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Chance-Constrained Trajectory Optimization for

Non-linear Systems with Unknown Stochastic Dynamics

Onur Celik1, Hany Abdulsamad2 and Jan Peters2,3

Abstract— Iterative trajectory optimization techniques for
non-linear dynamical systems are among the most powerful and
sample-efficient methods of model-based reinforcement learning
and approximate optimal control. By leveraging time-variant
local linear-quadratic approximations of system dynamics and
reward, such methods can find both a target-optimal trajectory
and time-variant optimal feedback controllers. However, the
local linear-quadratic assumptions are a major source of opti-
mization bias that leads to catastrophic greedy updates, raising
the issue of proper regularization. Moreover, the approximate
models’ disregard for any physical state-action limits of the
system causes further aggravation of the problem, as the
optimization moves towards unreachable areas of the state-
action space. In this paper, we address the issue of constrained
systems in the scenario of online-fitted stochastic linear dy-
namics. We propose modeling state and action physical limits
as probabilistic chance constraints linear in both state and
action and introduce a new trajectory optimization technique
that integrates these probabilistic constraints by optimizing a
relaxed quadratic program. Our empirical evaluations show a
significant improvement in learning robustness, which enables
our approach to perform more effective updates and avoid
premature convergence observed in state-of-the-art algorithms.

I. INTRODUCTION

Model-based reinforcement learning has played an impor-

tant role in the latest surge of popular research interest in

learning-control of autonomous systems [1]. More specifi-

cally, trajectory-centric optimization techniques of non-linear

dynamics have proven to be extremely sample efficient in

comparison to model-free policy search approaches [2]–[4].

With the notable exception of [5], model-based trajec-

tory optimization techniques [6], [7] are closely related to

differential dynamic programming methods (DDP), initially

presented in [8] and further generalized in [9]. DDP is a

powerful approach for generating optimal trajectories with

optimal time-variant feedback controllers. By relying on

linear-quadratic approximations of the dynamics and reward

around a nominal trajectory, DDP-based methods can lever-

age the local approximations to iteratively optimize both the

trajectory and tracking feedback controllers in closed-form

via dynamic programming [10]. This view of control has a

computational advantage over direct optimization techniques

such as collocation methods, which solve large optimization
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problems directly in the trajectory space and generally result

only in open-loop control sequences [11].

However, despite the overwhelming success of DDP, it still

suffers from multiple shortcomings. On the one hand, the

greedy exploitation of poor local approximations of dynam-

ics is a major problem that leads to premature convergence.

This issue has been effectively addressed in recent research

by proposing different schemes of regularization [2], [6], [7].

On the other hand, state and action constraints present a

serious challenge, as they introduce hard non-linearities, that

cannot be straightforwardly incorporated into the dynamic

programming framework. The effect of constraints becomes

more severe in settings where a global model is not available

for automatic differentiation, hence requiring the linear ap-

proximation of the dynamics to be fitted online from samples.

We view these issues of DDP as interlocked. The inability

of time-variant local linear models to consider state and

action constraints results in updates that exploit unreachable

parts of the state-actions space, leading to catastrophically

poor linear-quadratic approximations in regions subject to

hard non-linearities. Moreover, considering constraints be-

comes more challenging in scenarios with stochastic dynam-

ics, in that the true state of the system is hidden and only

available through sufficient statistics. Another crucial aspect

in a stochastic setting is the infinite support of the noisy

measurements, which results in the constraints being active

over the whole state-action space.

To address these issues, we propose an augmented view

of DDP that introduces the physical limits as probabilistic

chance constraints linear in state and action. When con-

sidering time-variant linear-Gaussian approximations of the

dynamic, we can relax the generally non-convex chance

constraints by applying Boole’s inequality. This relaxation

allows us to formulate an additional quadratic program

that forces the optimized nominal trajectory to stay in a

feasible state-action region with high probability, all while

considering the feedback gains optimized by DDP.

Several approaches to trajectory optimization for non-

linear systems address the problem of constrained dynamics

on different levels. In the domain of deterministic environ-

ments, Tassa et al. considered action box-constraints in [12],

while the authors in [13] introduce soft state-action limits

via a Lagrange function augmentation. More sophisticated

integration of constraints is presented in [14], in which the

authors formulate a quadratic program to determine the active

set of constraints at every iteration. In a stochastic setting,

the work by Van Den Berg et. al [15] introduces probabilistic

constraints as direct penalty terms on the cost function.
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Furthermore, probabilistic constraints are considered in

the context of linear optimal control. In [16] the authors

optimally handle probabilistic constraints by ellipsoidal re-

laxation for finite-horizon open-loop scenarios, while in [17]

a similar problem is tackled by applying Boole’s inequality.

In [18] Vitus et al. propose an algorithm to extend the work

in [17] and [16] by considering closed-loop uncertainty and

optimizing the risk allocation. Finally, in [19] the problem

of infeasible initial solutions is addressed by progressively

introducing the constraint into the objective.

We situate our contribution in the class of differential dy-

namic programming for stochastic non-linear systems subject

to probabilistic constraints in state and action. We empirically

show that our proposed approach can deal with highly non-

linear constrained dynamic environments, leading to better

overall performance and a robust learning process by virtue

of improved online-fitted local approximations.

II. CHANCE-CONSTRAINED OPTIMIZATION

Chance constraints arise naturally in different fields of

optimization when considering stochastic systems. For an

overview, we refer to [20]. Dealing with such probabilistic

constraints proves to be challenging, as they are often non-

convex and hard to evaluate without resolving to compu-

tationally expensive sampling techniques. These difficulties

have motivated further research into tractable forms of

chance constraints, which led to several convex approxima-

tions [21]. This work will focus on using Boole’s inequality

for constraint relaxation. A detailed description in the context

of trajectories will follow in Section II-B.

A. Problem Formulation

Consider the constrained optimal control problem with

probabilistic state and action constraints and unknown

stochastic time-discrete transition dynamics

max
A

J(s,A),

s.t. st+1 ∼ P(st+1|st,at),

Pr(s0:T ∈ S) ≥ 1− θ,

Pr(a0:T−1 ∈ A) ≥ 1− ϑ,

where S and A are the feasible state and action spaces

respectively. The probability levels θ, ϑ are hyperparameters

that influence the risk behavior in terms of violating the

constraints. The goal of this constrained optimization is

to maximize the objective by finding the optimal action

sequence A. In general, we consider the expected cumulative

reward for a trajectory of length T in the quadratic form

J(s,A) = −E
[

T−1
∑

t=0

(st − sg,t)
⊺M t(st − sg,t) + a

⊺

tDtat

+ (sT − sg,T )
⊺MT (sT − sg,T )

]

, (1)

where M and D are positive-definite weight matrices of

appropriate dimensions and sg is the target state. Note

that a quadratic objective is not necessarily required, and

non-quadratic objectives can be locally approximated by

quadratic forms.

B. Relaxation of Chance Constraints

Chance constraints can be conservatively relaxed by apply-

ing Boole’s inequality [22]–[24]. For the purpose of brevity,

only upper-bound state constraints are considered. How-

ever, the same relaxation procedure can be straightforwardly

applied to obtain a lower-bound and to relax the action

constraints. Generally, the state-linear joint chance constraint

for a whole trajectory is formulated as

Pr(s0:T ∈ S) = Pr(

T
⋂

t=0

st ∈ S) ≥ 1− θ,

= Pr(

T
⋂

t=0

h
⊺

t st ≤ bt) ≥ 1− θ. (2)

where ht and bt parameterize the half-plane defined by the

constraints. Consequently, the probability of a trajectory to

be within a feasible set is constrained to be higher than a

probability 1 − θ. In the framework of stochastic program-

ming, it is usually beneficial to reformulate Equation (2) into

separate inequalities over individual constraints [20], which

is achieved by transforming the intersection operator into a

union operator according to rules of probability.

Pr(
T
⋂

t=0

h
⊺

t st ≤ bt) = 1− Pr(
T
⋃

t=0

h
⊺

t st > bt),

≥ 1−
T
∑

t=0

1− Pr(h⊺

t st ≤ bt). (3)

The sum in Inequality (3) can now be treated as a collection

of single probabilities per time-step
T
∑

t=0

1− Pr(h⊺

t st ≤ bt) ≤ θ,

Pr(h⊺

t st ≤ bt) ≥ 1− θt, (4)

where
∑T

t=0
θt = θ. By assuming a Gaussian probability

density, a common assumption in control applications, Equa-

tion (4) is rewritten using the cumulative density function

1

2

[

1 + erf

(

bt − h
⊺

tµst
√

2h⊺

tΣst
ht

)]

≥ 1− θt,

bt − h
⊺

tµst
−
√

2h⊺

tΣst
ht erf−1(1− 2θt) ≥ 0, (5)

where µst
and Σst

are the state mean and covariance re-

spectively. Moreover, due to properties of the error function,

the inequality
∑T

t=0
θt ≤ θ < 0.5 is conservatively enforced

by setting θt = θ/T and requiring θ < 0.5, as in [24].

C. Iterative Linear Quadratic Gaussian Control (iLQG)

We base our trajectory optimization technique on

DDP/iLQG methods. This section provides a short overview

on the principles of DDP [8] and iLQG [2]. For any arbitrary

time-index reward function Rt, the trajectory optimization

objective is the expected cumulative reward

J(s,A) = E

[

T−1
∑

t=0

Rt(st,at) +RT (sT )

]

.



DDP and iLQG leverage the principle of dynamic program-

ming to simplify the optimization over a complete sequence

of actions a0:T−1 to an optimization over single actions at

for each time-step. For this purpose the time-indexed state-

value function is introduced

Vt(s)= max
at



Rt(st,at) +
∑

st+1

Vt+1(st+1)P(st+1|st,at)



,

over which the dynamic programming backward recur-

sion is performed. By assuming linear transitions dynam-

ics and a quadratic rewards along a nominal trajectory,

optimal feedback controllers can be derived in closed-

form. DDP and iLQG consider the perturbed state-action-

value function Qt(δs, δa) = Rt(st + δs,at + δa) −
Rt(st,at)+Vt+1 (P(st + δs,at + δa))−Vt+1 (P(st,at)),
resulting from a second order Taylor approximation

Qt(δs, δa) ≈
1

2





1
δs
δa





⊺ 



0 Q
⊺

s,t Q
⊺

a,t

Qs,t Qss,t Qsa,t

Qa,t Qas,t Qaa,t









1
δs
δa



 .

The subscripts s and a stand for the first and second order

approximations. The entries of Qt(δs, δa) are given as

Qs,t = Rs,t + P
⊺

s,tV s,t+1,

Qa,t = Ra,t + P
⊺

a,tV s,t+1,

Qss,t = Rss,t + P
⊺

s,tV ss,t+1Ps,t + V s,t+1Pss,t,

Qaa,t = Raa,t + P
⊺

a,tV ss,t+1Pa,t + V s,t+1Paa,t,

Qas,t = Ras,t + P
⊺

a,tV ss,t+1Ps,t + V s,t+1Pas,t.

The main difference of iLQG compared to DDP is in neglect-

ing the second order derivatives of the dynamics in iLQG.

Given these approximations the optimal feedback controller

is given as δa∗ = −Q−1

aa,t(Qa + Qas,tδs) = Ktδs + kt.
Inserting δa∗ into Qt(δs, δa) returns the update equations

of the state-value function per time-step

∆Vt = −
1

2
Qa,tQ

−1

aa,tQa,t,

V s,t = Qs,t −Qa,tQ
−1

aa,tQas,t,

V ss,t = Qss,t −Qsa,tQ
−1

aa,tQas,t.

During the forward pass, new trajectories of the stochastic

non-linear dynamics are sampled by propagating the actions

through the real system

at = ar,t + kt +Kt(st − sr,t),

st+1 ∼ P(st+1|st,at), s0 = sr,0, (6)

where sr,t,ar,t denote the mean state and action at time t
from the last iteration and are also referred to as the nominal

or reference trajectory, here denoted by the subscript r.

Special care has to be taken during the backward pass

of DDP and iLQG to ensure that Qaa,t is negative-definite,

which has inspired different regularization schemes. In DDP,

this regularization is commonly applied to Qaa,t as Q̃aa,t =
Qaa,t − µI, with µ ≥ 0. However, other regularizations

directly affecting the value function have been shown to be

more effective [2], and will be used throughout this work.

D. Augmented Linearized Closed-Loop System

To formulate the chance-constrained optimization prob-

lem, we first introduce the notation and system description

of the online-fitted time-variant linear system. Following

[19], our approach optimizes the feedforward terms of the

control, while satisfying the constraints for the linearized

dynamics and maintains the feedback gains computed during

the backward pass of DDP/iLQG.

Given N trajectories from the non-linear system as de-

scribed in Equation (6), we fit linear-Gaussian models to the

sampled data via regularized linear regression. Consequently

we obtain the transition and control matrices At,Bt, as well

as the bias vector ct for each time-step. The resulting time-

variant linear dynamics st+1 = Atst+Btat+ct+wt, with

wt ∼ N (0,Σt), and the controller at = Kt(st − sr,t) +
kt+ar,t are used to formulate the closed-loop linear system

st+1 = Âtst +Btkt + dt +wt, where Ât = At +BtKt

and dt = ct −BtKtsr,t +Btar,t.

To represent the closed-loop system over an entire trajec-

tory we use the augmented notation

s̃=











s0
s1
...

sT











,k̃=











k0

k1

...

kT−1











,w̃=











w0

w1

...

wT−1











,Ã =











I

Â0

...

ÂT−1 · · · Â0











,

B̃=















0 0 . . . 0

B0 0 . . . 0

Â1B0 B1 . . . 0

...
...

. . .
...

ÂT−1 · · · Â1B0 ÂT−1 · · · Â2B1 . . . BT−1















,

d̃=











d0

d1

...

dT−1











,G̃=















0 0 . . . 0

I 0 . . . 0

Â1 I . . . 0

...
...

. . .
...

ÂT−1 · · · Â1 ÂT−1 · · · Â2 · · · I















,

The augmented weighting matrices for the quadratic ob-

jective take the form

M̃ = diag(M 0, . . . ,MT ), D̃ = diag(D0, . . . ,DT−1),

M̃C = diag(M 0 +K
⊺

0D0K0, . . . ,

MT−1 +K
⊺

T−1
DT−1KT−1,MT ),

K̃ = diag(K0, . . . ,KT−1),

and the closed-loop linearized stochastic dynamics is written

in terms of the augmented notation as

s̃ = Ãs0 + B̃k̃ + G̃w̃ + G̃d̃, (7)

which in turn can be decomposed to the mean and covari-

ance of a Gaussian state density

µs̃ = Ãs0 + B̃k̃ + G̃d̃,

Σ̃s̃ = ÃΣs0
Ã

⊺

+ G̃Σ̃w̃G̃
⊺

,

where Σ̃w̃ are the stacked estimates of the covariance for

each time-step, taken under the N samples drawn during the



last forward pass. Furthermore, given the feedback gains, we

compute the action covariance along the trajectory

Σ̃ã = K̃ÃΣs0
Ã

⊺

K̃
⊺

+ K̃G̃Σ̃w̃G̃
⊺

K̃
⊺

.

E. Augmented Objective and Relaxed Chance Constraints

We simplify Objective (1) by using the stacked notation

and the closed-loop matrices from Section II-D

J(s̃, ã) = −E[s̃⊺M̃C s̃] + E[2s̃⊺gM̃s̃]− E[s̃⊺gM̃s̃g]...

...+ E[2s̃⊺rK̃
⊺

D̃K̃s̃]− E[2ã⊺

rD̃K̃s̃]− E[2k̃
⊺

D̃K̃s̃]...

...− E[s̃⊺rK̃
⊺

D̃K̃s̃r] + E[2ã⊺

rD̃K̃s̃r] + E[2k̃
⊺

D̃K̃s̃r]...

...− E[ã⊺

rD̃ãr]− E[2k̃
⊺

D̃ãr]− E[k̃
⊺

D̃k̃].

Given that the expectations are of linear-quadratic quantities

under Gaussian densities, it is possible to evaluate this

objective in closed-form. This objective depends only on the

forward terms k̃ and can be reformulated as J̃(k̃).
Following the relaxation presented in Section II-B and

using the stacked notation we can write the upper and lower

state-linear chance constraints as

b̃u − h̃
⊺

uµs̃ −

√

2h̃
⊺

uΣ̃s̃h̃u ⊙ erf
−1(1− 2θ̃u) ≥ 0, (8)

−b̃l + h̃
⊺

l µs̃ +

√

2h̃
⊺

l Σ̃s̃h̃l ⊙ erf
−1(2θ̃l − 1) ≥ 0, (9)

where h̃ and b̃ parameterize the upper and lower half-

planes of the state constraints and θ̃u and θ̃l denote the

probability values per time-step, all stacked and indexed by

u and l respectively. Analogously, the action constraints of

the closed-loop system can be formulated

z̃u − f̃
⊺

u(K̃(µs̃ − s̃r) + ãr + k̃)− λu ≥ 0, (10)

−z̃l + f̃
⊺

l (K̃(µs̃ − s̃r) + ãr + k̃) + λl ≥ 0, (11)

where λu =

√

2f̃
⊺

uΣ̃ãf̃u ⊙ erf
−1(1 − 2ϑ̃u) and λl =

√

2f̃
⊺

l Σ̃ãf̃ l⊙erf
−1(2ϑ̃l−1) , f̃ and z̃ are the stacked half-

plane parameters of the action constraints and ϑ̃u, ϑ̃l are the

stacked upper and lower bound probabilities per time-step.

The operator ⊙ denotes the element-wise multiplication.

F. Chance-Constrained Trajectory Optimization

Based on the formulations introduced in Section II-D

and Section II-E, it is possible to construct an optimization

problem around the reference trajectory to find a sequence

of feedforward terms k̃ that maintain the Constraints (8-11).

The resulting optimization is a quadratic program with

linear constraints in k̃. Thus, the probabilistic problem re-

duces to a deterministic one, which can be solved efficiently

with many numerical solvers, for example, qpOASES [25]

within the CasADi framework [26]. The complete dynamic

programming and optimization loop is described in Algo-

rithm 1 and is summarized as follows: During an initial

forward pass, we obtain N trajectory samples, around which

the dynamics is linearized for each time-step. The linearized

dynamics is used to perform the backward pass of iLQG

and obtain the feedback and feedforward controllers along

Algorithm 1 Chance-Constrained Trajectory Opt. (CCTO)

Input: θu,t, θl,t, ϑu,t, ϑl,t, α,N
Output: Kt, kt, sr,t, ar,t

1: a1:N
t , s1:Nt ← forwardPass(ar,t, sr,t, Kt, kt, α)

2: while not converged do

3: ar,t, sr,t ← meanTraj(a1:N
t , s1:Nt )

4: At, Bt, ct ← fitDynamics(a1:N
t , s1:Nt )

5: Kt, k⋆
t ← backwardPass(At, Bt)

6: kt←solveQP(At,Bt, ct,Kt,k
⋆
t , θu,t, θl,t, ϑu,t, ϑl,t)

7: a1:N
t , s1:Nt ← forwardPass(ar,t, sr,t, Kt, kt, α)

8: end while

the reference trajectory. These controllers are then used

to formulate the closed-loop linearized system with the

stacked notation and to warm-start the quadratic program.

The solution of the constrained program returns the optimal

feedforward sequence kt, which is used to perform the next

forward pass and linearization. Following [2], we also use the

hyperparameter α that scales the feedforward control in order

to keep the next forward pass of the non-linear system in a

valid trust-region around the linear-quadratic approximations.

III. EMPIRICAL EVALUATION

We evaluate our approach on two highly non-linear dy-

namical tasks, the Furuta pendulum [27] and a Cart-Pole

environment. Both problems are under-actuated and have

state and actions constraints. We consider quadratic reward

functions for both experiments and set the probability values

for violating the constraints to θu = θl = ϑu = ϑl = 0.01.

a) Furuta Pendulum Swing-Up: In the Furuta pendu-

lum the state is represented by the angles of both links

and the corresponding angular velocities. Only the hori-

zontal link is actuated and is subject to both state and

the action constraints. To make the environment stochastic,

we introduce both action and process noise. We run our

experiment under identical conditions for CCTO and iLQG.

We fix the feedforward scalar α to 0.05 for both algorithms

and perform 20 seeded trials, each with 45 iterations, 50

rollouts per iteration. The resulting performance curve of

both algorithms can be seen in Figure 1. Furthermore, we

present the planned nominal trajectories, as well as the

planned nominal actions of both algorithms for one trial.

The filled space is the area between the minimum and

maximum values of states and actions and should not be

confused with a probability distribution over trajectories.

The advantage of our approach is clear. CCTO reaches

better overall performance with a higher final reward and

smaller standard deviation, Table I. iLQG plans frequently

and consistently to violate the constraints, while CCTO keeps

the state and action trajectories within a feasible space. This

consideration leads to an improved approximation of the non-

linear system dynamic and allows CCTO to perform robust

improvement steps during the optimization. This result is

affirmed by the low regularization values of CCTO, Table II.

b) Cart-Pole Swing-Up: For the well-known Cart-Pole

environment, we consider constraints on the position of

the cart as well as on the action. To make the task more
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Fig. 1: Total-reward curve reflecting the performance of iLQG and CCTO for the Furuta pendulum swing-up task (left).

In addition, we show the space (min. and max.) of planned nominal trajectories of the constrained angle (middle) and the

corresponding executed actions (right), CCTO (blue), iLQG (red). CCTO obeys the physical limits of the system, while iLQG

drives the dynamics against the constraints (green). These violations lead to poor linear approximations of the dynamics and

an overall slightly lower mean and higher variance performance of iLQG.

Iteration 10 30 45

CCTO −6.8(±0.32) −1.3(±0.11) −0.65(±0.6)

iLQG −4.3(±0.46) −1.6(±0.39) −1.1(±0.53)

TABLE I: Mean total reward and standard deviation of

the Furuta swing-up task scaled by 1e−2.

Iteration 10 30 45

CCTO 0 2.5e−8 1e−4

iLQG 0 2.85e38 5e80

TABLE II: Mean regularization in the Furuta task over

all trials for different iterations. CCTO needs less regu-

larization due to avoidance of hard non-linearities.

challenging, we again apply action and process noise, enforce

harsh action constraints and limit the time horizon to 100

time steps, the equivalent of 2 seconds. We evaluate iLQG

and CCTO on 20 seeded trials, each with 55 iterations and 50

rollouts per iteration. We set the feedforward scaling param-

eter α to 0.1. Analogously to the last experiment, Figure 2

depicts the performance curve of iLQG and CCTO, as well

as the spaces of planned nominal trajectories for the cart’s

position and the corresponding actions. In this experiment,

iLQG moves very quickly towards a local optimum and

does not manage to swing the Cart-Pole up. In contrast,

CCTO performs the swing-up by finding a suitable nominal

trajectory in the feasible constrained space. Tables III and IV

reflect the performance discrepancy between both algorithms,

in terms of total rewards and needed regularization.

IV. CONCLUSION AND FUTURE RESEARCH

We have proposed a new trajectory optimization technique,

based on the framework of differential dynamic program-

Iteration 20 30 55

CCTO −2.3(±0.32) −1.2(±0.32) −0.31(±0.06)

iLQG −9.3(±0.10) −9.3(±0.10) −9.3(±0.10)

TABLE III: Mean total reward and standard deviation

of the Cart-Pole swing-up task scaled by 1e−2.

Iteration 20 30 55

CCTO 0 0 0

iLQG 5.7e39 1e80 1e80

TABLE IV: Mean regularization in the Cart-Pole task

over all trials for different iterations. CCTO needs less

regularization due to avoidance of hard non-linearities.

ming, that takes into consideration probabilistic chance con-

straints in stochastic environments with unknown non-linear

dynamics. We used Boole’s inequality to conservatively relax

the non-convex chance constraints, enabling us to formulate

a constrained quadratic program and optimize the nominal

trajectory to stay inside the feasible set defined by the

probabilistic linear state and action limits. We have pro-

vided a thorough derivation of our approach and empirically

demonstrated the advantage of enforcing physical limits on

two simulated highly dynamical and stochastic non-linear

systems. The results indicate that incorporating the chance

constraints leads to higher fidelity in the online-fitted local

linear-quadratic approximations, and consequently greatly in-

fluences the robustness of the iterative optimization process.

This observation is reflected in very low regularizations in

comparison to standard iLQG.

In future research, we will extend our optimization to

include not only the nominal trajectory but also the feedback

gains, and we will consider optimizing the probabilistic
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Fig. 2: Total-reward curve reflecting the performance of iLQG and CCTO for the Cart-Pole swing-up task (left). Furthermore,

we show the space (min. and max.) of planned nominal trajectories of the constrained position (middle) and the corresponding

executed actions (right), CCTO (blue), iLQG (red). CCTO obeys the physical limits of the system, while iLQG drives the

dynamics against the constraints (green). These violations, especially those of the action constraint cause iLQG to get stuck

in a poor local optimum, while CCTO is able to solve the task and perform the swing-up.

constraint bounds via risk allocation to achieve dynamic risk

measures across time and iterations. In addition, we plan

to move to the fully stochastic optimization framework of

maximum-entropy iLQG [6] to avoid regularization heuris-

tics of the DDP framework.
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