
A robust method to predict temporal aspects of actions by observation

Emmanouil Hourdakis and Panos Trahanias

Abstract— The ability to predict the duration of an activity
can enable a robot to plan its behaviors ahead, interact
seamlessly with other humans, by coordinating its actions, and
allocate effort and resources to tasks that are time-constrained
or critical. Despite its usefulness, models that examine the
temporal properties of an activity remain relatively unexplored.

In the current paper we present, to the best of our knowledge,
the first method that can estimate temporal properties of an
activity by observation. We evaluate it on three use-cases (i)
wiping a table, (ii) chopping vegetables and (iii) cleaning the
floor, using ground truth data from real demonstrations, and
show that it can make predictions with high accuracy and
little training. In addition, we investigate different methods to
approximate the progress of each task, and demonstrate how a
model can generalize, by reusing part of it in different activities.

I. INTRODUCTION

The timing of actions plays an important role when plan-

ning complex task pipelines for robots. For example, utilizing

information regarding the duration of its actions, a robot can

plan ahead [2], allocate resources to tasks that require more

effort to be completed [17], or maximize its availability, by

coordinating with a human [3] or other robots [4]. Despite

the broad applicability of the subject, there haven't appeared

in the literature models that can make temporal predictions

about an activity only by observation.

Humans rely heavily on temporal predictions when plan-

ning their activities [14], even though their ability to make

time-estimates is error-prone and biased by their sensori-

motor system [1]. Similarly, in robotics, models that can

estimate the duration, and other temporal properties, of an ac-

tivity can prove useful. To handle complex tasks assignments,

however, the robot inferences must go beyond single actions

(e.g. reach-to-grasp), to the level of coherent activities (e.g.

cleaning a table). In this context, in addition to duration,

there are several temporal properties that could be useful to

a robot, such as:

‚ How long will it take to finish this activity?

‚ Which behavior configuration will finish this task as fast

as possible?

‚ I want to clean the table during the 5 minutes of free

time that I have. How clean will the table be after that?

‚ Am I performing the task in an efficient manner, given

the spare time that I have?
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‚ I have 3 minutes of spare time. What tasks can I perform

during this period?

In the current paper we introduce Generative Time Models

(GTMs), a principled formulation to derive models that can

make predictions about the duration by observing an activity.

GTMs can answer the aforementioned questions with min-

imal prior experience and training. We apply the concept

on three example use-cases, involving tasks with repetitive

actions and different complexity: (i) cleaning a table, (ii)

chopping vegetables and, (iii) wiping the floor. Using ground

truth data from real demonstrations, we show that the method

can predict the duration, and other temporal properties of the

aforementioned activities with high accuracy. In what follows

we present a brief literature review, whereas the methodology

is rigorously formulated in section III. Section IV presents

experimental evaluation results and section V outlines a

detailed discussion. Finally, we present our conclusions and

suggestions for future work in section VI.

II. LITERATURE REVIEW

In robotics, time has been well acknowledged as a glue

factor for several cognitive skills [5]. Consequently, the

timing of robotic actions has been studied in various contexts,

including robot-navigation [20], human-robot interaction [3],

robot-robot [4] and human-robot teams [4], to name a few.

Time is also useful in the context of human robot coordi-

nation where studies use the execution time of actions [15],

[16] to synchronize two or more agents. Temporal properties

in these models are obtained by timing the actions as they

are executed by the robot. More recently, researchers have

suggested models that can anticipate human actions, and used

them for the design of autonomous driving systems [26].

In computer vision, the timing of actions is used for

action segmentation [6], since temporal information is a

strong discriminative factor for action classification. For

example, in [7], [8], the authors use local spatio-temporal

features to recognize different actions. In [9], the authors

discriminate between discrete and oscillatory motions, by

embedding temporal information in their action semantics.

In [10], activity recognition is performed by modeling the

temporal structure of a task using graphical models, while

in [11] using semi-latent topic models.

The works cited above focus on the temporal aspects of

a single action. The work presented here is, to the best

of our knowledge, the first to predict the duration and

other temporal properties of a coherent activity, only by

observation. The main contributions of the current paper can

be summarized as:
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1) A method for predicting the duration, and other tem-

poral properties, of an activity.

2) Implementation and evaluation of three use-case sce-

narios in kitchen-related activities.

III. GENERATIVE TIME MODELS

Generative Time Models (GTMs) represent a method

to derive observation models for real-time estimation of

the duration, and other temporal properties, of an unfold-

ing activity. They consist of two observation models: (1)
task progress and (2) control. The first one estimates the

progress of the task, i.e. how much of the activity has

been completed. The second identifies and records time and

task information about the primitive motions that appear

during the activity. This information is subsequently used to

predict the overall duration of the activity. In the following

section we describe the mathematical formulation of GTMs

using the ’wipe the table’ activity as a running example. In

addition, the concept of this work is depicted in the video

at the following link: http://hourdakisemmanouil.
com/GTMconcept.mp4, where the model is used to yield

predictions every 100 simulation iterations.

To define a GTM, we assume an activity, whose progress

can be observed by a function O : t ÞÑ R, with O “
to1, o2, ..., oNu a univariate time-series, uniformly sampled

at T “ tt1, t2, .., tNu. For the ’wipe the table’ activity, the

function O represents the progress of the wiping activity,

the percent of the table that has been wiped, i.e. oN “ 30
means that the table has been wiped by 30% at a time tN .

In addition, we assume a control process C : t ÞÑ R
P

with C “ tcp1, cp2, .., cpNu, the set of p dimensional vectors

corresponding to the state variables that describe the output

of the control process, at times T . For the example of wiping

the table, the control process C would contain the position

of the sponge, with c2N “ tx, yu the x, y coordinates of the

sponge's position. The goal of a GTM, is to approximate a

function f : C, t ÞÑ R, that describes how the control system

affects the progress of the task, i.e. Optq “ fpC, tq. To

accomplish this, a GTM looks for standard motion patterns in

C, i.e. primitives, and calculates how each primitive affects

the task progress. For the example of wiping the table, f
describes how much each primitive wipes the table. Once

obtained, f can be used to calculate the duration of the

activity, by predicting how the task progress will change in

respect to the primitives being used.

In the following section we outline the mathematical

underpinnings for the GTM model, including how primitives

are extracted by observation from the control process, the in-

formation obtained for each primitive, and how the temporal

properties of an activity are predicted. The methodology pre-

sented pertains to periodic primitive motions, i.e. repetitive

behaviors that are densely observed within an activity. As

the density of the observed primitives gets lower, additional

metrics are required to facilitate robust temporal predictions;

the latter is a topic of future work as presented in the

Conclusions section.

A. Primitive segmentation

To approximate f we assume that at any point in time C
takes one, out of k, standard primitive motions. For the exam-

ple of wiping the table, where we have repeating oscillatory

motions, the primitives are described by their amplitude and

period. To obtain the primitives, a GTM segments the signal

in C, by looking for local extrema at small Δt intervals

and stores their starting ts and ending te times. To evaluate

the local extrema it employs the prominence algorithm [18],

which makes use of the fact that the derivative of a signal, at

a point of a peak has a zero-crossing at the peak maximum.

To identify peak signal positions, the algorithm smooths

the signal's first derivative, by convolving it with a Gaussian

kernel, and then stores the indices of the zero-crossings on

the smoothed derivative. For each index, a prominence value

is calculated, which indicates whether there has been a sig-

nificant change in the motion direction vector. The algorithm

returns the n largest peaks whose prominence exceeds a

certain threshold value. The output of the segmented signal,

for the ’wipe the table’ example is shown in Fig. 1:

Fig. 1: Segmented signal (distance from reference point) of

the sponge's position, obtained by tracking the sponge whilst

the human is cleaning the table.

The segmentation process yields a vector of n non-regular

intervals I “ ttts1 , te1u, tts2 , te2u, .., ttsn , tenuu, I Ď T ,

which correspond to the times that the segmented motions

B “ tMpo1q,Mpo2q, ..,Mponqu are observed in Cptq. To

describe a motion in each interval, the GTM uses a feature

vector Mpoiq “ tai1, ai2, .., aiv´1, diu, which consists of piq
v ´ 1 global spatio-temporal features, recorded during the

time-window tiεttsi, teiu of the behavior and, piiq the behav-

ior's duration di “ tei ´ tsi. For the example of wiping the

table, where we want to discriminate primitives on the basis

of their amplitude and period, the features in Mpoiq contain

each segmented motion’s amplitude and period. Using the

feature vector Mpoiq, behaviors in B are classified into K
classes by solving the following optimization problem:

K “ arg max
KĎB

´ kÿ
i“1

nÿ
j“1

‖Mpiq ´Mpjq‖
¯

(1)

From eq. 1 we obtain the k different cluster centers K “
tMp1q,Mp2q, ..,Mpkqu that are used as labels for the different

primitive actions appearing in the activity. To obtain K we

cluster the data in B using k-means. The result is a signal

segmentation and labeling module that runs online, whilst
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tracking the control process. Figure 2 illustrates the output

of the labeled primitives, after the end of the training phase.

Each primitive is marked with a different color and index.

Fig. 2: A tracked signal, segmented and labeled, by the

components of the GTM. Different labels correspond to

different primitives in K, and are assigned different colors

as indicated by the palette on the right.

B. Primitive modeling

After having segmented and labeled the primitives that

exist in C, the algorithm calculates three quantities for each

primitive: (1) the effect that each primitive has on the task

progress, (2), its frequency of occurrence within C and (3),

its duration.

1) Effect of each primitive: To describe how each primi-

tive affects the activity progress, a GTM assigns a function

fMpiqptq to each Mpiq, for which it holds:

Optpeq “ Optpsq`
ż tpe

tps

fMpiqptqdt, @ttps, tpeuεIMpiq (2)

i.e. the change in task progress during the interval ttps, tpeu,
where primitive Mpiq is observed, can be determined by the

integral of the function fMpiq for that time period. A GTM

approximates the function fMpiq for each primitive using

the output of the function Optq, during the intervals IMpiq

that the primitive is observed. After training, we obtain the

set of tMp1q,Mp2q, ..,Mpkqu Ñ tfMp1q , fMp2q , .., fMpkqu, that

describe how each primitive changes the task progress.

2) Frequency of occurrence: To estimate the frequency

of occurrence,the probability density function p of the prim-

itives in K is obtained using Kernel Density Estimation

(KDE). Given a sample set of n values from an identically

distributed variable l, the Density estimator p around a point

l0 is:

ppl0q “ 1

n

ÿ
n

Gh

´ l ´ l0
dl

¯
“ 1

nh

ÿ
n

G
´ l ´ l0

hdl

¯
(3)

where Gpz, σq “ 1?
2πσ

e´
z2

2σ2 is the Gaussian kernel, and h is

the Kernel bandwidth, which acts as a smoothing parameter

[5]. Larger h values will result in smooth (and thus high-

biased) density distribution.

C. Estimating the temporal properties
Having segmented and described each primitive that is

observed, a GTM approximates the activity progress O in

future time-steps, using a finite mixture model:

Optq “ fpC, tq “
kÿ

i“1

ppiq ˚ φi (4)

where ppiq are the mixing components, that satisfy ppiq ě
0@iεk and

řk
i“1 ppiq “ 1, while φi “

şt`ti
t

fMpiqptqdt are

the local basis functions. A GTM uses eq. 4 to predict

future states for the activity progress, i.e. the expected change

for the task progress is calculated using the probability of

observing the primitive, and the amount that each primitive

completes the task. Using equations 3, 4 on can derive useful

information about the activity:
1) Task progress caused by a single primitive: Given ppiq,

the probability density function of K, the expected duration

for primitive Mpiq is ti “ ppiq ˚ di, while the expected task

change, due to that primitive is:

OMipt` tiq “ ppiq ˚
ż t`ti

t

fMpiqptqdt (5)

2) Predicting the task progress: Given the probability

ppiq@iεk for all primitives one can estimate, using eq.

4, how the task progress will change from t to tk “řk
i“1 pppiq ˚ diq:

Opt` tkq “ Optq `
kÿ

i“1

˜
ppiq ˚

ż t`di

t

fMpiqptqdt
¸

(6)

Eq. 6 provides an estimate of the activity progress forward

in time, using the fMpiq as basis functions. Due to eq. 1, these

primitives have well defined duration, and therefore are also

useful basis functions for making duration predictions.
3) Remaining duration of the activity: Using the pdf ppiq,

we can estimate how long will require for the activity at time

t to finish (i.e. Optq Ñ 0):

Trem “ Optqřk
i“1

´
ppiq ˚ şt`di

t
fMpiqptqdt

¯ ˚ kÿ
i“1

pppiq ˚ diq

(7)

or working inversely, if a task starts at time t “ 0, and is

performed for a D duration, its state progress will become:

OpDq “ Dřk
i“1 pppiq ˚ diq

˚
kÿ

i“1

˜
ppiq ˚

ż t`di

t

fMpiqptqdt
¸
(8)

4) Primitives and task completion: To find the primitive

model that will perform the task in the fastest manner:

Mpiq “ argmax
iĎK

şt`di

t
fMpiqptqdt
di

(9)

The time required to finish the activity, given a certain

primitive model Mpiq (i.e. ppiq “ 1) is:

Ti “ Optqşt`di

t
fMpiqptqdt

˚ di (10)
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The quality of the predictions above depends on how well

the set of basis functions, can describe the progress of the

activity. There are various information theoretic measures

to quantify this, e.g. the squared error loss function L for

eq. 2. In general, if the density of the observed behaviors

B on the signal Cptq is high, then one can obtain a good

approximation.

IV. USE-CASE EVALUATION

In the current section we apply the method to three

different household activities for assessment purposes. In

all examples, the experimental setup consists of a room,

containing a table (Fig. 4) and an AsusXtion RGBD camera

mounted at approximately 3m above the floor. A human is

asked to perform the activity while the GTM uses the camera

input to analyze it. To evaluate the method, we use duration

measurements from real demonstrations.

A. Cleaning a table

1) Activity Observation: The first use-case involves a

human wiping the surface of a table. The observation model,

using depth information from the camera, detects the bound-

aries of the surface and, given the sponge position from

the control model, estimates the percent of it that has been

wiped.

To detect the table surface, we use the Hessian Normal

form m̂¨x “ ´p. of the general plane equation ax`by`cz`
d “ 0 [21], where m̂ “ p a?

a2`b2`c2
, b?

a2`b2`c2
, c?

a2`b2`c2
q

is the unit normal vector. The value p “ d?
a2`b2`c2

deter-

mines the distance of the plane from the origin. 3D points

with p ą 0 lie the half-space determined by the direction of

m̂. We obtain the 3D point cloud of the points that satisfy the

plane equation using Random Sample Consensus (RANSAC)

and estimate the boundaries of the point cloud. Since the

control model tracks the sponge in 2D, we back project the

surface boundaries, using the camera's intrinsic and extrinsic

parameters, to estimate the area to be wiped.

Having obtained the task progress, the Activity Obser-

vation component uses the output from Control Observa-

tion, in order to find the task progress intervals that cor-

respond to the different primitives. For each of the intervals

IMpiq “ tttMpiq
s1 , t

Mpiq
e1 u, ttMpiq

s2 , t
Mpiq
e2 u, .., ttMpiq

sn , t
Mpiq
en uu, that

a primitive Mpiq is observed in Cptq, we sample from the

Optq function in order to approximate fMpiq (Fig. 3). For

the current example, we assume that fMpiq is constant. To

estimate it, we average the change in task progress over all

segments IMpiq in Optq, where behavior Mpiq is observed:

fMpiqptq “
řL

i“1pOpteq ´Optsqq
L

“ C@tts, teuεIMpiq

(11)

where IMpiq is the time vector containing the starting and

ending times in Cptq that behavior Mpiq is observed.

Given a task state Optq, the remaining time required for

the activity to complete can be approximated using eq. 7. To

find the primitive that will wipe the table as fast as possible,

we use eq. 9, while the overall time of the task can be found

Fig. 3: Segmenting the output of the Activity Observation

component (bottom) using the segmentation intervals of

the Control Observation component (top). The segmented

observation signal in the bottom graph, along with the

corresponding labels of the control signal in the top graph,

can be used to estimate the function fMpiq of a primitive

Mpiq.

using eq. 7, which for the current example was 0.56min or

33seconds.

Fig. 4: Predicting accurately the overall and remaining time

for the ’wipe the table’ task.

To evaluate the task, we run 100 different trials of the

experiment, performed by 3 proficient users. The timing of

the task begun as soon as a user picked the sponge, and

ended when the table surface was wiped above 95%. This

implementation choice was decided during the experimental

evaluation of the model, where we observed that setting the

progress goal to 100% would introduce prolonged activity

times, that do not reflect the real duration of the task. We

observed in all cases that, when asked to clean a surface

by 100%, users would spent prolonged times trying to

wipe/recover all those small regions that have been left
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Fig. 5: (left) Snapshot of the ’chopping vegetables’ activity.

(right) Primitives identified and labeled during the activity.

unclean up to this point. Hence, this remaining 5% is

performed with reduced efficiency, and does not reflect the

dynamics of the task up to this point. In summary, as our

results show (Table I), the GTM was able to predict with

high accuracy the duration of the task.

We note that the results presented in this section are

dependent on the proficiency of the user performing the task.

More experienced users are more consistent, having a smaller

repertoire of primitives with lower variance in their durations.

This yields more robust predictors. One additional factor that

affects performance is the previous knowledge acquired by

the GTM, during the training sessions. The results presented

here regard GTMs that were trained using data from three

proficient users. For a more detailed discussion about the

performance and implementation details of the model, please

refer to the Discussion, section VA.

TABLE I: Prediction accuracy for the wipe table task, for

100 demonstrations performed by three users. Columns 2-4

show the average values (in seconds), across all trials of a

user.

User Av. Predicted time Av. Gr. truth Error(sec)

#1 39.124 33.213 5.911

#2 30.427 35.214 4.787

#3 39.224 44.231 5.007

B. Chopping vegetables

As an additional example we develop a GTM for the

activity of chopping vegetables. To implement it we reuse

the control observation component described in section III

and eq. 11 for approximating function fMpiq . The goal of

the GTM is to identify the different cutting primitives used,

and determine which one is the fastest, and how long it will

require for someone to chop one (or more) cucumber.

1) Activity observation: For this task, the observation

model must track the length of the cucumber that is cut

by each primitive. In this case, the Activity Observation

component determines the displacement of the tip of the

knife l from point v, d “ ‖v ´ l‖ coordinate of the knife’s

tip, i.e. the displacement of the knife, from the start of the

cucumber.

Table II lists the estimated effect on task progress and

duration of each primitive. Using eq. 9, we find that the

fastest primitive is Mp1q, which cuts 3.58cm of the cucumber

in 0.25 seconds.

The GTM used to estimate the duration of this example

consists only of a new observation model. The control

observation component was re-used from the previous use-

case. This also demonstrates the ability of GTMs to gener-

alize well, since new tasks can be implemented easily. The

following table lists the association of each primitive with

the task progress (i.e. the fMpiq function).

TABLE II: Temporal information about the primitives identi-

fied during the task. Column 2 lists each primitive's duration,

while Column 3 how each primitive's changes the task

progress.

Primitive Duration of primitive di Association fMpiq
1 0.328911 2.126913

2 0.491832 1.284661

3 0.264343 2.020385

Using the information from Table II, we can now make

temporal predictions about the duration of the task. If we

have 20 cucumbers of average length 30cm, then using

primitive 1, we would require 92,7 seconds to finish the task,

or approximately 1.54 minutes.

TABLE III: Prediction accuracy for the cut cucumbers task,

for 100 demonstrations performed by three users. Columns

2-4 show the average values (in seconds), across all trials of

a user.

User Av. Predicted time Av. Gr. truth Error(sec)

1 4.1983 3.1728 1,0255

2 5.9371 3.8291 2,1026

3 2.8263 3.9182 1,0919

As the results show, the GTM can yield an accurate

prediction despite that the duration of the activity being very

short (approximately 3 seconds). Again, the results presented

are dependent on the profficiency, and other performance

factors, of the human executing the activity. For the current

task, all three users were considered experienced, since

they had to perform the task numerous times during the

experimental evaluation of the model. In the future we plan

to investigate further how the proficiency of the user evolves

with its experience, and how this is reflected in the primitive

information we track for GTMs.

C. Cleaning the floor

In addition to the previous examples, we consider the

use-case of cleaning the floor. For this experiment we use

the Control observation component developed in section

III, extend the activity observation component developed in

section IV-A, and focus on a more elaborate implementation

for the fMpiq function. We employ the same setup as the

previous experiments, however in this case, we track the

tip of a mop, which cleans a stained floor surrounding the

table. In addition to swiping the area, this task now involves

cleaning the floor.

1) Activity observation: For this use-case we use the ob-

servation model developed in section IV-A, which tracks the

area of the floor that has been wiped, and add an additional
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module, in order to detect and quantize the amount of dirt

on the floor. To detect the stains, we apply a normalized box

filter to smooth the image, and detect Agast features [25]

on the output. The final observation model is given by the

area that has been wiped, plus the number of Agast features

multiplied by a factor.

2) Association function fMpiq : In contrast to the previous

examples, the progress of the task in this case depends on

additional contextual information, e.g. the concentration of

the dirt. To approximate how the observation model changes

in respect to such irregular quantities (i.e. find the function

fMpiq ), liquid state machines [24] are employed since they are

good approximators for dynamics over short spatio-temporal

intervals [19].

This ability stems from the fact that the signal is dis-

tributed upon the many computational units of the LSM,

making it more robust to noise perturbations and oscillations.

The leaky property of the membrane potential, along with

the dynamic synapse model [22] allow LSMs to maintain

the gradient of the error signals for prolonged activation

periods over the liquid. More specifically, the signal is

accumulated, over many intervals, in the liquid due to: (i)

the delay implemented in the synapses and, (ii) the non-

linear -leaky- differential equations of the neuron. These two

properties make LSMs robust spatio-temporal predictors, as

demonstrated by various works (for a comprehensive review,

the reader is referred to [23]).

The liquid in the current example is modeled by leaky

integrator neurons, which describe the evolution of the mem-

brane potential of the neuron as the following differential

equation:

τm
δVm

δt
“ ´pVm ´ Vrestq `Rm ˚ pIsynptq ` Iinj ` Inoiseq

(12)

where V m is the membrane voltage, τm “ CmRm is the

membrane time constant, Rm is the membrane resistance,

Cm is the resistor capacitance, Iinj is a constant current

injected to the neuron and Inoise a Gaussian random process,

with zero mean and a small variance. After the emission of

a spike, the membrane potential is reset to its resting value

Vrest. Isynptq is the incoming current from the presynaptic

neurons, and is calculated according to the following equa-

tion: Isynptq “ ř
wijNjptq. Nj is the output of the jth

presynaptic neuron, t is the current simulation time, while

wij is the weight connecting the presynaptic neuron i and

the postsynaptic neuron j.

We connect neurons within the liquid using the dynamic

synapse model suggested in [22]. In this model, a synapse’s

n postsynaptic potential (EPSPn) changes according to Nt “
K ˚ Rn ˚ un, with un`1 “ un ˚ expp Δt

τfacil
` Up1 ´ un ˚

expp´ Δt
τfacil

q and Rn`1 “ Rnp1 ´ un`1q ˚ expp´ Δt
τrecq `

1´ expp´ Δt
τrec

q.
To input the signal into the liquid, we transform it into a

stochastic pattern of spike firings, using an in-homogeneous

Poisson process, which introduces irregularity in the spiking

patterns. The formula for the probability density of a spike

in an interval Δt is given by P pspikes|Δtq “ e´rΔt˚ prΔtqn
n! .

To approximate function fMi
we input to the network the

output of the Activity Observation at Opt´ 1q (the number

of Agast features and the area that has been wiped) and the

feature vector Mpiq, which is observed at each instant, and

use as supervised data the output of the observation model

at time Opt ` nq, i.e. n steps forward. For the simulations,

we have used networks with liquids of approximate 4000

neurons. To learn the spatio-temporal signal that is output

from the liquid, we solve the non-linear mapping between

the liquid states and the objective function using least squares

with Cholesky factorization. In the following figure (Fig. 6)

we demonstrate how the LSM was able to approximate the

task progress changes that will be inflicted by a primitive.

Fig. 6: Learning the approximation function for the cleaning

the floor activity. (left) The mop as it is being tracked, and the

features detected for the stain (middle) The approximation

function learned for primitive 1 and (right) primitive 2.

The output of the network can now be used to yield

predictions that take into account more explicit information

on how the task progresses. For the current example, cleaning

the floor, the LSM enabled us to estimate the effect of a

primitive more accurately, even while wiping over the stains.

Table IV evaluates the duration estimates of the method, after

30 demonstrations of the task. As the results show, the GTM

was able to yield quite accurate predictions.

TABLE IV: Prediction accuracy for the clean the floor task,

for 30 demonstrations performed by three users. Columns

2-4 show the average values (in seconds), across all trials of

a user.

User Av. Predicted time Av. Gr. truth Error (sec)

1 69.8172 76.2818 6.464

2 62.9177 71.9281 9.010

3 59.2469 68.2934 9,046

V. DISCUSSION

A. Implementation Details

The experimental evaluation showed that the model can

yield predictions that have a small degree of error. The qual-

ity of the predictions depends on the amount of processing

power and data that has been made available to the model.

What we have found, is that the GTM predictions are user-

dependent, and can improve with more training.

From an implementation point of view, there are some

metrics that affect this performance: (i) the number of
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primitives clustered in each prediction step, (ii) the dis-

cretization/sampling rates that will be used when processing

the observation signal, and (iii) the user being consistent

in his/her performance across different task executions. The

first two are task dependent, but can be easily adjusted,

according to the complexity of the activity that is being

observed. Consequently, we suggest one general guideline:

more complex activities require an increased number of

clusters and data samples to be processed.

Regarding the third factor that affects performance, con-
sistency of the user, it pertains to whether a user is being

consistent across trials in its selection of primitives. In

essence it is a metric of the user's ability to perform the

task efficiently, and evolves with user experience. Inefficient

users perform the task arbitrarily, executing behaviors from a

broader repertoire, while efficient users are more consistent

in the selection of movements. We plan to include relevant

information in the model's predictions in future versions of

the theoretical framework.

GTMs make their temporal predictions, using the observed

primitives as a basis function. Amongst others, each primitive

is assigned (i) an expected duration and (ii) an expected

effect on the task progress. With this information, GTMs look

for robust predictors, over small segments of the activity,

i.e. look for behaviors that appear with somewhat consistent

duration and expected effect on the task progress. Behaviors

that have not been observed yet, will be assigned to the

class whose feature vector is closest to the feature vector

of the primitive. An approximate number of 20 classes was

found sufficient for the complexity of the tasks described

in the manuscript. In addition, we note that we re-run the

clustering loop in small intervals (every 100 iterations in

our implementation). As a result, if there is a high intra-

class variability this module will assign new class labels as

required.

Finally, we note that the current implementation uses

mean-shift tracking in order to observe a scene, and therefore

is sensitive to relevant issues such as poor lighting conditions

or intense user movements. During runtime, the method can

compensate for any failures in the tracking process, however

behavior trajectories must be observed regularly.

To test the model's processing capacity against the afore-

mentioned metrics, we integrated the current implementation

on a Dell Inspiron M1000, equipped with an NVIDIA

GM107GLM [Quadro M1000M] GPU card. The model

was run on the CPU's processor, an Intel(R) Core(TM) i5-

6300HQ CPU @ 2.30GHz, while the visual tracker, kernel

density estimation and Liquid State Machine modules on the

GPU. To stress the model, we used 30 labels for clustering

and a 1KHz for sampling the activity observation model, a

configuration that would facilitate rather complex activities.

Results show that the model was able to yield predictions

every 10 simulation cycles, which is extremely appropriate

for the considered actions.

B. Methods for deriving relevant models

The methodology presented is generic and can be applied

to any repetitive task, given that the appropriate activity

and control observation components have been implemented.

Consequently, the equations presented in section III can be

satisfied by a family of methods. The computational tools

that will be used must be appropriate for the complexity

of the task under investigation. For example, when facing a

more elaborate task, one might find out that the segmentation

process is not robust to compensate for the motion changes.

In these cases, a different control observation model, with a

more elaborate segmentation algorithm, should be chosen.

1) Strategies for deriving the activity observation compo-
nent: We suggest that this component should be designed so

that it can deliver accurate task progress estimates in regular

intervals. For periodic tasks, the resolution for the activity

observation model should be set to a value that matches or is

smaller than the periodicity of the observed movements. For

the tasks presented, we have used a sampling rate frequency

of 1KHz.

2) Strategies for deriving the control observation compo-
nent: The control observation component should be able to

produce dense segmentation intervals of the activity. The

density of those segmentation intervals, should be high in

order to obtain a large amount of data for the primitive

models. In the current implementation, where we focus on

oscillatory movements, the density of the motions observed

is inherently high, so this problem is confronted by selecting

the segmentation intervals based on the motion shifts in the

direction vector. In future versions we plan to release metrics

of the ability of the two models to describe an activity. This

would also help faciliate involving discrete movements.

C. Notes on the methodology

The proposed methodology was formulated in order to

allow model reuse. Accordingly, the equations that describe

the activity and observation model are kept completely

segregated. Hence, those two facets of the activity are treated

separately. The first, control observation, observes how the

user acts on the activity. The second, activity observation,

observes how the activity progresses based on that. What we

have found, and demonstrated with the use-cases selected, is

that a lot of activities share one or both facets. For example,

for the three activities investigated we use the same control

observation model, since they all involve repetitive motions.

In addition, some share common properties in the way they

progress. For example, for the moping activity we only had

to introduce, on top of the wipe observation model, a single

module to detect ’dirt’ features. In the near future, we plan

to take advantage of this architecture, in order to introduce

additional activity and control observation models.

Inherently, the methodology is modular and employs var-

ious learning processes, including an unsupervised method

for clustering the primitives, or a supervised method for esti-

mating the activity progress. However, as it is implemented,

the model, does not require any data prior to execution,

apart from the number of class labels that will be used for

1937



the primitives and the sampling interval of the observation

model. Supervised data needed are automatically collected

and labeled for a primitive, during the learning process.

VI. CONCLUSIONS

The notion of predicting the temporal properties of an

activity is novel to robotics, but can prove invaluable. In the

current paper we have formulated the concept of Generative

Time Models (GTM), i.e. models that can answer questions

regarding the temporal properties of a task.
In addition to duration, the methodology computes com-

plementary temporal information for each primitive model.

These include the duration of the primitive, its frequency of

occurrence and the effect it has on the task progress. These

can be used as performance metrics for the user. In the future,

we plan to elaborate further on those metrics, investigating

the intra- and inter- class variability of the primitive models,

in order to provide more elaborate user profiles.
Following the broad categorization of primitives to discrete

and periodic, the model pertains to the latter category of

motion primitives. It remains also to be applied to the first

class of discrete motion primitives. In the near future we

plan to publish an extension of the methodology, that will

facilitate both types of behaviors, i.e. discrete and periodic,

as well as combinations of these in a unified framework. Our

aim, is to make the same method and principles apply also to

this second class of behaviors, in order to suggest a complete

framework under which temporal predictions can be made.
Regarding the robustness of the methodology, in the near

future we plan to extend it to include information such as the

user's consistency in the model's predictions. In addition, we

plan to investigate tasks with irregular dynamics, such as the

ones that appear in the end of the wipe the table activity (cf

discussion in Section IV), in order to compensate for these

durations.
GTMs can make accurate predictions with few training

iterations, providing information that is useful to various

applications, including Human-Robot interaction, scene per-

ception, robot planning and process modeling, to name a

few. The formulation proposed in this paper, with segregated

Control and Activity observation components, allows the

concept of GTMs to generalize, by reusing Control and

Activity observation models across tasks. In the near future

we plan to elaborate the concept even further, creating

an array of observation and control abstraction models, in

order to capture the whole spectrum of common household

activities.
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