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Robust Grasp Planning Over Uncertain Shape Completions

Jens Lundell, Francesco Verdoja and Ville Kyrki

Abstract— We present a method for planning robust grasps
over uncertain shape completed objects. For shape completion,
a deep neural network is trained to take a partial view of the
object as input and outputs the completed shape as a voxel grid.
The key part of the network is dropout layers which are enabled
not only during training but also at run-time to generate a set
of shape samples representing the shape uncertainty through
Monte Carlo sampling. Given the set of shape completed
objects, we generate grasp candidates on the mean object shape
but evaluate them based on their joint performance in terms
of analytical grasp metrics on all the shape candidates. We
experimentally validate and benchmark our method against
another state-of-the-art method with a Barrett hand on 90000
grasps in simulation and 200 grasps on a real Franka Emika
Panda. All experimental results show statistically significant
improvements both in terms of grasp quality metrics and grasp
success rate, demonstrating that planning shape-uncertainty-
aware grasps brings significant advantages over solely planning
on a single shape estimate, especially when dealing with complex
or unknown objects.

I. INTRODUCTION

In robotic grasping, knowing the object shape allows for
better grasp planning. However, in many environments it is
impossible to know a priori the shape of all possible objects.
For this reason, the object to be grasped is usually perceived
through some sensory input, commonly vision. However, one
of the main problems with this approach is that only one
side of the object is perceived, due to object self-occluding
its back side. To cope with this limitation, essentially two
options exist: (i) use the information perceived and generate
grasps based on this knowledge alone [1], [2], or (ii) from the
same input extract additional knowledge of the object with,
for example, semantic segmentation [3] or shape completion
[4], [5] and plan grasps accordingly.

In this paper, we focus on the latter, that is shape com-
pletion, and train a deep network to estimate the complete
object shape. However, in contrast to most recent work in
the field [6]-[8] where the focus is explicitly on generating
more exact point estimates of the shape, this work takes
another viewpoint of the problem by also modeling the
uncertainty over the completed shape. This uncertainty can
then be incorporated into probabilistic grasp planners to
enable robust grasp planning over uncertain shapes.

To this end, we propose a Deep Neural Network (DNN)
architecture with dropout layers active both during training
and testing (Section III-B). With such a structure, uncertainty
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Fig. 1: The real world setup with the Franka Emika Panda
robot and the 10 objects used in the experiments.

is quantified from the difference in samples generated from
feeding the same input through the network multiple times
but each time with a different dropout mask. This use of
dropout was originally proposed in [9] as a method for
approximate Bayesian inference in deep Gaussian processes.

Another open issue is how to plan grasps over uncertain
shapes. We address this by incorporating the uncertainty into
probabilistic grasp planning (Section III-A) and propose a
computationally tractable method for planning robust grasps
over uncertain shapes (Section III-C). The proposed method
is experimentally validated (Section IV) by comparing it
to a deep learning-based method [4] that only generates a
point estimate of the shape in terms of shape reconstruction
(Section IV-B), analytical grasp quality metrics in simulation
(Section IV-C), and grasp success rate on the real Franka
Emika Panda seen in Figure 1 (Section IV-D). Simulations of
90000 grasps demonstrate a statistically significant improve-
ment in recognizing grasps with high quality metrics when
including the shape uncertainty. The physical experiments of
200 grasps also show statistically significant improvement
in terms of higher grasp success rate when planning is
performed over the shape distribution compared to solely
planning on a point estimate of the shape.

The main contributions of this work are: (i) a novel
shape completion DNN architecture able to capture shape
uncertainties, (ii) a probabilistic grasp planning method that
utilizes the shape uncertainty to propose robust grasps, and
(iii) an empirical evaluation of the proposed method against
state-of-the-art, presenting, both in simulation and on real
hardware, a statistically significant improvement using the
proposed method both in terms of grasp ranking and on grasp
success rate.



II. RELATED WORKS
A. Probabilistic Grasp Planning

Probabilistic grasp planning addresses the issue of plan-
ning grasps under uncertainty. Typical uncertainties in
robotic grasping are related to object pose uncertainty [10]—
[12], object shape uncertainty [5], [13], [14], or friction and
contact position uncertainty [15].

For instance, Hsiao et al. [10] developed a Bayesian frame-
work to generate grasps that were robust to both pose and
shape uncertainty as well as robot motion error by simulating
grasps on deterministic mesh and point cloud models. A
similar framework was also used in [11], where they use
Gaussian Processes (GP) to model the grasp stability from
tactile feedback and Markov Chain Mote Carlo (MCMC) to
propose stable grasps.

In terms of grasping under shape uncertainty, Li et al. [13]
proposed a method that models the shape uncertainty with a
GP, encodes it as a grasp planning constraint, and optimizes
for a grasp that minimizes the distance between the center
of the contact points and the origin of the object. They then
cast the problem of computing a hand configuration that can
realize the grasping location as a learning problem. However,
the shape reconstruction performance of that method is
conditioned on possibility to sample any subset of point of a
complete point-cloud of the object. This limitations makes it
difficult to apply on unknown objects, something we address
in this work.

Mabhler et al. [5] instead use Gaussian Process Implicit
Surfaces (GPISs) to represent shape uncertainty and mea-
sures grasp quality by the probability of force closure.
Tangential to the works using GP to model shape uncertainty
is the work in [14], where they use probabilistic Signed
Distance Function (p-SDF) to represent shape uncertainty
and a simulated annealing approach to search and optimize
grasps. However, [5] only consider shape uncertainty in
2D and [14] requires multiple views of objects for shape
reconstruction, whereas our method reasons about the shape
uncertainty in 3D from only one viewpoint.

B. Shape Completion

In this work we refer to shape completion methods as
shape reconstruction from an incomplete point-cloud. Most
such methods fall into one of three distinct categories: 1)
Geometric approaches, 2) Template-based approaches, and
3) Deep learning-based approaches. Here, we will mainly
focus on the third category and refer to [16] for an in depth
survey over the first two.

The first category, geometric approaches, includes sym-
metry driven [17] and heuristic methods [18]. The former
reconstructs a shape by mirroring the input object through
its symmetry axis while the latter reconstructs the shape by
combining primitives such as planes and cylinders into one
final shape. Template-based approaches, on the other hand,
seek to match the input to an object in a database and then
deform it to match the input [19]. Although many of these
approaches originates from the computer vision perspective

where the focus is on achieving better shape reconstruction,
similar work have also been successfully applied in robotics.
For example to facilitate robotic grasping by using symmetry
[20], heuristics [21], or template matching methods [22].
However, these methods are only applicable for specific sets
of objects. For example, mirroring fails if the object has
more than one axis of symmetry, whereas heuristics and
template based matching are computationally restricted to
specific subset of objects. Our method, on the other hand,
do not rely on either symmetry or a known set of objects
and is therefore more general.

More modern shape completion methods are based upon
deep learning [4], [6]-[8], [23]. In this context, most recent
improvements originate from more refined network structures
[6], [8], from the inclusion of semantic object classification
[7], or from incorporating other sensing modalities such as
tactile information [23].

In terms of similar methods applied to robotics, only two
works exist [4] and [23]. Both of these work used shape
completion to facilitate robotic grasping where the latter one
extended the former by incorporating tactile information of
the object to improve shape reconstruction. In [4] the authors
propose an hourglass Convolutional Neural Network (CNN)
architecture to reconstruct the shape given a voxel grid of the
input point-cloud. That architecture, however, employs fully
connected up-sampling layers resulting in a network with
approximately 300 million parameters. Our network, on the
other hand, has approximately 10 times less parameters as it
uses convolutional layers throughout.

Together, all deep learning-based shape completion meth-
ods have solely focused on improving quality of the object
shape estimate. This work, on the other hand, shifts the
focus from single point estimates and explores estimation of
the shape uncertainty. This is especially valuable in robotic
grasping as it allows planning grasps that are robust to shape
uncertainty.

III. METHOD
A. Probabilistic Grasp Planning

Let us define G as the set of all possible grasps, repre-
sented as 6D end-effector pose and joint values, obtained
by a grasp planning strategy. Traditional grasp planning can
be formalized in a probabilistic framework as an attempt at
generating a candidate grasp g € G whose stability S is
maximized over a perfectly known object shape o. Formally,

argmax P(S | g,0) , (D
geG
where P (S | g,0) is usually estimated by using some defined
grasp quality metric such as the epsilon- (e-) or volume-
measure (v-measure) [24].
In this work we follow the same procedure of maximizing
a grasp quality metric but do not assume prefect knowledge
of the object shape. Instead, the shape is modeled as a
probability distribution P(O | r) conditioned on some
measurements 7 representing, for example, a partial view



of the object in the form of a point-cloud. Consequently, we
have that

P(S|G,r) :/P(S | G,0)P(O |r)dO . (2)

The marginalization over shapes O in (2) is intractable
beyond the simplest cases where we only target a specific
class of objects [10]. To circumvent this problem, we propose
using a sampling scheme to approximate (2)

1 N
P(S|G,r) ~ NZP(S | G,0;) , (3)

=1

where o; ~ P(O | r). The actual sampling process o; ~
P(O | r) is described in Section III-B.

Maximizing (3) requires a set of grasps candidates g € G.
However, generating those on all shapes o; is computation-
ally infeasible. For that reason, instead of planning separate
grasps on each shape o;, we compute a mean shape 6 =
E[o;] and only sample grasps on that, obtaining a set of
candidate grasps G CaG. Finally, each grasp candidate in G
is evaluated on all samples o; and the one with the highest
average grasp quality metric across all samples is considered
most robust. Formally, the most robust grasp solves

N
1
argmax P(S | g,7) ~ arg max — ZP(S | G,0i) . @
geG geaG N i=1

B. Sampling Based Shape Completion

One of the crucial parts of the framework presented in
Section III-A is the sampling process we employ to estimate
the posterior distribution P(O | ), i.e, how to obtain a
distribution of shapes from a partial sensor reading. One
options is to use a Bayesian Neural Network (BNN), but
for most forms of neural networks, such as the one used
in this work, computing the full posterior is computationally
intractable [25]. Therefore, we propose to approximate P (O |
r) using variational inference through the use of dropout
sampling [9], where samples generated by having the dropout
layers active also during test-time and feeding the same input
through the network multiple times are used to approximate
the full posterior P(O | r). This procedure, known as Monte-
Carlo (MC)-Dropout, is a method to achieve approximate
inference in Gaussian processes and DNNs [9].

To enable using MC-Dropout, and in turn estimate P(O |
r), we propose to use the DNN H shown in Figure 2
to generate a shape o given a sensor reading r, that is
o = H(r). The network architecture is inspired from [26]
but with a few important modifications to tailor it to our
application: the input data dimensions (i.e., voxel size) is
changed (403 compared to 323), to have fewer layers, and
most importantly seven dropout layers [27] are included. The
network is trained in a supervised fashion with the cross-
entropy error [4]

E(0,6) = —(olog(o) + (1 — o) log(1 — 0)),

where o is the network output and o is the ground-truth target.

Shape samples o; ~ P(O | r) for one measurement r
are then generated with MC-Dropout. The results is a set
Oz = {0;}Y, of shapes. Given this set, we then evaluate
the mean shape 0 and use it to generate the subset of grasps
candidates G as mentioned in Section III-A.

C. Robust Grasp Planning Over Uncertain Shapes

We propose Algorithm 1 to plan robust grasps over un-
certain shapes. In short, the algorithm first create a number
of sample shapes based on an observation (lines 7-13), then
plans a set of candidate grasps on the mean shape (line 16),
and finally evaluate each of the grasp candidates on the entire
set of shapes (lines 17-24).

To generate the shape candidates, the algorithm first vox-
elizes the input point-cloud (line 6). Then, I samples are
generated by following the procedure detailed in Section III-
B. To transform a voxel grid the network outputs into a mesh
we used the algorithm SHAPE COMPLETION proposed in [4].

The mean object mesh is created by first averaging all
voxel grids into a mean voxel grid (line 14) and then
transforming it into a mesh (line 15). Grasps are then planned
on the mean mesh (line 16) and a procedure to do this is
described in Section IV-A.

Next, each grasp is separately evaluated on every sample
(line 20). Finally, given the grasp quality metrics on all
samples, grasps are ranked (line 25) by first averaging the
quality metric of each grasp across all samples and then rank
the grasps according to the new average quality metric, where
the highest ranked grasp corresponds to highest average
quality metric. It follows that the highest ranked grasp is
also the solution to (4) which, in this work, is considered
the most robust grasp over the shape uncertainty.

IV. EXPERIMENTS

The two main questions we wanted to answer in the
experiments were:

1) What is the shape reconstruction accuracy of the pro-
posed method?

2) What is the impact of estimating shape distributions on
grasp quality and grasp success rate?

In order to provide justified answers to these questions we
conducted three separate experiments. The first experiment
(Section IV-B) examines general shape reconstruction accu-
racy, the second one (Section IV-C) evaluates grasp quality
metrics in simulation, while the third experiment (Section V-
D) evaluates grasp success rate on real hardware. In the first
two experiments we compare our method with dropout sam-
pling, ours without dropout sampling', and Varley’s method
[4] which is the only shape completion method proposed
for grasping. In the third experiment we only compare our
method with dropout sampling to Varley’s. Henceforth, we
refer to the three methods as Uncertain Shape Network
(USN), Shape Network (SN), and Varley (V) respectively.

by without dropout sampling we mean that dropout layers were enabled
during training, but then disabled at test-time.
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Fig. 2: The proposed network architecture. In this architecture, ReLU stands for rectified linear unit and LReLU for leaky

rectified linear unit.

Algorithm 1 Robust Grasp Planning Over Uncertain Shape

1: Inputs: Point-cloud P and number of dropout samples
1
Initialize empty object voxel set O + {},
Initialize empty object mesh set Onq <+ {},
Initialize empty grasp sets G, G « {1,
Initialize empty grasp quality metric set S < {}
Py + VOXELIZE(P)
forall:=1,...,1 do
Sample dropout mask B
0; < Hp(Pv)
10: 0, < SHAPECOMPLETION(o0;, P)
O+ Oz + {Ol}
122 Op < Opg + {0m}
13: end for
14: O « E[O7]
15: O < SHAPECOMPLETION(O, P)
16: G+ PLANGRASP(O)
17: for all g € G do

D A A A

—
—_

18 Sy {}

19:  for all 0,, € O do

20: s <— EVALUATEGRASP(g, 0,,)
21 Sy <S¢+ {s}

22:  end for

23 S+ S+{S,}

24: end for

25: G < RANKGRASPS(G, S)
26: return G

A. Experimental Setup

For training and testing the network proposed in Sec-
tion III-B we used the same data as in [4], that is vox-
elized occupancy grids of objects from the YCB and Grasp
Database. The test-data consisted of two separate sets, hold-
out views and holdout model: the former is novel views of
the objects used for training, while the latter are completely
novel objects. The network itself was implemented in Py-
Torch 0.3.0 with a dropout rate of 0.2, and trained with
Adaptive Moment Estimation (Adam) [28] using a batch size
of 32 and for 181 epochs®. The training was carried out on an

2Code available at: irobotics.aalto.fi/software-and-data/shape-completion

NVIDIA Titan Xp and lasted for approximately a week. For
evaluating V we used a pre-trained network made publicly
available by the authors?.

In the first two experiments we generated test data with
the same procedure as in [4], that is randomly sampling 50
views from the training set (Training Views), 50 views from
the holdout view set (Holdout Views), and 50 views from
the holdout models set (Holdout Models). In the real world
experiments the methods were evaluated on the 10 objects
shown in Figure 3.

We used Grasplt! [29] to generate grasp candidates in
both the simulated and real world grasping experiments.
As our method is agnostic to the type of quality metric,
in simulation we decided to evaluate two different ones: e-
and the v-measure [24] as the former represents the quality
metric of a worst case grasp and the latter an average case
grasp. More specifically, the e-measure represents the radius
of the largest 6D ball centered at the origin that can be
enclosed by the convex hull of the wrench space, while the
v-measure represents the volume of that convex hull. On
the real hardware, however, only the e-measure was used
as it attained a higher grasp success rate for both methods,
according to a small pilot.

B. General Completion Results

To evaluate the general shape completion results we use
the Jaccard similarity, which is defined as

_|AnB|
- JAuB|

where A and B are two sets. In this work A is the ground
truth and B is the shape reconstructed with shape completion.
In order to generate the sets A and B we follow the same
procedure as in [4], that is to voxelize each mesh to a
resolution of 403.

To quantify the reconstruction results for USN we gener-
ated 10 dropout samples and evaluated the Jaccard similarity
on the mean mesh. The shape reconstruction results for V,
SN, and USN are presented in Table I. We can see that there
is essentially no difference between the three methods, mean-
ing that our network—with and without dropout enabled at

J(A, B) 5)

3shapecompletiongrasping.cs.columbia.edu
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TABLE I: Jaccard similarity results (higher is better)

View \Y% SN USN

Training Views 0.6205 0.6480 0.6446
Holdout Views 0.6143 0.6382 0.6389
Holdout Models 0.5632 0.5573 0.5651

test-time—scored equally well as Varley’s, a network that
is approximately 10 times larger than ours. Moreover, the
results do indicate that the mean shape approximated by
averaging shape samples is representative for the mean of
the unknown underlying shape distribution.

It is worth pointing out that the presented Jaccard simi-
larity are substantially lower than the ones reported in [4]
where V achieves a reported score of 0.7771, 0.7486, and
0.6496, on training views, holdout views, and holdout models
respectively. One reason for not attaining similar scores here
is that we do not know the exact objects they included in the
different test sets. Instead, we had to sample new ones and
because of that some object that were in the test sets in [4]
were most likely not in the test sets here and vice versa.

C. Grasping in Simulation

In the simulated grasping experiment we evaluated the
methods’ capability at recognizing good grasp candidates.
We evaluated 600 grasps for each of the 150 shape completed
objects in the test sets. To quantitatively compare grasps
between methods, grasp directions were uniformly sampled
around the object using Grasplt!. Then the two separate
grasps for each method, one achieving the highest e-measures
and the other the highest v-measures, were evaluated on the
ground truth object.

For the last step we followed the same strategy as in [4],
that is to swap the shape completed object for the ground
truth in Grasplt!, place the hand 20cm backward along the
grasp approach vector, set the spread of its fingers, move it
along the grasp approach vector until the pose was reached,
and finally close the fingers.

The methods compared were V, SN, and USN. USN was
evaluated on 10 dropout samples using the grasp planning
method detailed in Section III-C. The other methods chose
the grasps according to their performance on the point
estimate of the shape.

To analyze the statistical differences between the methods
we used a one sided Wilcoxon signed-rank test; the results
are presented in Table II. Based on these results we can
draw several interesting conclusions. For once, there is a
statistical significant improvement using USN over V for
determining the most robust grasp in terms of both ¢- and
v-measure. A similar statistical significant improvement was
also visible for USN over SN but only in terms of v-measure.
The reason for USN outperforming both V and SN is that the
performance of these methods deteriorates heavily in the shift
from training or holdout views to holdout models, indicating
that they are not able to recognize high quality grasps on
novel objects. For instance, the relative performance drop

Fig. 3: The 10 different objects with their corresponding
number. All objects except number 7 are from the YCB
object set.

for V and SN from training views to holdout models are -
51.5% and -60% for e-measures and -54.1% and -16.7% for
v-measures, respectively. On the other hand USN loses only
-4.5% for e-measure and gains +21% for v-measures, that
is USN actually performs better on novel objects in terms
of the v-measure. These results demonstrate the importance
of including shape uncertainty in grasp planning especially
in cases where the uncertainty is higher, such as with novel
objects.

D. Grasping on Real Hardware

As a final experiment we compared USN with 20 dropout
samples and V in terms of grasp success rate on real
hardware. To this end, we used a Barrett hand mounted
on a Franka Emika Panda to grasp the 10 different objects
visualized in Figure 3. Out of these objects 1, 2, 4, 5, 7, and
10 have one axis of symmetry; 3, 6 and 9 have two; and 8
has three.

We ran the complete grasping pipeline for each object in
five different orientations (0°, 72°, 144°, 216°, and 288°)
and from two different camera viewpoints: one looking at
the object from the left side of the robot and the other from
the opposite side of the object to the robot. In total this setup
amounts to 100 grasps per method. Grasplt!’s simulated
annealing planner [30] was used to plan and evaluate grasps
as this sped up the process of planning and evaluating
grasps compared to the uniform planning process used in
Section IV-C.

To evaluate if a grasp was force-closure, the robot moved
to the planned grasp pose, then closed the hand and moved
the arm upward 20cm, then moved back to the starting
position and finally rotated the hand 4+90° around the last
joint. If the object was stable in the hand for this whole
procedure we deemed it force-closure. If the robot, on the
other hand, was not able to grasp the object or the object
moved inside the hand during the arm motion we deemed it
not force-closure.

The experimental results are shown in Table III, where we
report the percentage of successful grasp attempts (Gasp Suc-
cess Rate), the average time a method required to complete
a mesh from a partial view (Shape Completion Time), and
the average time the planner required to plan and evaluate
individual grasps (Grasp Evaluation Time). To analyze the
statistical differences between the methods in terms of grasp
success rate we used a one sided Wilcoxon signed-rank



TABLE II: Average ¢ and v-quality metrics over different test sets, with test statistics and p-values of pair-wise one sided
Wilcoxon signed-rank test for V vs. USN and SN vs. USN. USN was evaluated on 10 dropout samples.

v SN USN V vs USN SN vs USN

€ v € v € v € v € v

Training Views 0.0594 0.1212 0.0757 0.1674 0.0682  0.1976 - - - -

Holdout Views 0.0614  0.1504 0.0590 0.1297 0.0584  0.2127 - - - -

Holdout Models  0.0288  0.0556  0.0300 0.1394 0.0651 0.2404 T=102, p<.001***  T=42, p<.001***  T=167.5, p<.01** —
Grasp success rate for individual objects is clearly visible that from the point-cloud in Figure 5b
1 the shape completed object using V (Figure 5c) severely

0.9 . . . .

underestimates the thickness of the object and is unable to
connect the handle to the body of the cup. In contrast the
mvarley mean object shape using USN (Figure 5d), although still
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Fig. 4: The individual grasp success rate for both methods
on each of the 10 objects used in the experiment.

TABLE III: Real Hardware experiment results. USN was
evaluated on 20 dropout samples.

v USN
Grasp Success Rate (%) 48 59
Shape Completion Time (s) 74 86.73
Grasp Evaluation Time (s) 16.53 83.25

test. The test showed a statistical significant improvement
(T=203.5, p<.05*) on grasp success rate of USN over V.
Furthermore, Figure 4 shows that the grasping performance
on individual shapes varies a lot between methods. For
example, no method managed to generate a stable grasp for
object 1 (the toy airplane) due to its low frictional surface.
If we do not consider object 1, our method was more robust
on grasping objects with only one axis of symmetry (objects
2, 5, 7 and 10), whereas for the objects with more axis
of symmetry V and USN were better on two objects each,
observations that may result from random effects. Together,
based on the above results, it stem to reason that including
shape uncertainty when planning grasps compared to only
planning on a point estimate of the shape improves grasps
success rate especially on complex objects which are more
difficult to complete.

Again, as was noted in Section IV-B, we did not achieve
similar results for V as reported in [4] where the grasp
success rate was 93.33%. This difference is most likely due
to the fact that we perform many more grasps (100 compared
to 15) and use fewer easy-to-complete shapes such as boxes
(1 compared to 4) and instead included harder objects, e.g.,
the metallic cup (see Figure 5).

In Figure 5 we show one shape completion example. It

far from perfect, is definitely better at estimating the real
thickness of the cup and is also able to connect the handle
to it. Three of the twenty samples used to create the mean
mesh are visualized in Figures 5e-5g and individually they
show very interesting behaviors. For example, the object
shown in Figure 5e is very thick and completely fills the
cup while the one in Figure 5f is rather thin in the bottom
half. The object in Figure 5g, on the other hand, models the
overall shape well but is instead irregular. Viewed together,
the samples are consistent in areas covered by the point-
cloud, which is expected as the confidence there is high,
while more uncertain in areas that are occluded to the point-
cloud. As the different samples capture different possible
shape completed object, planning grasps that are good on all
samples makes the grasps more robust to shape uncertainty.

Although our method achieved a higher grasp success
rate it also requires longer computational time as seen in
Table III. It is, however, possible to substantially lower
both the completion and evaluation time by harnessing the
inherent parallel structure of Algorithm 1. For instance,
to lower evaluation time all grasps could be evaluated in
parallel on each of the object samples. Similarly, the shape
completion time could be lowered by doing shape sampling
in parallel through multiple copies of the USN network with
individual dropout masks.

V. CONCLUSIONS

We presented a method for generating robust grasps over
uncertain shape completions. The key insight was to use
dropout layers not only during training but also at run-time to
generate shape samples and then rank grasps based on their
joint quality metrics over all the samples. We compared our
method to current state-of-the-art shape completion methods
used in robotics both in simulation and on real hardware.
Together all results from shape reconstruction, simulation,
and real hardware indicated that including shape uncertainty
did lead to statistical significant improvements in terms of
recognizing good grasps and achieving higher grasp success
rate while keeping shape reconstruction quality comparable
to the benchmark.

In conclusion the work presented here demonstrates that
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Fig. 5: (a) shows the real object and a point-cloud of it is visible in (b). Given this point-cloud, (c) shows the shape completed
object using V and (d) the mean shape completed object using USN. Three of the in total twenty samples used to generate
(d) are shown in (e)-(g).

planning shape-uncertainty-aware grasps brings significant
advantages over solely planning on a good point estimate.
This, in turn, poses new interesting research questions. For
instance, can more refined shape completion networks [6],

(8]

benefit from modeling uncertainty? Similarly, from a

robotics perspective, can the performance of end-to-end
methods such as Dex-Net [1] improve if they also included
uncertainty as a part of the network? These questions pave
the way for interesting future research avenues.
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