

Our approach relies on SuMa, but we only summarize
here the main steps relevant to our approach and refer for
more details to the original paper [2]. SuMa first generates
a spherical projection of the point cloud P at timestep ¢,
the so-called vertex map Vp, which is then used to generate
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Fig. 2: Pipeline overview of our proposed approach. We integrate semantic predictions into the SuMa pipeline in a compact way: (1) The
input is only the LiDAR scan P. (2) Before processing the raw point clouds P, we first use a semantic segmentation from RangeNet++
to predict the semantic label for each point and generate a raw semantic mask Syaw. (3) Given the raw mask, we generate an refined
semantic map Sp in the preprocessing module using multi-class flood-fill. (4) During the map updating process, we add a dynamic
detection and removal module which checks the semantic consistency between the new observation Sp and the world model Sy, and
remove the outliers. (5) Meanwhile, we add extra semantic constraints into the ICP process to make it more robust to outliers.

a corresponding normal map Np. Given this information,
SuMa determines via projective ICP in a rendered map view
Vi and Ny at timestep ¢ — 1 the pose update T¢,_, ¢, and
consequently Ty, by chaining all pose increments.

The map is represented by surfels, where each surfel
is defined by a position v, € R3, a normal n, € R?,
and a radius r; € R. Each surfel additionally carries two
timestamps: the creation timestamp ¢, and the timestamp ¢,
of its last update by a measurement. Furthermore, a stability
log odds ratio [, is maintained using a binary Bayes Filter
[31] to determine if a surfel is considered stable or unstable.
SuMa also performs loop closure detection with subsequent
pose-graph optimization to obtain globally consistent maps.

C. Semantic Segmentation

For each frame, we use RangeNet++ [20] to predict a se-
mantic label for each point and generate a semantic map Sp.
RangeNet++ semantically segments a range image generated
by a spherical projection of each laser scan. Briefly, the
network is based on the SqueezeSeg architecture proposed
by Wu et al. [35] and uses a DarkNet53 backbone proposed
by Redmon et al. [24] to improve results by using more
parameters, while keeping the approach real-time capable.
For more details about the semantic segmentation approach,
we refer to the paper of Milioto et al. [20]. The availability
of point-wise labels in the field of view of the sensor makes
it also possible to integrate the semantic information into
the map. To this end, we add for each surfel the inferred
semantic label y and the corresponding probability of that
label from the semantic segmentation.

D. Refined Semantic Map

Due to the projective input and the blob-like outputs
produced as a by-product of in-network down-sampling of
RangeNet++, we have to deal with errors of the semantic
labels, when the labels are re-projected to the map. To reduce
these errors, we use a flood-fill algorithm, summarized

Algorithm 1: flood-fill for refining Sp.
Input: semantic mask S,y and the corresponding
vertex map Vp
Result: refined mask Sp
Let N5 be the set of neighbors of pixel s € S within
a filter kernel of size d.
0 is the rejection threshold.
0 represents an empty pixel with label 0.
foreach s, € S,.,, do
Let Seroded(y) = s,
foreach n € N, do
if ys, # yn then
Let Seroded(y) = 0
break
end
end
end
foreach s, € S¢reded do
Let Sp(u) = sy
foreach n € N, do
if |jlu—un|| <6-|lu|| then
Let Sp(u) =n if ys, =0
break
end
end
end

in Alg. [T} It is inside the preprocessing module, which uses
depth information from the vertex map Vp to refine the
semantic mask Sp.

The input to the flood-fill is the raw semantic mask S,y
generated by the RangeNet++ and the corresponding vertex
map Vp. The value of each pixel in the mask S;.y is a
semantic label. The corresponding pixel in the vertex map
contains the 3D coordinates of the nearest 3D point in the
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Fig. 3: Visualization of the processing steps of the proposed flood-
fill algorithm. Given the (a) raw semantic map Srw, We first use an
erosion to remove boundary labels and small areas of wrong labels
resulting in (b) the eroded mask SZ°%°¢. (c) We then finally fill-in
eroded labels with neighboring labels to get a more consistent result
Sp. Black points represent empty pixels with label 0. (d) Shows the
depth and (e) the details inside the areas with the dashed borders.

LiDAR coordinate system. The output of the approach is the
refined semantic mask Sp.

Considering that the prediction uncertainty of object
boundaries is higher than that of the center of an object [15],
we use the following two steps in the flood-fill. The first
step is an erosion that removes pixels where the neighbors
within a kernel of size d show at least one different semantic
label resulting in the eroded mask S¢oded. Combining this
mask with the depth information generated from the vertex
map Vp, we then fill-in the eroded mask. To this end, we
set the label of an empty boundary pixel to the neighboring
labeled pixels if the distances of the corresponding points
are consistent, i.e., less than a threshold 6.

Fig. [3| shows the intermediate steps of this algorithm. Note
that the filtered semantic map does contain less artifacts
compared to the raw predictions. For instance, the wrong
labels on the wall of the building are mostly corrected, which
is illustrated in Fig. [3[e).

E. Filtering Dynamics using Semantics

Most existing SLAM systems rely on geometric informa-
tion to represent the environment and associate observations
to the map. They work well under the assumption that the
environment is mostly static. However, the world is usually
dynamic, especially when considering driving scenarios, and
several of the traditional approaches fail to account for
dynamic scene changes caused by moving objects. Therefore,
moving objects can cause wrong associations between obser-
vations and the map in such situations, which must be treated
carefully. Commonly, SLAM approaches use some kind of
outlier rejection, either by directly filtering the observation
or by building map representations that filter out changes
caused by moving objects.

In our approach, we exploit the labels provided by the se-
mantic segmentation to handle moving objects. More specif-
ically, we filter dynamics by checking semantic consistency
between the new observation Sp and the world model S,,,
when we update the map. If the labels are inconsistent,

(a) SuMa (b) SuMa++

(c) SuMa_nomovable

Fig. 4: Effect of the proposed filtering of dynamics. For all figures,
we show the color of the corresponding label, but note that SuMa
does not use the semantic information. (a) Surfels generated by
SuMa; (b) our method; (c) remove all potentially moving objects.

we assume those surfels belong to an object that moved
between the scans. Therefore, we add a penalty term to
the computation of the stability term in the recursive Bayes
filter. After several observations, we can remove the unstable
surfels. In this way, we achieve a detection of dynamics and
finally a removal.

More precisely, we penalize that surfel by giving a penalty
0dds(ppenalty) to its stability log odds ratio [5, which will
be updated as follows:

lgt) _ th—l)

2 d2
+ odds (pstable exp (_a2> exp (_2>)
og (o)

- Odds(pprior) - Odds(ppenalty); (1)

where odds(p) = log(p(1 — p)~') and pstable and Pprior
are probabilities for a stable surfel given a compatible mea-
surement and the prior probability, respectively. The terms
exp(—220~2) are used to account for noisy measurements,
where « is the angle between the surfel’s normal ng and
the normal of the measurement to be integrated, and d is
the distance of the measurement in respect to the associated
surfel. The measurement normal is taken from Np and the
correspondences from the frame-to-model ICP, see [2] for
more details.

Instead of using semantic information, Pomerleau et
al. [23] proposes a method to infer the dominant motion
patterns within the map by storing the time history of
velocities. In contrast to our approach, their method requires
a given global map to estimate the velocities of points in
the current scan. Furthermore, their robot pose estimate is
assumed to be rather accurate.

In Fig. @ we illustrate the effect of our filtering method
compared to naively removing all surfels from classes cor-
responding to movable objects. When utilizing the naive
method, surfels on parked cars are removed, even though
these might be valuable features for the incremental pose
estimation. With the proposed filtering, we can effectively
remove the dynamic outliers and obtain a cleaner semantic
world model, while keeping surfels from static objects, e.g.,
parked cars. These static objects are valuable information
for the ICP scan registration and simply removing them
can lead to failures in scan registration due to missing
correspondences.



(c) Visualized weights map

Fig. 5: Visualization of Semantic ICP: (a) semantic map Sp for the
current laser scan, (b) corresponding semantic map Sys rendered
from the model, (c) the weight map during the ICP. The darker the
pixel, the lower is the weight of the corresponding pixel.

F. Semantic ICP

To further improve the pose estimation using the frame-
to-model ICP, we also add semantic constraints to the op-
timization problem, which helps to reduce the influence of
outliers. Our error function to minimize for ICP is given by:

E(VD7VM7NM) = Z wunI (T(C]‘i)_lctufvu>27 (2)

ueVp

Tu
where each vertex u € Vp is projectively associated to a
reference vertex vy € Vs and its normal n, € Ny via

Vi = Var (H (T(th)flctu)) , 3)
n = N (1T ,u)), @)
ra and w, are the corresponding residual and weight,

respectively.
For the minimization, we use Gauss-Newton and deter-
mine increments § by iteratively solving:

§=(ITWI) " I W, (5)

where W € R™*™ is a diagonal matrix containing weights
wy for each residual r,, r € R"™ is the stacked residual
vector, and J € R™"*6 the Jacobian of r with respect to the
increment §. Besides the hard association and weighting by
a Huber norm, we add extra constraints from higher level
semantic scene understanding to weight the residuals. In this
way, we can combine semantics with geometric information
to make the ICP process more robust to outliers.

Within ICP, we compute the weight wf,k) for the residual

rflk) in iteration k£ as follows:

wl(lk) = PHuber (T‘(Jk)> Csemantic(SD (u)aSM (u))

H{lgk) 2 lstable}a (6)
where ppuber(7) corresponds to the Huber norm, given by:
B 1 Jif |rf <6
Priuver(7) = { S|~ , otherwise. )

For semantic compatibility Ciemanic ((Yus Pa)s (Yoa> Pou))s
the term is defined as:

Cremanic(-++) = { P(yu|u)

) if Yu = Yo
u 8
1 = Pya[u) ®

, otherwise. ’

which is using the certainty of the predicted label to weight
the residual. By I{a}, we denote the indicator function that
is 1 if the argument a is true, and 0 otherwise.

Fig. [5] shows the weighting for a highway scene with two
moving cars visible in the scan, see Fig. [5(a)] Note that
our filtering of dynamics using the semantics, as described
in Sec. [lI-E] removed the moving cars from the map,
see Fig. [5(b)] Therefore, we can also see a low weight
corresponding to lower intensity in Fig. since the classes
of the observation and the map disagree.

IV. EXPERIMENTAL EVALUATION

Our experimental evaluation is designed to support our
main claims that we are (i) able to accurately map even in
situations with a considerable amount of moving objects and
we are (ii) able to achieve better performance than simply
removing possibly moving objects in general environments,
including urban, countryside, and highway scenes.

To this end, we evaluate our approach using data from the
KITTI Vision Benchmark [10], where we use the provided
point clouds generated by a Velodyne HDL-64E S2 recorded
at a rate of 10 Hz. To evaluate the performance of odometry,
the dataset proposes to compute relative errors in respect
to translation and rotation averaged over different distances
between poses and averaging it. The ground truth poses are
generated using pose information from an inertial navigation
system and in most sequences the GPS position is referenced
to a base station, which makes it quite accurate, but still often
only locally consistent.

In the following, we compare our proposed approach
(denoted by SuMa++) against the original surfel-based map-
ping (denoted by SuMa), and SuMa with the naive ap-
proach of removing all movable classes (cars, buses, trucks,
bicycles, motorcycles, other vehicles, persons, bicyclists,
motorcyclist) given by the semantic segmentation (denoted
by SuMa_nomovable).

The RangeNet++ for the semantic segmentation was
trained using point-wise annotations [1] using all training
sequences from the KITTI Odometry Benchmark, which
are the labels available for training purposes. This includes
sequences 00 to 10, except for sequence 08 which is left out
for validation.

We tested our approach on an Intel Xeon(R) W-2123 with
8 cores @3.60 GHz with 16 GB RAM, and an Nvidia Quadro
P4000 with 8 GB RAM. The RangeNet++ needs on average
75ms to generate point-wise labels for each scan and the
surfel-mapping needs on average 48 ms, but we need at most
190 ms to integrate loop closures in some situations (on
sequence 00 of the training set with multiple loop closures).

A. KITTI Road Sequences

The first experiment is designed to show that our approach
is able to generate consistent maps even in situations with
many moving objects. We show results on sequences from
the road category of the raw data of the KITTI Vision
Benchmark. Note that these sequences are not part of the
odometry benchmark, and therefore no labels are provided
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Fig. 6: Qualitative results. (a) SuMa without semantics fails to
correctly estimate the motion of the sensor due to the consistent
movement of cars in the vicinity of the sensor. The frame-to-
model ICP locks to consistently moving cars leading to the map
inconsistencies, highlighted by rectangles. (b) By incorporating
semantics, we are able to correctly estimate the sensor’s movement
and therefore get a more consistent map of the environment and
a better estimate of sensor pose via ICP. The color of the 3D
points refers to the timestamp when the point has been recorded
for the first time. (c) Corresponding front-view camera image,
where we highlight the traffic signs. (d) Corresponding relative
translation error plot for each time step. The dots are the calculated
relative translational errors in each time stamp and the curves are
polynomial fitting results of those dots.

for the semantic segmentation, meaning that our network
learned to infer the semantic classes of road driving scenes,
and it is not simply memorizing. These sequences, especially
the highway sequences, are challenging for SLAM methods,
since here most of the objects are moving cars. Moreover,
there are only sparse distinct features on the side of the road,
like traffic signs or poles. Building corners or other more
distinctive features are not available to guide the registra-
tion process. In such situations, wrong correspondences on
consistently moving outliers (like cars in a traffic jam) often
lead to wrongly estimated pose changes and consequently

TABLE I: Results on KITTI Road dataset

Sequence  Environment Approach
SuMa SuMa_nomovable SuMa++

30 country 0.38/0.96 0.39/0.97 0.38/0.90
31 country 1.54/2.02 1.66/2.13 1.19/2.02
32 country 1.38/1.70 1.63/1.76 1.00/1.57
33 highway 1.61/1.79 1.72/1.80 1.67/1.87
34 highway 0.79/1.17 0.70/1.14 0.60/1.09
35 highway 5.11/26.8 3.20/1.22 2.90/1.11
36 highway 0.93/1.31 0.95/1.30 0.93/1.40
37 country 0.65/1.51 0.62/1.36 0.60/1.48
38 highway 1.07/1.66 1.04/1.46 0.89/1.42
39 country 0.46/1.04 0.47/0.98 0.44/1.05
40 country 1.09/18.0 0.79/1.92 0.75/1.95
41 highway 1.24/15.6 0.92/1.46 1.14/1.67

Average 1.35/6.13 1.17/1.46 1.04/1.46

Relative errors averaged over trajectories of 5 to 400 m length: relative rotational
error in degrees per 100 m / relative translational error in %. Bold numbers indicate
top performance for laser-based approaches.

We rename the KITTI road raw dataset
’2011-10-03_drive_0047_sync’ into sequences 30-41.

’2011.09_26_drive_0015_sync’-

inconsistencies in the generated map.

Fig. [6] shows an example generated with SuMa and the
proposed SuMa++. In the case of the purely geometric
approach, we clearly see that the pose cannot be correctly
estimated, since the highlighted traffic signs show up at
different locations leading to large inconsistencies. With our
proposed approach, where we are able to correctly filter the
moving cars, we instead generate a consistent map as evident
by the highlighted consistently mapped traffic signs. We also
plot the relative translational errors of odometry results of
both SuMa and SuMa++ in this example. The dots represent
the relative translational errors in each timestamp and the
curves are polynomial fitting results given the dots. It shows
that SuMa++ achieves more accurate pose estimates in such
a challenging environments with many outliers caused by
moving objects.

Tab. [ shows the relative translational and relative rota-
tional error and Fig. [7] shows the corresponding trajectories
for different methods tested on this part of the dataset.
Generally, we see that our proposed approach, SuMa++,
generates more consistent trajectories and achieves in most
cases a lower translational error than SuMa. Compared to
the baseline of just removing all possibly moving objects,
SuMa_nomovable, we see very similar performance com-
pared to SuMa++. This confirms that the major reason
for the worse performance of SuMa in such cases is the
inconsistencies caused by actually moving objects. However,
we will show in the next experiments that removing all
potentially moving objects can also have negative effects on
the pose estimation performance in urban environments.

B. KITTI Odometry Benchmark

The second experiment is designed to show that our meth-
ods performs superior compared to simply removing certain
semantic classes from the observations. This evaluation is
performed on the KITTI Odometry Benchmark.

Tab. [l shows the relative translational and relative rota-
tional errors. IMLS-SLAM [7] and LOAM [40] are state-of-
the-art LiDAR-based SLAM approaches. In most sequences,
we can see similar performance of SuMa++ compared to
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Fig. 7: Trajectories of different methods test on KITTI road dataset.
TABLE II: Results on KITTI Odometry (training)

Sequence
Approach 00* 01 02% 03 04 05%* 06* 07* 08* 09* 10 Average
urban highway urban country country country urban urban urban urban country
SuMa 0.23/0.68  0.54/1.70  0.48/1.20 0.50/0.74 0.27/0.44  0.20/0.43 0.3/0.54 0.54/0.74  0.38/1.20 0.22/0.62 0.32/0.72  0.36/0.83
SuMa._nomovable ~ 22.0/58.0  0.57/1.70  25.0/63.0 0.45/0.67 0.26/0.37  14.0/36.0  0.22/0.47  0.21/0.34 13.0/32.0 13.0/45.0 12.0/19.0  23.3/9.24
SuMa++ 0.22/0.64  0.46/1.60  0.37/1.00  0.46/0.67  0.26/0.37  0.20/0.40  0.21/0.46  0.19/0.34  0.35/1.10  0.23/0.47  0.28/0.66  0.29/0.70
IMLS-SLAM [7] -/0.50 -/0.82 -/0.53 -/0.68 -/0.33 -/0.32 -/0.33 -/0.33 -/0.80 -/0.55 -/0.53 -/0.55
LOAM [40] -/0.78 -/1.43 -/0.92 -/0.86 -/0.71 -/0.57 -/0.65 -/0.63 -/1.12 -0.77 -/0.79 -/0.84

Relative errors averaged over trajectories of 100 to 800 m length: relative rotational error in degrees per 100 m / relative translational error in %.
Sequences marked with an asterisk contain loop closures. Bold numbers indicate best performance in terms of translational error.

the state-of-the-art. More interestingly, the baseline method
SuMa_nomovable diverges, particularly in urban scenes.

This might be counter-intuitive since these environments
contain a considerable amount of man-made structures and
other more distinctive features. But there are two reasons
contributing to this worse performance that become clear
when one looks at the results and the configuration of the
scenes where mapping errors occur. First, even though we
try to improve the results of the semantic segmentation, there
are wrong predictions that lead to a removal of surfels in the
map that are actually static. Second, the removal of parked
cars is problems as these are good and distinctive features for
aligning scans. Both effects contribute to making the surfel
map sparser. This is even more critical as parked cars are
the only distinctive or reliable features. In conclusion, the
simple removal of certain classes is at least in our situation
sub-optimal and can lead to worse performance.

To evaluate the performance of our approach in unseen
trajectories, we uploaded our results for server-side evalua-
tion on unknown KITTI test sequences so that no parameter
tuning on the test set is possible. Thus, this serves as a
good proxy for the real-world performance of our approach.
In the test set, we achieved an average rotational error of
0.0032 deg/m and an average translational error of 1.06%,
which is an improvement in terms of translational error, when
compared to 0.0032 deg/m and 1.39% of the original SuMa.

C. Discussion

During the map updating process, we only penalize surfels
of dynamics of movable objects, which means we do not
penalize semantically static objects, e.g. vegetation, even
though sometimes leaves of vegetation change and the ap-
pearance of vegetation changes with the viewpoint due to
laser beams that only get reflected from certain viewpoints.
Our motivation for this is that they can also serve as good
landmarks, e.g., the trunk of a tree is static and a good feature

for pose estimation. Furthermore, the original geometric-
based outlier rejection mechanism employing the Huber
norm often down-weights such parts.

There is an obvious limitation of our method: we cannot
filter out dynamic objects in the first observation. Once there
is a large number of moving objects in the first scan, our
method will fail because we cannot estimate a proper initial
velocity or pose. We solve this problem by removing all
potentially movable object classes in the initialization period.
However, a more robust method would be to backtrack
changes due to the change in the observed moving state and
thus update the map retrospectively.

Lastly, the results of our second experiment shows con-
vincingly that blindly removing a certain set of classes can
deteriorate the localization accuracy, but potentially moving
objects still might be removed from a long-term representa-
tion of a map to also allow for a representation of otherwise
occluded parts of the environment that might be visible at a
different point of time.

V. CONCLUSION

In this paper, we presented a novel approach to build
semantic maps enabled by a laser-based semantic segmen-
tation of the point cloud not requiring any camera data. We
exploit this information to improve pose estimation accuracy
in otherwise ambiguous and challenging situations. In par-
ticular, our method exploits semantic consistencies between
scans and the map to filter out dynamic objects and provide
higher-level constraints during the ICP process. This allows
us to successfully combine semantic and geometric informa-
tion based solely on three-dimensional laser range scans to
achieve considerably better pose estimation accuracy than the
pure geometric approach. We evaluated our approach on the
KITTT Vision Benchmark dataset showing the advantages of
our approach in comparison to purely geometric approaches.
Despite these encouraging results, there are several avenues



for future research on semantic mapping. In future work, we
plan to investigate the usage of semantics for loop closure
detection and the estimation of more fine-grained semantic
information, such as lane structure or road type.
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