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Abstract— Performance evaluation of urban autonomous ve-
hicles requires a realistic model of the behavior of other road
users in the environment. Learning such models from data in-
volves collecting naturalistic data of real-world human behavior.
In many cases, acquisition of this data can be prohibitively
expensive or intrusive. Additionally, the available data often
contain only typical behaviors and exclude behaviors that are
classified as rare events. To evaluate the performance of AV in
such situations, we develop a model of traffic behavior based
on the theory of bounded rationality. Based on the experiments
performed on a large naturalistic driving data, we show that
the developed model can be applied to estimate probability of
rare events, as well as to generate new traffic situations.

I. INTRODUCTION

With autonomous vehicles (AV) poised to change the
transportation landscape, the ability of AVs to handle a
wide range of human traffic behaviors safely and reliably is
of paramount importance. In order to guarantee that, it is
inadequate to rely on field tests alone as a primary method of
AV evaluation, since the number of kilometers that needs to
be driven for any statistical safety guarantee is prohibitively
high [1]. Thus, there is an increasing role of simulation in all
major components of an autonomous driving system (ADS),
including perception, planning, testing, and verification.
Although it is possible to significantly speed up the
verification process in simulation, it is also necessary for
simulation environments to be realistic. For the behavior
planner (which is the component in ADS responsible for
tactical and high-level decision making), this means that
simulation environments should be able to model behavior of
other traffic users in a way that is reflective of the real-world
behavior. Popular approaches design this behavior in several
ways: expert-driven, where designers program the motion
and behavior of the users [2], data-driven where a model of
behavior is learnt from observations and naturalistic driving
datasets [3], or a hybrid model that uses a combination
of both [4][5]. Although it is possible to design models
that learn from real-world data, a major challenge in any
approach is the generation of unusual or atypical behavior
that is not readily observed in the data, such as crashes or
near-miss scenarios.

In dynamical systems, rare event (RE) sampling provides
a mathematical framework to analyse events of very low
probability [6]. RE sampling techniques can be used for

both estimating the probability of occurrence of rare events,
as well as generating the conditions that lead to rare events.
In recent years, RE sampling based techniques have been
used for simulation based verification and testing of a wide
range of motion and behavior planners. O’Kelly et al. use
RE sampling for testing of planners that work in end-to-
end manner based on deep learning [7], whereas, other
approaches apply similar techniques to evaluate performance
in specific traffic situations, such as lane changes and cut-ins
[8]. Most approaches that use rare event sampling for AV
evaluation, uses cross-entropy based importance sampling,
which is an adaptive sampling technique to search for a
sampling distribution that maximizes odds of leading to
crashes and near-miss scenarios.

A part of the uncertainty in traffic environments arises
from the inherent stochastic behavior of road users, as
reflected in different driving styles of human drivers. This
is in contrast to the design of motion and behavior planners
of an ADS, which optimize a set of defined objectives, such
as, progress, safety, observance of traffic rules, etc. One
way to bridge this disconnect is by applying the theory of
bounded rationality. Originally developed in the field of
behavioral economics to study decision making of rational
agents, the theory of bounded rationality is a standard
technique in artificial intelligence that provides a general
framework to model sub-optimality of human decision
making behavior [9]. In this work, we apply bounded
rationality to model stochastic traffic behavior, and develop
a novel rare event sampling and optimization mechanism
that provides greater interpretability to the generation of rare
event situations than the standard cross-entropy approach.
We show that categorizing different driving behaviors,
and optimizing for an appropriate driving policy can act
as an effective technique for rare event estimation. We
compare our approach to cross-entropy based importance
sampling, which is a standard technique for rare event
estimation. We show that our method has lower variance,
thus provides a better estimate of rare event probability, as
well as provides 33% speed-up over cross entropy sampling
and a speed-up to the order of 104 compared to crude
Monte Carlo sampling. Further, we fit the behavior model
to a naturalistic driving dataset, and evaluate its use for
the generation of new situations. Our evaluation is based
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on vehicle cut-in events from the University of Michigan
SPMD naturalistic driving dataset, which contains several
hours of real world driving.

II. BACKGROUND

A. Rare event sampling

Rare event sampling provides a framework to study events
of very low probability in dynamical systems, with the
primary goal of estimating their probability. In a dynamical
system, the generalized system dynamics can be expressed
as

Xt+1 = Φ(Xt, Gt)

where Xt ∈ Rn, Gt ∈ Rm are the system state and input
at time t, and Φ is the system dynamics. A rare event ε is
defined using a scalar performance function η, and the rare
event is the occurrence of the condition where the function
is greater or equal to a specified threshold, η(Xt) ≥ b. For
convenience, rare events can also be defined over the input
space, i.e, the set of inputs that leads the system trajectory to
a critical state as defined by η(·) and b. Thus, the probability
of rare events can be expressed by the following integral

pε =

∫
ε

Iε(g)p(g)dg (1)

where Iε(g) is the indicator function, such that, Iε(g) =
1 if g ∈ ε, and Iε(g) = 0 otherwise. In crude Monte
Carlo methods, the above integral can be approximated by
generating several independent and identically distributed
samples1 of the system inputs G(0), G(1), .., G(N) drawn
from the distribution p(g) as

pε ≈ pMCS
ε =

1

N

N∑
i=1

Iε(G
(i)) (2)

By the Central Limit theorem, as N → ∞, pMCS
ε is

distributed asymptotically as a Gaussian distribution with
mean pε and variance σ2 = pε(1−pε)

N . Since the above is
only an estimate of the true probability, it is important to
calculate the margin of error based on the number of samples.
The relation between the sample size and relative margin of
error (re) of estimation for a confidence interval of 0.95 is
given by the relation2 N > 1.96

re2pε
. Thus, even for a relative

error of .01 and a high rare event probability of .001, we
need 107 samples.
Importance sampling is a variance reduction technique that
helps in improving the accuracy of the estimate pε with
fewer samples. A major disadvantage of crude Monte Carlo
sampling is the variance of the samples in (2), where for
rare events, most Iε(G(i))s are 0 and only very few are 1.
To reduce this variance, instead of drawing samples from
p(g), importance sampling uses a proposal distribution q(g),
where samples drawn from q(g) have a higher probability of

1 we use the convention where small g is the random variable and capital
G is a sample. 2 Derivation in [6] page 4.

leading to rare event situations. Using q(g), the integral in
(1) can be written as

pε =

∫
ε

Iε(g)p(g)

q(g)
q(g)dg

which is the expectation Eq[
Iεp
q ]. Following a similar ap-

proach to crude Monte Carlo, the above integral can be
approximated as

pε ≈ pISε =
1

N

N∑
i=1

Iε(G
(i))w(G(i))

where w(G(i)) = p(G(i))
q((i))

is the importance weight of the
sample G(i) or the likelihood ratio. The above estimator is an
unbiased estimator with µ = pε and σ2 = 1

N (Eq[
Iεp

2

q2 ]− p2
ε)

under the condition that when I(g)p(g) > 0, q(g) > 0 holds
true. Thus, for every sample drawn from p(·) that leads to a
rare event, the same sample should also lead to a rare event
if they were drawn from q(·). The complete algorithm to
estimate pε based on IS technique is shown in Algorithm 7.

The most optimal choice for the proposal distribution q(·)
is the original distribution conditioned on the rare event ε

q∗(·) = p(g|ε) =
Iε(g)p(g)

pε
(3)

We can see that with this choice the variance reduces to zero.
Additionally, since the distribution is conditioned on ε, any
sample drawn from this distribution would have Iε value
of 1 and weight w = pε. Thus, just a single sample can
estimate the exact value of pε. In most cases, it is practically
impossible to find the exact distribution p(g|ε) since it
requires knowing pε. However, this optimal distribution gives
an indication that a distribution close to p(g|ε) is a good
proposal distribution.
One approach to generate the proposal distribution is based
on cross-entropy (CE) method. If q is chosen from a family
of distributions ψ(·, θ), then the distance between the distri-
bution ψ(·, θ) and p(g|ε), as measured by Kullbeck-Leibler
divergence, gives an estimate of goodness of the proposal
distribution. Thus, the optimal distribution can be found by
solving the following optimization problem:

θ∗ = arg min
θ

DKL(ψ(·, θ), p(g|ε)) (4)

where DKL is the KL divergence between the two distri-
butions, and θ∗ is the parameter of the optimal distribution.
The CE approach gives a fast iterative scheme to find the so-
lution to the above minimization problem. The optimization
procedure can be further simplified by choosing ψ(·, θ) as
the exponentially change of measure (ECM) function of the
original distribution p(g). Most approaches for rare event
sampling in AV literature approximate p(g) with a heavy-
tailed distribution from the exponential family. This enables
CE optimization to find a closed form solution to (4), thus
making the process much faster.
Although CE approach provides a point estimate of the
probability of rare events, it provides little insight into the



type of behaviors that lead to the rare event situations. This
becomes especially relevant for evaluation of AVs, where it
is important to know what conditions and behavior cause
rare event situations.

Algorithm 1: Importance sampling algorithm for esti-
mating probability of rare events.

Result: IS estimate pε = 1
N ·

N∑
i=1

wi

1 foreach i ∈ [0, .., N ] do
2 Sample an initial condition from the proposal

distribution gi ∼ q(g) ;
3 Compute system trajectory based on the system

dynamics : Xi = Xt=0, Xt=1, ..., Xt=T ;
4 if max

0≤i≤T
g(Xi) ≥ b then

5 Calculate the importance weight of the ith

particle wi = p(gi)
q(gi)

;
6 end
7 end

B. Bounded rationality

Utility-based models are a widely used framework for
motion planning in AVs. These models generate a driving
policy by optimizing a set of utility functions that typically
include objectives such as safety, progress towards a goal
destination, abiding by regulatory traffic rules, etc. Although
a pure utility maximization principle can generate a driving
policy for the subject vehicle, the approach has limited ability
to capture the variation in behavior of other traffic users [10],
[11]. This shortcoming is mainly due to the fact that natural
human behavior is often sub-optimal, as they have limited
ability to calculate the most optimal decision with respect to
a set of utility objectives. The theory of bounded rationality
is a standard technique in artificial intelligence that provides
a formal framework to model this sub-optimality of human
behavior [12]. One way to model bounded rationality is
through the quantal response function, which in its basic
form gives the probability P (s,Ai|λ) of a taking a discrete
action Ai ∈ A in environment state s ∈ S based on a utility
u : S ×A→ [−1, 1] as

P (s,Ai|λ) =
exp[λ · u(s,Ai)]∑
∀A

exp[λ · u(s,A)]
(5)

λ is the rationality parameter, that controls the probability of
an action Ai based on its utility u(s,Ai). When λ→∞, the
policy converges to a pure utility maximization, i.e., the agent
always takes the optimal action. Whereas, λ→ 0 leads to a
random policy. However, since most actions in the context
of an ADS are continuous (such as target velocity, distance
to other vehicles, etc.), first we extend the quantal response
function of (5) to continuous actions. Second, since utilities
for behavior planning in AVs are multi-objective in nature,
we need to model the variation of behavior with respect to
individual utilities. Thus, we extend the rationality parameter

to a vector of tuples Λ = [(λ1, u1), (λ2, u2).., (λk, uk)],
where each λi acts as the rationality parameter for the
corresponding utility ui. With the above two extensions, we
model the probability of an action a ∈ RD in state s by the
probability distribution:

p(s, a|(λ, u)) =


1

2
λ = 0

λ · exp(λ · (1 + u(s, a)))

exp(λ · 2)− 1
λ 6= 0

Combining the individual utilities, the final stochastic driving
policy f : S × A → [0, 1] is formulated by the following
mixture distribution:

f(s, a|Λ) =
1

k

k∑
i=1

p(s, a|(λi, ui)) (6)
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Fig. 1: Probability distribution of an action a based on its utility
u(s, a). The plot shows the effect of the rationality parameter λ on
the probability (higher λ leads to actions favoring higher utility).

Figure 1 shows the relation between the action probability
p(s, a) and the action utility u(s, a) at various levels of λ.
A high value of λ = 100, skews the distribution p(s, a)
such that the policy prefers actions with maximum utility
(u(s, a) = 1) with close to probability 1, i.e., a pure
utility maximization model. Whereas, lower values of λ =
2,−2,−10 progressively lead to a more sub-optimal policy.
λ = 0 being the special case where actions are chosen
based on a random policy. As we discuss in the next section,
the flexibility of the bounded rationality model afforded by
the rationality vector Λ helps to model a wide range of
naturalistic driving behavior.

III. RARE EVENT SAMPLING AND SITUATION
GENERATION

A. Behavior categorization

In this section we use a typical vehicle cut-in scenario as
a motivating example, and show how the bounded rationality
model developed in the previous section can be used to
categorize a range of driving behaviors. A vehicle cut-in
scenario (Figure 2) involves a vehicle (VS) maintaining its
lane of travel, while another vehicle (VLC) is executing a
lane-change maneuver into VS’s lane of travel. We consider
the case where VS is driven in autonomous mode (subject
vehicle), and VLC is driven by a human (target vehicle).



There are two conflict points, as marked by a cross in the
figure — a side-to-side conflict that can result in sideways
collision, and a sequential conflict that can result in rear-end
collision.
As a part of the cut-in maneuver VLC needs to decide on

VS:(vS
t,l

S
t) 

     (vS
t+Δt,

      lS
t+Δt) 

VLC:(vLC
t,l

LC
t) 

     (vLC
t+Δt,l

LC
t+Δt) 

δ =|l
LC

t+Δt - l
S

t+Δt|

X
X

Fig. 2: Vehicle cut-in scenario on a two-lane road. vLC,St are the
velocities of autonomous subject vehicle (VS) and the target vehicle
(VLC ) resp. at the start of the lane-change maneuver. v{LC,S}t+∆t and
l
{LC,S}
t+∆t are the velocities and locations when the front wheel of

the target crosses the lane boundary. δ is the distance gap.

TABLE I: Behavior categories based on the contraints on the
rationality vector Λ = [(λδ, .), (λτ , .), (λp, .)]

Behavior id [λδ, λτ , λp] Behavior description

B1 [−,−,+] cut-in with high speed at close distance with
low ttc

B2 [−,+,+] high speed at close distance with high ttc
B3 [+,+,−] low speed at longer distance with high ttc
B4 [+,−,−] low speed at longer distance with low ttc
B5 [−,−,−] low speed at close distance with low ttc
B6 [−,+,−] low speed at close distance with high ttc
B7 [+,+,+] high speed at longer distance with high ttc
B8 [+,−,+] high speed at longer distance with low ttc

its target velocity vLCt+∆t, where t+∆t is the time step when
the front wheel of VLC crosses the lane boundary of VS’s
travel lane. VLC also needs to decide the safety distance
(distance gap) it has to keep from VS , as measured by the
difference between the vehicles’ respective positions along
the direction of travel δ = d(lLCt+∆t, l

S
t+∆t). Based on these

choices, VLC’s cut-in behavior can vary significantly. For
example, VLC can cut-in close to VS with a low relative
speed, or execute a high-speed maneuver maintaining a
fair distance gap. Thus, the action space for VLC for the
maneuver consists of the tuple (vLCt+∆t, δ), and the state space
consists of vSt . Once VLC initiates the cut-in maneuver, the
subject vehicle VS needs to respond appropriately based on
its behavioral decision logic, which might include slowing
down to maintain a safe distance gap or time-to-collision
(ttc).
To model the behavior of the target vehicle VLC qualitatively,
we use three utility functions; two based on safety (uδ ,uτ ),
measured by the distance gap and time to collision (ttc),
and one based on progress (up), measured by the velocity
(vLCt+∆t). u{δ,τ}(x) = S(x− {δ∗, τ∗}) + 0.5S({δ∗, τ∗} − x)

and up(v
LC
t+∆t) = S(2vLCt+∆t − 2v∗) − S(2v∗ − 2vLCt+∆t),

where S is the standard logistic sigmoid function, x is ttc or
distance gap for the respective utilities, and δ∗, τ∗, v∗ are the
parameter values that are based on safe driving best practices.
These functions belong to the general class of exponential
utility functions, which is a popular class of utility functions
used in decision theory [13]. The choice is also based on
insights from [14], which shows that a driver’s perception
of risk level and their response has an exponential relation
to critical vehicle and environmental states, such as, getting
close to an obstacle or curbside, and vehicle speed. Based
on these utilities, we can construct the rationality vector
Λ = [(λδ, uδ), (λτ , uτ ), (λp, up)]. Following the equations
in section II-B, every instance of the vector Λ generates
a stochastic driving policy f(vS , (v

LC
t+∆t, δ)), and λδ, λτ , λp

control the level adherence of the policy to each utility.
As shown in Table I, based on the level of adherence, λ’s
in Λ can be grouped together to form categories of driving
behavior. For example, the constraint λδ < 0, λτ < 0, λp > 0
leads to a driving policy that cares less about maintaining
a safe distance-gap and time-to-collision, but more about
making fast progress; shown in the table as the behavior
category B1. Thus, we get eight behavior categories for a
vehicle cut-in scenario, and even within a category there are a
wide range of individual driving policies sharing the common
behavior. We model the response of the subject vehicle VS
based on Krauss car following model [15], which is activated
at time step t+ ∆T .

B. Parameter optimization

In this section, we develop an optimization scheme and
show how the developed behavior model can be used for the
purpose of rare event sampling. Revisiting (3), an optimal
proposal distribution q(·) for importance sampling of rare
events should be as close as possible to the distribution
p(g|ε). In other words, the goal is to find a low variance
estimator that has high probability in regions of the system
input space u that lead to rare events. One way to achieve that
is by finding a driving policy that is more likely to lead to
such events. To that end, we use the parameterized driving
policy of (6) as the proposal distribution q(·). The system
input space (g) is R2

>0 which consists of the velocity of
the target vehicle and the distance gap. Thus, q = f(g|Λ∗),
where Λ∗ is the solution to the following optimization
problem

Λ∗ = arg max
Λ

Iε(g)f(g|Λ)

where Iε(g) is the indicator function for the rare events. To
solve the above optimization problem, we use a Simulated
Annealing (SA) based heuristic that first finds the category
of behavior (B1-8) that has a high Iε(g) and then subse-
quently finds a value of Λ within that behavior category that
maximizes the optimization objective.
Algorithm 2 describes the optimization procedure. The
two main structures in the algorithm, [pB1

max, .., p
B8
max] and

[ΛB1
max, ..,Λ

B8
max] maintain the maximum probability of rare



event for each behavior category, and the corresponding Λ
of the driving policy that caused the rare events.
There are two loops in the procedure, the outer loop iterates
over all behaviors to find a behavior with maximum rare
event probability (line 5), and the inner loop iterates to find
the Λ that maximizes rare events within the behavior cate-
gory line (10). Following the standard technique in Simulated
Annealing, the acceptance of a better solution (line 8 and
14) is controlled by the temperature parameters (Tout, Tinn),
which are reduced by a constant factor in every iteration
of the loop (line 18 and 21). The neighborhood generation
of the outer loop (line 6) performs a weighted sampling of
behavior ids based on the current [pB1

max, .., p
B8
max] vector at

each iteration.
For the inner loop, the sample() method generates a value
of Λ constrained by the behavior category based on a uniform
distribution (line 11). simulate scene() is the main
entry point to simulate a set of situations with different initial
conditions. In our implementation, we use the SUMO open
source simulator to simulate the cut-in scenarios [16]. The
method samples the initial state vSt from the distribution of
subject vehicle velocities observed in the naturalistic driving
dataset, and runs N separate simulations where the behavior
of the target vehicle is sampled based on the driving policy
f(s, a|Λ). The algorithm outputs estimate of Λ∗, which is
subsequently used to construct the final driving policy to be
used in estimation of the rare event probability pISε based on
Algorithm 7.

C. Situation generation

While the bounded rationality model can be used to
provide a point estimate of the probability of rare events,
the model can also be used to sample new situations of
interest to evaluate the performance of the planner under
specific circumstances. One simple way to achieve that is
by sampling behaviors of other vehicles from the driving
policy conditioned on a behavior category. For example, to
generate situations of high speed cut-ins at close distances
(B1,B2), behaviors can be sampled from the distribution
f(s, a|ΛB1,B2), where ΛB1,B2 is the domain of Λ after
applying the constraints of the respective behavior categories
(B1,B2) based on Table I. Although this approach can sample
a wide range of behaviors, a more effective technique can use
a data-driven strategy consisting of the following steps: (i)
acquisition of naturalistic driving data for the scenario under
evaluation, (ii) fitting a behavior model based on the data,
and (iii) using the behavior model to sample new situations
that are not present in the dataset. In this section, we propose
an approach to achieve the above objectives.
Compared to the problem of rare event sampling, where

we optimize for a single value of Λ that maximizes the rare
event probability, fitting the model to naturalistic data poses
additional challenges. Naturalistic data are often multimodal
in nature, i.e, they contain a a mix of different driving
behaviors, and thus, a model fitted with a single value
of Λ cannot capture the variation adequately. In order to
resolve this problem, we apply insights from the behavior

Algorithm 2: Simulated Annealing (SA) based optimiza-
tion procedure for Λ∗

Result: Λbidmaxmax

1 [ΛB1
max, ..,Λ

B8
max]← init Λ();

2 foreach bid ∈ [B1, .., B8] do
3 pbidmax ← simulate scene(Λbidmax, N )
4 end
5 while i < Imax do
6 bid← weighted sample([pB1

max, .., p
B8
max]);

7 pmax ← max([pB1
max, .., p

B8
max]);

8 if exp ((pbidmax − pmax)/Tout) <random(0,1) then
9 j ← 0;

10 while j < Jmax do
11 Λ← sample(bid);
12 p ε← simulate scene(Λ, N );
13 if p ε >

pbidmaxorexp ((p ε− pbidmax)/Tinn) <random(0,1)
then

14 pbidmax ← p ε
15 Λbidmax ← Λ
16 end
17 Tinn ← temperature(j)
18 end
19 end
20 Tout ← temperature(i)
21 bidmax ← arg max

bid
pbidmax

22 end

categories developed earlier, and extend the bounded ratio-
nality based model for the more general setting of modeling
mixed behaviors. We introduce three mixing parameters
A = {αδ, ατ , αp} ∈ R3

[0,1], one for each utility, and
correspondingly extend the driving policy formulation of (6)
to

f(s, a|Λ, A) =
1

k

k∑
i=1

αip(s, a|(λ+
i , ui))+

(1− αi)p(s, a|(λ−i , ui))

(7)

αδ

α𝜏

α𝑝
(0,0,0)

(1,1,1)

B7

B5 B4

B8

B3B6

B2

B1

Fig. 4: Visualization of
the behavior model that
mixes different behaviors
categories (B1-B8) based
on the mixing parameter
A = αδ, ατ , αp

where λ+, λ− are the positive
and negative constraints on
the values of the parameter.
The distribution in the above
model has multiple peaks,
and thus allows for mixing
multiple behaviors [B1-
B8]. A convenient way to
visualize this is with a unit
hypercube (Figure 4) where
the corners are the behavior
categories from Table I, and
the parameter A controls the
corresponding mix of behaviors.
To fit the nine parameters
(λ+,−
δ , λ+,−

τ , λ+,−
p , αδ, ατ , αp)
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Fig. 3: Comparison based on variance and probability of rare events for the three approaches after 100 simulation runs. (a) probability
of rare events (pε for the three approaches (BR,CE,CMC). x-axis: simulation run, y-axis: probability of rare event corresponding to the
run), (b) Box plot of the probability of rare events based on 100 iterations, (c) Box plot of the variance of the likelihood ratio w for BR
and CE after 100x1000 runs. Dotted and straight line shows the median and mean values respectively for box plots.

to the observed data, we use
least-squares optimization based on Trust Region Reflective
algorithm since the parameters are bounded [17]. Finally,
based on the fitted parameters, we use the behavior model of
(7) to sample new situations that are unseen in the original
dataset.

IV. EXPERIMENTS
In order to evaluate the bounded rationality based behavior

model for rare event sampling as well as situation generation,
we use the University of Michigan SPMD (Safety Pilot
Model Deployment) dataset. SPMD is one of the largest
naturalistic driving dataset that was collected over two years,
with 2842 equipped vehicles driving a total of 34.9 million
miles. Part of the dataset with two months of driving data is
publicly available in [18], and contains information recorded
from the vehicle’s data acquisition systems, such as Mobil-
Eye camera, CAN bus, and GPS. We follow the approach in
[19] to extract 74,449 cut-in events recorded in the dataset, as
well as the target and subject vehicle trajectory for 5 seconds
immediately following the event. For our experiments, we
define rare event as near-crash situations where distance gap
between the subject and target vehicle is .01 meter or less
and the subject vehicle is not stopped.
As a part of the evaluation, we address two specific research
questions based on the approaches developed earlier:3

• RQ1: How does behavior-driven RE sampling compare
to crude Monte Carlo and cross-entropy based methods?

• RQ2: How well does the bounded-rationality model fit
the observed naturalistic driving data?

RQ1: Based on the theory presented in Section II-A,
we revisit that any system input sampled from the optimal
proposal distribution q∗ = p(g|ε) always leads the system
to rare event. A factor that helps judge the goodness of a
proposal distribution is the probability of generation of rare
events; the general intuition being that a higher probability
is an indication of the distribution being closer to p(g|ε).
Thus, we first compare the bounded rationality based model

3 Our code is available at https://bit.ly/2H83i1o

developed in the paper (BR) with Cross Entropy (CE) based
proposal distribution, as well as baseline crude Monte Carlo
sampling (CMC) on the basis of probability of generation of
rare events.

As shown in Figure 3a, the proposal distribution based on
bounded rationality model outperforms cross-entropy based
model consistently across 100 iterations, where each iteration
consists of 1000 simulation runs sampled from the respective
distributions. The mean (µ) and box plot of the runs is shown
in Figure 3b. As expected, the both proposal distributions
(µ = 4.07 × 10−2 and µ = 3.36 × 10−2 for CE and
BR respectively) have higher probability of generating rare
events compared to crude Monte Carlo sampling (µ =
5.6× 10−4).
Along with the probability of occurrence of rare events, an-
other important metric to evaluate the quality of the proposal
distribution is the variance of the likelihood ratio w (line 5
in Algorithm. 7). A variance closer to 0 is an indication
of the proposal distribution being closer to the optimal
distribution (p(g|ε)), which is a zero variance distribution.
A lower variance also reduces the width of the confidence
intervals of the pISε estimates, thus reducing the relative error
between the estimate and the true probability pε. Figure 3c
compares the variance of the weights that were sampled from
the respective proposal distribution for BR and CE. Variance
was calculated for the 1000 runs in each iteration, and the
box plot shows their dispersion over 100 iterations. As seen
from the figure, the variance is significantly lower for BR
compared to CE, indicating that BR provides a more accurate
estimate of pε compared to CE. Thus, the results show that
categorizing based on the behaviors, and optimizing over
them to find a crash-prone driving policy can act as an
effective rare event sampling strategy.
RQ2: As a part of the second research question, we evaluate

how well bounded rationality based behavioral model can
model naturalistic traffic data. To that end, we perform a
random (80-20) split of the SPMD lane change dataset. We
use 80% of the data to fit the parameters based on the
approach discussed in Section III-C, and use the remaining

https://bit.ly/2H83i1o
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Fig. 5: (a,b): Comparison of generated (blue cross) and naturalistic data (orange dots) for low speed cut-in situations (subject vehicle
speed is less than 15 meters per second). x-axis: metric values (a: ttc (secs), b: range (meters)), y-axis: probability. (c) Distribution of
behaviors for all situations in the dataset.
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Fig. 6: QQ plot for naturalistic data with respect to bounded
rationality based behavior model (a) ttc (b) distance-gap. x-axis:
theoretical quantiles of the distribution for the behavior model, y-
axis: empirical quantiles from naturalistic data.

for evaluation. Since the distributions are dependent on the
speed, we repeat our analysis for low (≤ 15 m/s), medium
(15− 25 m/s), and high speed (> 25 m/s) situations. Figure
5 shows a visual comparison of the range and time-to-
collision distribution of the generated and observed data for
low speed situations, shown as blue crosses and orange dots,
respectively. To evaluate the fit analytically, the QQ plots
are shown in Figures 6a,6b. QQ plots are an effective tool to
measure the fit of observed data to a theoretical distribution.

The x-axis represents the quantiles of the distribution, the
y-axis represents the observed data quantiles, and the blue
dots maps a quantile from the data to the distribution.
As seen in the figure, the strong linear relation (Pearson
correlation coefficient ρ = .919, .98 resp. for ttc and distance
gap) between the two indicate that the observed data from
the dataset is distributed according to the fitted bounded
rationality based model.

V. RELATED WORK

rare event sampling: There is significant variation in the
approaches used for rare event sampling, including impor-
tance sampling, subset simulation, and splitting [20]. Subset
simulation has been used in domains where the rare event
probability pε can be expressed as a product of factors of
higher probability, and the approach estimates the factor
probabilities separately. Splitting is a related technique where
the simulation makes iterative copies of the system state
that leads to a state close to a rare event, and subsequently
running simulations from that state. rare event sampling also
has a rich history of application in various domains such
as aerospace [21], systems biology [22], telecommunication
[23]. Blom et al. [21] apply splitting technique to the problem
of safety verification for air traffic control in order to avoid
rare events such as aircraft collision. Blanchet and Mandjes
[23] apply an importance sampling based technique for
queuing systems, and highlight the relevance of standard
deviation of the estimate in a good IS proposal distribution.
In the domain of autonomous vehicles, Zhao et al. use rare
event sampling for accelerated evaluation of AV for lane
change scenarios [8]. Kelly et al. use rare event sampling for
testing driving policies that are based on end-to-end learning
[7]. Both approaches use cross-entropy based importance
sampling as the simulation technique. To the best of our
knowledge, we present the first approach that highlights
the importance of different driving behaviors for rare event
sampling in the context of autonomous vehicles.
Behavior modeling: Most previous approaches to modelling
traffic behavior are limited to the deterministic case, where



the behavior of vehicles were modelled as differential equa-
tions. Examples of such models include the Intelligent Driver
Model [24], along with its extensions such as the Newell car-
following model [25]. When applied to the problem of ADS
simulation, these approaches are limited in their ability to
model the variation of human traffic behavior, including pos-
itive, negative, and edge case behavior. In the broader field
of behavior modeling, there is extensive body of literature on
modeling and simulation of pedestrian behavior under varied
situations. Popular approaches use variations of the Social
Forces Model (SFM) [26], where the behavior of agents is
modeled as a dynamical system containing attractive and
repulsive forces, and the final behavior is the result of all
such forces acting on the agent. Although SFM provides an
intuitive modeling paradigm to model agent movement, it
has been shown to be difficult to calibrate the models to real
empirical data due to the forces not being linearly additive
in nature. To address the shortcomings of the social forces
model, potential-based methods follow an agent-free model,
where the behavior is not modeled individually for every
agent like in SFM. Instead, potential based methods treats
goals and obstructions as a continuous potential field, and
the resulting behavior is the solution to energy minimization
problem in the field. Potential field based methods can be
considered to be a special case of utility-based methods.
However, like most utility based methods, potential field
models work under the assumption that the behavior always
follow the optimal path. We consider this assumption re-
strictive, and address this by using bounded rationality in
our approach. Yang and Peng [27] develop an errable driver
model to model sub-optimal driving behaviors, including
distraction and perceptual errors. The model measures the
stochastic error in driving decisions based on the specified
error factors. Compared to the errable model, our approach is
based on a more general utility-driven framework, and thus
can be applied to a wider variety of driving situations.

VI. CONCLUSION

In this paper, we develop a novel driving behavior model
based on the theory of bounded rationality to model traffic
behavior for evaluation of autonomous vehicles. We apply
the behavior model to two cases: (i) generation of rare event
situations and estimating the probability of rare events, and
(ii) applying the behavior model to generate new synthetic
data for testing behavior planners. We evaluate our proposed
model based on a large naturalistic dataset and show that
bounded rationality based behavior model can improve on
crude Monte Carlo sampling by an order of 104, and com-
pared to cross-entropy sampling, it provides 33% speedup
and 99% reduction in variance. We also show that synthetic
data sampled from the developed behavior model has strong
correlation to naturalistic driving data.
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