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Abstract— The contribution of this paper is the application of
compound state-triggered constraints (STCs) to real-time quad-
rotor path planning. Originally developed for rocket landing
applications, STCs are made up of a trigger condition and a
constraint condition that are arranged such that satisfaction
of the former implies satisfaction of the latter. Compound
STCs go a step further by allowing multiple trigger and
constraint conditions to be combined via Boolean “and” or
“or” operations. The logical implications embodied by STCs
can be formulated using continuous variables, and thus enable
the incorporation of discrete decision making into a continuous
optimization framework. In this paper, compound STCs are
used to solve quad-rotor path planning problems that would
typically require the use of computationally expensive mixed-
integer programming techniques. Two scenarios are considered:
(1) a quad-rotor flying through a hoop, and (2) a pair of quad-
rotors carrying a beam-like payload through an obstacle course.
Successive convexification is used to solve the resulting non-
convex optimization problem. Monte-Carlo simulation results
show that our approach can reliably generate trajectories at
rates upwards of 3 and 1.5 Hz for the first and second scenarios,
respectively.

I. INTRODUCTION

The main contribution of this paper is the application
of compound state-triggered constraints (STCs) to quad-
rotor path planning applications. STCs, and their generalized
counterparts, compound STCs, were recently introduced to
solve powered-descent guidance rocket landing problems that
contained discrete decisions [1]–[3]. Simply stated, this class
of constraints enables user-defined constraint conditions to be
enforced if other user-defined trigger conditions are satisfied.
To the best of our knowledge, STCs are novel since they
capture this discrete logical implication without relying on
discrete decision variables. Instead, STCs are formulated
using continuous variables, and in practice work well within
existing continuous optimization frameworks (e.g. successive
convexification). As a result, STCs can be interpreted as if -
statements that are embedded inside a continuous optimiza-
tion problem.

Over the past two decades, direct methods for solving
optimal control problems have seen a rise in popularity
due to the ease of use, performance, and convergence prop-
erties offered by modern optimization algorithms [4], [5].
Direct methods are typically used to solve problems with
continuous variables, and cannot readily enforce constraints
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involving discrete decisions. The most common technique
used to address this shortcoming is through the use of mixed-
integer programming techniques. Despite the existence of
efficient branch-and-bound methods, mixed-integer program-
ming techniques suffer from poor computational complex-
ity [6], [7]. The real-time capabilities of such techniques
are further hampered when evaluating each set of discrete
decisions is expensive.

Mixed-integer programming problems appear in quad-
rotor applications quite frequently. In [8], a centralized
mixed-integer quadratic programming (MIQP) approach was
used to perform collision avoidance among a team of four
heterogeneous quad-rotors. The results showed that feasi-
ble solutions could be found in tenths of a second, but
that optimality required significantly more computational
effort. As discussed in the paper, the methodology was not
easily scalable to larger teams of quad-rotors. In [9], the
authors formulated a different MIQP problem to handle
the hybrid dynamics of a quad-rotor flying with a mass
suspended by a non-rigid string. The paper illustrated that
the hybrid nature of the dynamics could be exploited to
allow the vehicle to perform otherwise infeasible maneuvers.
However, the paper reported computation times upwards of
100 s. In [10], a Mixed-Integer Semi-Definite Programming
(MISDP) approach was proposed to perform aggressive
obstacle avoidance in highly cluttered environments (5-26
obstacles). The approach was able to impressively avoid very
small obstacles, but reported average computation times of
approximately 10 minutes.

In this paper, we propose an STC-based approach that
prioritizes computational speed while settling for locally
optimal solutions. Two scenarios are used to demonstrate
the proposed methodology: (1) a quad-rotor flying through
a hoop, and (2) a pair of quad-rotors carrying a beam-
like payload through an obstacle course. The combinatorial
elements of these scenarios are formulated into a continuous
framework using compound STCs. The successive convex-
ification framework [11]–[13] is used to cast the original
non-convex problem into a sequence of convex Second-
Order Cone Programs (SOCPs). Our results show that the
optimal control problems associated with the first and second
scenarios can be solved reliably at average update rates of
15 and 4 Hz, and no slower than 3 and 1.5 Hz, respectively.

In this paper, we adopt the following notation and conven-
tions: an Up-East-North reference frame is used throughout
the paper; R, R+, and R++ are used to denote the set
of reals, non-negative reals, and positive reals; Rn, Rm×n,
and Sn+ are used to denote the space of n-dimensional
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vectors, m×n-dimensional matrices, and n×n-dimensional
symmetric positive semi-definite matrices; Sn ⊂ Rn+1 is the
unit n-sphere; for vectors quantities, the symbol ˆ is used to
signify unity norm; êj is used to denote a unit vector with
a unity jth element; z ∈ Rnz is used to denote a generic
solution variable of an optimization problem.

This paper is organized as follows: in §II, we give a brief
overview of STCs and compound STCs; in §III, we detail
our modeling assumptions and the two motivating scenarios;
in §IV, we outline the successive convexification algorithm
used in the subsequent section; in §V, we present our Monte
Carlo simulation results for both scenarios; and in §VI, we
provide concluding remarks.

II. STATE-TRIGGERED CONSTRAINTS

In this section we provide a concise introduction to STCs.
We refer the reader to [1]–[3] for more details.

A. Logical Statement

An STC is composed of two parts: a trigger condition
given by the strict inequality g(z) < 0, and a constraint
condition given by the inequality c(z) ≤ 0. We call g(z) :
Rnz → R the trigger function, and c(z) : Rnz → R
the constraint function. Both g(·) and c(·) are assumed to
be differentiable. Formally, an STC enforces the following
logical relationship:

g(z) < 0 ⇒ c(z) ≤ 0. (1)

The practical value of an STC is most evident from the
contrapositive of (1), namely, that the constraint condition
is not satisfied only if the trigger condition is not satisfied.

B. Continuous Formulation

Mixed-integer programming is the most common frame-
work used to implement discrete decisions such as (1). How-
ever, this approach suffers from poor computational complex-
ity due to the combinatorial nature of integer variables [6],
[7]. Moreover, even in the absence of STC-like constraints,
practical (non-convex) path planning problems often require
the use of sequential solution methods (e.g. Sequential
Quadratic Programming, Successive Convexification). For
these reasons we seek a continuous formulation of (1) that
is amenable to a sequential (continuous) implementation
without incurring the added computational complexity of
mixed-integer approaches.

An equivalent continuous formulation of (1) was intro-
duced in [1], and is given by

h(z) := σ̂(z) · c(z) ≤ 0, (2)

where σ̂(z) := −min
(
0, g(z)

)
. By inspection, we see that

if g(z) < 0, then σ̂(z) > 0, and (2) reduces to c(z) ≤ 0.
In contrast, if g(z) ≥ 0, then σ̂(z) = 0, and (2) is trivially
satisfied for any value of c(z) (i.e. the constraint condition
is not enforced). Thus, we conclude that (1) and (2) are
logically equivalent, and emphasize that the latter can be
implemented in a continuous optimization framework.

C. Compound State-Triggered Constraints

Compound STCs were introduced in [2], and are a gener-
alization of the scalar STC formulation given in (1) and (2).
Compound STCs have trigger and constraint conditions that
are composed using Boolean “and” or “or” operations. Here,
we present compound STCs with “and”- and “or”-trigger
conditions, and “or”-constraint conditions. The logical rep-
resentations of these STCs are given by

ng∧
j=1

(
gj(z) < 0

)
⇒

nc∨
j=1

(
cj(z) ≤ 0

)
, (3a)

ng∨
j=1

(
gj(z) < 0

)
⇒

nc∨
j=1

(
cj(z) ≤ 0

)
, (3b)

where there are ng trigger conditions, nc constraint condi-
tions, and each gj(·) and cj(·) is defined as in the scalar
case. The corresponding continuous formulations are given
by

h∧(z) :=

[
ng∏
j=1

σ̂j(z)

]
·

[
nc∏
j=1

(
cj(z) + αj

)]
= 0, (4a)

h∨(z) :=

[
ng∑
j=1

σ̂j(z)

]
·

[
nc∏
j=1

(
cj(z) + αj

)]
= 0, (4b)

where αj ∈ R+ are non-negative slack variables, and each
σ̂j(·) is defined as in the scalar case.

We conclude this section with two comments. First, formu-
lations with equality constraint conditions can be obtained by
substituting equalities in place of the (non-strict) inequalities
in (1)-(3), and omitting the slack variables in (4). Second,
a compound STC with an “and”-constraint condition is
emulated by enforcing nc separate compound STCs, each
with the original compound trigger condition and one of the
(scalar) constraint conditions. We are now ready to apply
STCs to the scenarios detailed in the next section.

III. PROBLEM FORMULATION

In this section, we outline two quad-rotor path planning
scenarios using compound STCs. Before presenting the two
scenarios, we briefly discuss our assumed guidance and
control (G&C) architecture and simplified quad-rotor model.

A. G&C Architecture

The G&C architecture assumed in this paper separates
guidance and control into two distinct tasks. The guidance
task involves generating an open-loop trajectory at a low
frequency, whereas the control task involves computing high
frequency closed-loop control actions to stay on the guidance
trajectory. The objective of the guidance task is to ensure
feasibility (e.g. respecting vehicle dynamics and control
limits, and avoiding obstacles), while the objective of the
control task is to provide robustness to plant uncertainties and
external disturbances (e.g. wind gusts, and battery voltage
variability). The control task is typically subdivided into
hierarchically arranged thrust, attitude, and translation con-
trollers.
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Fig. 1: Illustration of Scenario 1: The feasible thrust set is shown as the red volume on the left. The velocity, thrust, drag,
and gravity vectors are shown as the black, red, gray, and green vectors, respectively. The initial and final positions are
indicated on the left and right, respectively. The hoop, trigger corridor, and constraint corridor are shown on the right. The
vector n̂h is orthogonal to the plane of the hoop, and is not shown. The compound STC makes the volume that is inside
the trigger corridor but outside of the constraint corridor infeasible.

B. Simplified Quad-Rotor Dynamics

We assume a 3-DoF quad-rotor dynamics model, similar
to the one used in [14], [15]. This model is given by

ẋ(t) = Ax(t) +Bu(t) + Ew,

A :=

[
03×3 I3×3

03×3 −kdI3×3

]
, B :=

1

m

[
03×3

I3×3

]
,

x(t) :=
[
rT(t) vT(t)

]T
, E := −ê4, w := g,

where r(t) ∈ R3 is the position state, v(t) ∈ R3 is the
velocity state, u(t) ∈ U ⊂ R3 is the thrust (control) vector,
m ∈ R++ is the mass of the vehicle, kd ∈ R+ is the
drag coefficient, and g ∈ R++ is the local gravitational
acceleration. Note that the drag model is simplified due to
its linear dependence on v(t).

To define the control set U , we first define three sets. The
first set represents the allowable thrust magnitudes of the
vehicle, and is given by

U1 :=
{
u ∈ R3 : 0 < Tmin ≤ ‖u‖2 ≤ Tmax

}
,

where Tmin and Tmax are the minimum and maximum allow-
able thrust magnitudes. In practice, these bounds are selected
conservatively to ensure that the underlying controllers can
command thrust and torques independently. Note that U1

is non-convex. The second set represents the allowable tilt
angles of the vehicle, and is given by

U2 :=
{
u ∈ R3 : cos θmax‖u‖2 ≤ êT1u

}
,

where θmax ∈ (0◦, 180◦) is the maximum allowable tilt angle.
Note that U2 is non-convex for θmax > 90◦. The third set
represents the thrust vectors with a vertical component equal
and opposite to the weight of the vehicle (i.e. control inputs
that maintain a constant altitude). This set is given by

U3 :=
{
u ∈ R3 : êT1u = mg

}
,

and has a non-empty interior when Tmin ≤ mg < Tmax.

For three-dimensional applications, U = U1 ∩ U2 is non-
convex, and the optimal control problem can be convexi-
fied using the lossless convexification technique introduced
in [16] (also see [14]). For two-dimensional applications
requiring only horizontal motion, U = U1∩U2∩U3 is convex,
and the vertical dimension of the problem can be omitted
from the formulation of the guidance problem.

C. Scenario 1: Quad-Rotor Flying Through a Hoop

The first scenario involves flying a quad-rotor through a
hoop, and is three dimensional in nature (see Figure 1). We
formulate this scenario as a fixed-final-time optimal control
problem of duration tf ∈ R++.

The boundary conditions of this problem are prescribed
through the initial and final position vectors ri and rf . The
initial and final velocities are assumed to equal zero, and
the initial and final controls are assumed to be equal and
opposite the weight of the vehicle.

The position of the center of the hoop is denoted by
rh(t) ∈ R3, and can vary with time. We assume that rh(t) is
known for all t ∈ [0, tf ]. We represent the hoop’s orientation
using an orthogonal unit vector n̂h ∈ S2, which we assume is
constant for simplicity. We note that our formulation readily
handles small variations in hoop orientation, and emphasize
that rh(t) and n̂h are not decision variables of the optimal
control problem.

The constraint imposed by the hoop is formulated using
a compound STC that restricts the path of the quad-rotor
to a constraint corridor whenever the vehicle is inside a
trigger corridor. The constraint corridor functions to guide
the vehicle through the hoop without collision. The geometry
of this constraint is illustrated in Figure 1, where ρh denotes
the radius of the hoop. Omitting the time arguments of r(t)
and rh(t), the logical implication of this compound STC is
given by
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Fig. 2: Illustration of Scenario 2: The two vehicles and the payload are shown in their initial state on the left. The keep-out
region defined by (8) and (9) is shown at the second time instance. This region effectively keeps the vehicles and the payload
outside of the effective keep-out areas shown around the obstacles. Lastly, the convex control sets are represented by the
red circles in the second to last time instance.

3∧
j=1

(
gj(r, rh) < 0

)
⇒
(
c1(r, rh) ≤ 0

)
, (5a)

g1(r, rh) := n̂T

h(rh − r)− `c, (5b)
g2(r, rh) := n̂T

h(r − rh)− `c, (5c)

g3(r, rh) := (r − rh)TN̂ T

hN̂h(r − rh)− ρ2
g, (5d)

c1(r, rh) := (r − rh)TN̂ T

hN̂h(r − rh)− ρ2
c , (5e)

where `c ∈ R++ is the half-length of the corridor, ρg is
the radius of the trigger corridor, ρc is the radius of the
constraint corridor, and N̂h := I3×3 − n̂hn̂

T

h. In practice,
these parameters are selected to satisfy 0 ≤ ρc � ρh �
ρg . From (4a) and (5), we obtain the following continuous
formulation:

h1(r, rh) :=

[
3∏
j=1

σ̂j(r, rh)

]
· c1(r, rh) ≤ 0, (6)

where σ̂j(r, rh) := −min
(
0, gj(r, rh)

)
. Since nc = 1 in this

case, we omit the slack variable from (4a), and replace the
equality with an inequality. The associated fuel-optimal non-
convex optimal control problem is summarized in Problem 1.
This problem has two sources of non-convexity: the control

Problem 1: Non-Convex Formulation of Scenario 1

minimize
u

∫ tf

0

‖u(t)‖2dt

subject to:
r(0) = ri, r(tf ) = rf ,

v(0) = v(tf ) = 03×1,

u(0) = u(tf ) = mgê1,

ẋ(t) = Ax(t) +Bu(t) + Ew, u(t) ∈ U1 ∩ U2,

‖v(t)‖2 ≤ vmax, h1

(
r(t), rh(t)

)
≤ 0.

set, and the compound STC given in (6). The former is
addressed using lossless convexification (see §III-B), whereas
the latter is convexified using successive convexification
(see §IV).

We conclude this section with a few remarks. First, note
that Problem 1 includes a constraint that limits the velocity
to a maximum of vmax ∈ R++. This constraint is added in
order to mitigate constraint clipping introduced by temporal
discretization (see §V). Second, the above scenario is similar
to the Agile Flip Maneuver presented in [14], which required
the quad-rotor to maneuver through a waypoint defined
midway along the trajectory. However, the key difference
between [14] and the scenario described in this section is
that the compound STC enables the optimization to choose
if and when the trajectory will pass through the hoop. Third,
the above formulation can be modified such that the vehicle
is required to pass through the hoop. This can be done
either by selecting ρg sufficiently large, or by omitting g3(·)
from the formulation. Lastly, the direction and speed of
the trajectory at the hoop can be specified by enforcing
an additional compound STC with an appropriate velocity-
dependent constraint condition.

D. Scenario 2: Cooperative Obstacle Avoidance

The second scenario consists of two identical quad-rotors
cooperatively negotiating an obstacle course (see Figure 2).
We restrict the motion of the vehicles to the horizontal
plane, hence making this a two-dimensional scenario. As
in the first scenario, we treat this problem as a fixed-final-
time problem, and use the subscripts 1 and 2 to distinguish
between quantities associated with the two vehicles.

The position boundary conditions are given by the initial
position vectors ri,1 and ri,2, and the final position vec-
tors rf,1 and rf,2. For each vehicle, the velocity and control
boundary conditions are identical to those used in the first
scenario.

The quad-rotors are linked together by a beam-like pay-
load of length `o ∈ R++, modeled by the following non-



convex equality constraint:

‖r1(t)− r2(t)‖2 = `o. (7)

We assume that the vehicles maintain their ability to control
their attitudes independently of one another (i.e. each vehicle
can control its attitude as in §III-C), and that the boundary
conditions are feasible with respect to (7).

The flight space contains No stationary cylindrical obsta-
cles of identical radius Ro ∈ R++. The position of each
obstacle l ∈ No := {1, . . . , No} is denoted by ro,l ∈ R3.
Each obstacle is assumed to vertically span the available
space.

This scenario is challenging since the absence of vehicle-
obstacle collisions does not guarantee the absence of
payload-obstacle collisions. To address this issue, a com-
pound STC is used to define a keep-out rectangle around the
two vehicles. Omitting the time arguments of r1(t) and r2(t),
the logical implication of this compound STC is given by

2∧
j=1

(
gj+3(·, ·, ·) < 0

)
⇒

2∨
j=1

(
cj+1(·, ·, ·) ≤ 0

)
, (8a)

g4(r1, r2, ro,l) := p̂T

o(r1 − ro,l)− wo, (8b)
g5(r1, r2, ro,l) := p̂T

o(ro,l − r2)− wo, (8c)
c2(r1, r2, ro,l) := q̂T

o(ro,l − r2) + wo, (8d)
c3(r1, r2, ro,l) := q̂T

o(r1 − ro,l) + wo, (8e)

where p̂o := (r2 − r1)/‖r2 − r1‖2, q̂o is orthogonal to p̂o,
and wo ∈ R++ is the minimum spacing enforced around
each vehicle. In practice, wo is selected such that wo ≥
Ro. These quantities are illustrated in Figure 2. From (4a)
and (8), we obtain the following continuous formulation:

h2(r1, r2, ro,l) :=

[
2∏
j=1

σ̂j+3(r1, r2, ro,l)

]

·

[
2∏
j=1

(
cj+1(r1, r2, ro,l) + αj

)]
= 0,

(9)

where σ̂j(·, ·, ·) := −min
(
0, gj(·, ·, ·)

)
, and α1, α2 ∈ R+

are non-negative slack variables as in (4). Defining the
following quantities

Ã := blkdiag {A,A} , B̃ := blkdiag {B,B} ,
Ẽ := blkdiag {E,E} , w̃ := [w w]T,

x̃ := [xT

1 xT

2]T, ũ := [uT

1 uT

2]T,

the associated fuel-optimal non-convex optimal control prob-
lem is summarized in Problem 2. This problem has two
sources of non-convexity: the equality constraint given in (7),
and the compound STC given in (9). Both of these non-
convexities are handled using successive convexification
(see §IV).

We conclude this section with three remarks. First, the
control set is convex due to the intersection of U1 ∩ U2

with U3. Second, implementations of Problem 2 can omit the
vertical dimension of the problem due to the two-dimensional
nature of this scenario. Third, the compound STC in (8)

Problem 2: Non-Convex Formulation of Scenario 2

minimize
u

∫ tf

0

(
‖u1(t)‖2 + ‖u2(t)‖2

)
dt

subject to:
r1(0) = ri,1, r1(tf ) = rf,1,

r2(0) = ri,2, r2(tf ) = rf,2,

v1(0) = v2(0) = v1(tf ) = v2(tf ) = 03×1,

u1(0) = u2(0) = u1(tf ) = u2(tf ) = mgê1,

˙̃x(t) = Ãx̃(t) + B̃ũ(t) + Ẽw̃,

u1(t), u2(t) ∈ U1 ∩ U2 ∩ U3,

h2

(
r1(t), r2(t), ro,l

)
= 0, ∀j ∈ No,

‖v1(t)‖2 ≤ vmax, ‖v2(t)‖2 ≤ vmax,

‖r1(t)− r2(t)‖2 = `o.

and (9) can be extended to more complicated geometries (e.g.
multiple vehicles vehicles carrying an L-shaped payload).

IV. SUCCESSIVE CONVEXIFICATION

In this section, we provide an overview of the successive
convexification algorithm used to solve Problems 1 and 2.
We refer the reader to [1] for more details.

Successive convexification is a framework that solves non-
convex continuous-time optimal control problems by solving
a sequence of convex discrete-time parameter optimization
subproblems. Each subproblem is an SOCP that approxi-
mates the original problem by linearizing non-convexities
about the previous iteration, and is obtained using two steps:
discretization and linearization.

A. Discretization & Linearization

The (temporal) discretization step divides the time horizon
of the optimal control problem into K−1 temporal intervals
of length ∆t := tf/(K − 1). For each node k ∈ K :=
{1, 2, . . . ,K}, the time is given by tk := (k − 1)∆t.

Since the dynamics of Problems 1 and 2 are linear
time-invariant, the discrete-time dynamics can be expressed
analytically as a function of tf . Assuming a first-order-hold
on the control, we represent these discrete-time dynamics
by the quantities xk ∈ Rnx , uk ∈ Rnu , Ad ∈ Rnx×nx ,
B−d , B

+
d ∈ Rnx×nu , Ed ∈ Rnx×nw , and wd ∈ Rnw . The

discrete-time state and control constraints are obtained by
enforcing said constraints at each temporal node.

The linearization step linearizes the non-convexities that
cannot be convexified using lossless convexification (i.e. (6),
(7), and (9)). Since this approximation is only made to first
order, the subproblem is guaranteed to be convex. However,
the linearization also introduces two issues: artificial infea-
sibility and artificial unboundedness.

To aide in the ensuing explanation, we define K̄ :=
K \ K, ū := [uT

1, . . . , u
T

K ]T, zk := [xT

k, u
T

k, αk]T, and z̄ :=
[zT

1, . . . , z
T

K ]T, where αk ∈ Rnα+ is a vector of non-negative



Problem 3: Convex Subproblem (SOCP)

minimize
ū,ν̄

J(z̄) + Jtr(z̄) + Jvc(ν̄)

subject to:
x1 = xd,i, xK = xd,f , u1 = ud,i, uK = ud,f ,

xk+1 = Adxk+B−d uk +B+
d uk+1

+Edwd + νk, ∀k ∈ K̄,

h(z∗k) +
∂h

∂zk

∣∣∣∣
z∗k

δzk = 0, uk ∈ U , ∀k ∈ K.

slack variables and nz = nx +nu +nα. We concatenate the
non-convex state constraints into the vector-valued equality
constraint h(zk) = 0.

Artificial infeasibility is resolved by adding virtual con-
trol terms ν̄ ∈ Rnx to the discrete-time dynamics, and
augmenting the cost with Jvc(ν̄) :=

∑
k∈K̄ ‖Wvcνk‖1,

where Wvc ∈ Snx+ is a user-specified weight matrix, and ν̄ :=
[νT

1, . . . , ν
T

K−1]T. The addition of Jvc(·) penalizes violations
of the dynamics, and allows dynamic infeasibility to occur
(if necessary) during the convergence process.

Artificial unboundedness is resolved by augmenting the
cost with Jtr(z̄) :=

∑
k∈K δz

T

kWtrδzk, where Wtr ∈ Snz+ is a
user-specified weight matrix, δzk := zk−z∗k , and z∗k denotes
the solution obtained during the previous iteration. The
addition of Jtr(·) ensures that Problem 3 remains bounded,
and keeps the solution close to the linearization point.

B. Subproblem

Problem 3 summarizes the subproblem used in the pro-
posed lossless convexification algorithm. This problem con-
sists of (i) an objective function made up of the original
objective J(z̄) and the two augmented cost terms discussed
in §IV-A; (ii) the boundary conditions denoted by xd,i, ud,i,
xd,f , and ud,f ; (iii) the discrete-time dynamics with virtual
control; (iv) the non-convex state constraints linearized about
the previous solution; and (v) the control set U detailed
in §III-B. As stated previously, we assume that non-convexity
in U is handled by lossless convexification [14].

C. Algorithm

The successive convexification algorithm is outlined in
Algorithm 1, and is a simplified version of the soft-trust-
region algorithm presented in [1]. The algorithm is initialized
by user-specified problem data (e.g. tf , boundary condi-
tions) and an initialization trajectory generated by linearly
interpolating between the specified boundary conditions. The
subsequent discretization step computes the discrete-time
dynamics. The algorithm then enters a loop that successively
linearizes and solves Problem 3 until the trust region and
virtual control costs Jtr(·) and Jvc(·) are less than their
respective specified thresholds εtr, εvc ∈ R++. Upon con-
vergence, the algorithm returns the converged solution z̄.
If the algorithm does not converge within a set number of
iterations, then tf is increased and the problem is resolved.

Algorithm 1: Successive Convexification (Soft-TR)

1: initialize - provide problem data, and z∗k for all k ∈ K
2: discretize - compute Ad, B−d , B+

d , Ed, wd
3: set converged = 0

4: while (converged = 0) do
5: linearize - compute h(z∗k) and ∂h/∂zk|z∗k
6: solve SOCP - compute solution for Problem 3
7: if (Jtr(z̄) < εtr) ∧ (Jvc(ν̄) < εvc) then
8: converged = 1

9: else
10: z∗k ← zk for all k ∈ K
11: end if
12: end while
13: return - computed solution zk for all k ∈ K

V. RESULTS

This section presents Monte-Carlo simulation results for
the two scenarios presented in §III. We focus on measuring
the runtime of Algorithm 1 and quantifying two primary
failure modes of Algorithm 1: failure to converge in less
than 20 iterations, and inter-sample constraint violation. All
results were obtained on a desktop PC running a Ubuntu
18.04.1 operating system with a 3.60 GHz Intel Cote i7-
6850K processor and 64 GB of RAM. MATLAB was used
to run the ECOS [17] solver through the CVX [18] parsing
interface, and timing data were obtained from the solve time
parameter returned by the cvx toc function.

A. Scenario 1

For this scenario, the performance of Algorithm 1 was
evaluated by running multiple cases with identical boundary
conditions and final time, but with different hoop locations
and orientations. Example simulations are presented in Fig-
ure 3, which shows 13 trajectories obtained using a temporal
resolution of K = 30, randomized hoop orientations, and a
manually selected grid of hoop positions. The hoop positions,
tilt angles, and heading angles were sampled from uniform
random distributions given by rh ∈ [−1, 1] × [−2, 2] ×
[2, 4] m, φ ∈ [−25◦, 25◦], and ψ ∈ [−35◦, 35◦], respectively.
Other problem parameters were set to the following constant
values:

tf = 4 s, , ri = (0, 0, 0) m,
rf = (0, 0, 6) m, `c = 0.5 m, ρc = 0 m,

ρg =∞ m, vmax = 2`c/∆t m/s, Tmin = 2 N,
Tmax = 5 N, θmax = 45◦, m = 0.35 kg,

g = 9.81 m/s2, kd = 0 s−1, Wvc = 105 · I6×6,

Wtr = 0.1 · blkdiag {I3×3, 06×6} .

Monte Carlo batch runs were conducted for temporal
resolutions K = 15, 20, 25, 30. Each batch consisted of 100
cases. Cases that resulted in infeasibility were noted, and new
cases were sampled in their place. Tables I and II provide
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Fig. 3: Scenario 1 sample trajectories for K = 30 using
a grid of hoop positions and randomized hoop orientations.
Vehicle motion is from top to bottom. The blue dots represent
temporal nodes, and the trigger and constraint corridors are
not drawn to scale. Each trajectory is constrained to pass
through one of the hoops by omitting g3(·) from (5)-(6).

statistics for Algorithm 1 runtime and inter-sample constraint
violation. As expected, the runtime increased with K since
the number of decision variables in Problem 3 increased.
Nevertheless, the algorithm demonstrated the ability to run at
interactive rates even for K = 30, with a worst-case observed
execution rate of approximately 3 Hz.

Additionally, it was observed that inter-sample constraint
violation decreased as K increased. This was expected,
since a smaller ∆t reduces the possibility of the quad-rotor
“hopping” over the hoop in one discrete time step.

TABLE I: Algorithm 1 runtime for Scenario 1 [ms].

K Mean Median Std. Dev. Min Max

15 34 31 25 15 151

20 43 34 32 19 219

25 55 42 47 24 306

30 67 52 53 29 337

TABLE II: Constraint clipping for Scenario 1 [cm].

K Mean Median Std. Dev. Min Max

15 37 32 37 2 224

20 15 10 14 1 100

25 6 6 3 1 16

30 4 4 2 0 10
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Fig. 4: Scenario 2 sample trajectories for K = 30 and a set
of No = 5 obstacles. Vehicle motion is from top to bottom.
Each color represents a separate run, and the dots and black
lines represent the vehicles and payload, respectively. The
dark gray circles represent the obstacles, while the light gray
circle represent the effective keep-out areas. A minor inter-
sample constraint violation is observed between the red case
and the center obstacle.

Lastly, our simulations resulted in 400 converged cases,
and 19 failures to converge. In each case, the cause of in-
feasibility was an excessively short final time, and feasibility
was recovered by selecting a larger tf .

B. Scenario 2

For Scenario 2, the performance of Algorithm 1 was
evaluated by running multiple cases with identical terminal
conditions and final times, but with different initial posi-
tions, initial formation angles, and obstacle configurations.
Example simulations are presented in Figure 4, which shows
three sets of trajectories obtained with a temporal resolution
of K = 30 and a manually positioned configuration of No =
5 obstacles. In what follows, recall that Scenario 2 is two-
dimensional in nature, and is thus implemented using only
two spatial dimensions.

Monte Carlo batch runs were conducted as in §V-A. The
initial positions and angles of the formation were sam-
pled from uniformly random distributions given by (ri,1 +
ri,2)/2 ∈ [−2, 2]×[0, 1] and ψ ∈ [−70◦, 70◦]. Each case had
No = 4 obstacles, whose positions ro,{1,2,3,4} were sampled
from a uniform random distributions of positions ro,l ∈
[−2, 2]× [2, 4.5] m. In generating the obstacle configuration,
an inter-obstacle 1-norm distance of at least max{0.8(`o +
2wo), 2wo} m was enforced. This heuristic encouraged the
obstacle configuration to be feasibly navigable by the quad-
rotor pair. To make sure that the obstacles obstruct a straight
path from the initial to the final payload position, one of
the obstacles was always placed along the segment from



TABLE III: Algorithm 1 runtime for Scenario 2 [ms].

K Mean Median Std. Dev. Min Max

15 59 53 22 36 157

20 138 127 50 67 294

25 204 192 76 112 571

30 243 212 100 132 693

TABLE IV: Constraint clipping for Scenario 2 [cm].

K Mean Median Std. Dev. Min Max

15 42 42 4 6 43

20 5 4 6 0 42

25 2 < 0.5 2 0 10

30 < 0.5 0 1 0 5

(ri,1 + ri,2)/2 to (rf,1 + rf,2)/2. Other problem parameters
were set to the following constant values:

tf = 4 s, rf,1 = (−0.5, 5.5) m,
rf,2 = (0.5, 5.5) m, `o = 1 m, m = 0.35 kg,
vmax = 3 m/s, Tmax = 5 N, Ro = 0.08 m,

wo = 0.43 m, g = 9.81 m/s2, Wvc = 105 · I8×8,

Wtr = 50 · blkdiag {I8×8, 04×4} .

Tables III and IV provide runtime and inter-sample con-
straint violation statistics. For the same reasons given in
Scenario 1, runtime increased and constraint clipping de-
creased for larger K. However, because Scenario 2 is a larger
and more nonlinear problem, Algorithm 1 is less capable of
running at interactive rates, with a worst-case observed solve
rate of approximately 1.5 Hz for K = 30. Furthermore, we
note that inter-sample constraint violation occurred almost
persistently for K = 15, where the discretized quad-rotor
pair was able to “jump” through an obstacle in a single
discrete time step without violating (9). Therefore, in this
scenario it appears necessary to either have K ≥ 25 or to
decrease vmax in order to avoid constraint clipping. Finally,
31 infeasible cases were encountered during the Monte-Carlo
simulation, all of which can be remedied by increasing tf .

VI. CONCLUSION & FUTURE WORK

The main contribution of this paper is the application of
the recently introduced compound state-triggered constraints
to quad-rotor path planning. Two quad-rotor scenarios are
outlined, one involving a quad-rotor flying through a hoop,
and the second involving two quad-rotors cooperatively
negotiating an obstacle course while carrying a beam-like
payload. Our simulation results indicate that solutions to both
scenarios can be obtained in real-time. Future work will fo-
cus on the implementation the proposed methodology on the
Autonomous Control Lab’s in-house quad-rotor platforms.
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