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Abstract— Effective understanding of the environment and
accurate trajectory prediction of surrounding dynamic obsta-
cles are critical for intelligent systems such as autonomous
vehicles and wheeled mobile robotics navigating in complex sce-
narios to achieve safe and high-quality decision making, motion
planning and control. Due to the uncertain nature of the future,
it is desired to make inference from a probability perspective
instead of deterministic prediction. In this paper, we propose a
conditional generative neural system (CGNS) for probabilistic
trajectory prediction to approximate the data distribution,
with which realistic, feasible and diverse future trajectory
hypotheses can be sampled. The system combines the strengths
of conditional latent space learning and variational divergence
minimization, and leverages both static context and interaction
information with soft attention mechanisms. We also propose a
regularization method for incorporating soft constraints into
deep neural networks with differentiable barrier functions,
which can regulate and push the generated samples into the
feasible regions. The proposed system is evaluated on several
public benchmark datasets for pedestrian trajectory prediction
and a roundabout naturalistic driving dataset collected by
ourselves. The experimental results demonstrate that our model
achieves better performance than various baseline approaches
in terms of prediction accuracy.

I. INTRODUCTION

It is desired for a multi-agent prediction system to satisfy
the following requirements to generate diverse, realistic
future trajectories. 1) Context-aware: The system should be
able to forecast trajectories which are inside the traversable
regions and collision-free with static obstacles in the en-
vironment. For instance, when the vehicles navigate in a
roundabout (see Fig. 1(a)) they need to advance along
the curves and avoid collisions with road boundaries. 2)
Interaction-aware: The system needs to generate reason-
able trajectories compliant to traffic or social rules, which
takes into account interactions and reactions among mul-
tiple entities. For instance, when the vehicles approach an
unsignalized intersection (see Fig. 1(b)), they need to antic-
ipate others’ possible intentions and motions as well as the
influences of their own behaviors on surrounding entities. 3)
Feasibility-aware: The system should anticipate naturalistic
and physically-feasible trajectories which are compliant to
vehicle kinematics or dynamics constraints, although these
constraints can be ignored for pedestrians due to the large
flexibility of their motions. 4) Probabilistic prediction: Since
the future is full of uncertainty, the system should be able
to learn an approximated distribution of future trajectories
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(a) (b)

Fig. 1. Typical urban traffic scenarios with large uncertainty and interac-
tions among multiple entities. The shaded areas represent the reachable sets
of possible trajectories. (a) Unsignalized roundabout with four-way yield
signs; (b) Unsignalized intersection with four-way stop signs.

close to data distribution and generate diverse samples which
represent various possible behavior patterns.

In this work, we propose a generative neural system that
satisfies all the aforementioned requirements for predicting
trajectories in highly interactive scenarios. The system takes
advantage of both explicit and implicit density learning in
a unified generative system to predict the distributions of
trajectories for multiple interactive agents, from which the
sampled hypotheses are not only reasonable and feasible but
also cover diverse possible motion patterns.

The main contributions of this paper are as follows:

• A Conditional Generative Neural System (CGNS) is
proposed to jointly predict future trajectories of multiple
highly-interactive agents, which takes into account the
static context information, interactions among multiple
entities and feasibility constraints.

• A block attention mechanism and a Gaussian mixture
attention mask are proposed and applied to historical
trajectories and scene image sequences respectively,
which are computationally efficient.

• An effective strategy for soft constraint incorporation
into deep neural networks is presented.

• The latent space learning and variational divergence
minimization approaches are integrated into a unified
framework in a novel fashion, which combines their
strengths on distribution learning.

• The proposed CGNS is validated on multiple pedestrian
trajectory forecasting benchmarks and is used to solve
a task of anticipating motions of on-road vehicles nav-
igating in highly-interactive scenarios.
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II. RELATED WORK

In this section, we provide a brief overview on related
research and illustrate the distinction and advantages of the
proposed generative system.
Trajectory and Sequence Prediction

Many research efforts have been devoted to predict be-
haviors and trajectories of pedestrians and on-road vehi-
cles. Many classical approaches were employed to make
time-series prediction, such as variants of Kalman filter
based on system process models, time-series analysis and
auto-regressive models. However, such methods only suf-
fice for short-term prediction in simple scenarios where
interactions among entities can be ignored. More advanced
learning-based models have been proposed to cope with
more complicated scenarios, such as hidden Markov models
[1], [2], Gaussian mixture regression [3], [4], Gaussian
process, dynamic Bayesian networks, and rapidly-exploring
random tree. However, these approaches are nontrivial to
handle high-dimensional data and require hand-designed
input features, which confines the flexibility of representation
learning. Moreover, these methods only predict behaviors for
a certain entity. A few works also took advantage of both
recurrent neural networks [5], [6] and generative modeling
to learn an explicit or implicit trajectory distribution, which
achieved better performance [7]–[9]. However, they either
leveraged only static context images or only trajectories of
agents, which is not sufficient to make predictions for the
agents that interact with both static and dynamic obstacles.
In this paper, we propose a conditional generative neural
system which can leverage both historical scene evolution
information and trajectories of multiple interactive agents and
generate realistic and diverse trajectory hypotheses.
Soft Attention Mechanisms

Soft attention mechanisms have been widely used in neural
networks to enable the capability of focusing on a subset
of input features, which have been extensively studied in
the field of image captioning [10], visual object tracking
[11] and natural language processing. Several works also
brought attention mechanisms into trajectory prediction tasks
to figure out the most informative and related obstacles
[12]–[15]. In this paper, we put forward a block attention
mask mechanism for trajectories to extract the most critical
features of each entity as well as a Gaussian mixture attention
mechanism for context images to extract the most crucial
static features.
Deep Bayesian Generative Modeling

The objective of generative models is to approximate the
true data distribution, with which one can generate new
samples similar to real data points with a proper variance.
Generative models have been widely employed in tasks
of representation learning and distribution approximation in
literature, which basically fall into two categories: explicit
density models and implicit density models [16]. In recent
years, since deep neural networks have been leveraged as
universal distribution approximators thanks to its high flexi-
bility, two deep generative models have been widely studied:

Variational Auto-Encoder (VAE) [17] and Generative Adver-
sarial Network (GAN) [18]. Since in trajectory forecasting
tasks the predicted trajectories are sampled from the posterior
distribution conditioned on historical information, the two
models were extended to their conditional versions which
results in conditional VAE (CVAE) [19] and conditional
GAN (CGAN) [12], [20]. In this paper, we combine the
strengths of conditional latent space learning via CVAE and
variational divergence minimization via adversarial training.

III. PROBLEM FORMULATION

The objective of this paper is to develop a deep generative
system that can accurately forecast motions and trajectories
for multiple agents simultaneously. The system should take
into account the historical state information, static context
and interactions among dynamic entities.

Assume there are in total N entities in the observation
area, which may vary in different cases. We denote a set of
trajectories covering the history and prediction horizons (Th
and Tf ) as

Tk−Th:k+Tf = {tik−Th:k+Tf |tik = (xik, y
i
k), i = 1, ..., N} (1)

where (x, y) is the 2D coordinate in the pixel space or
world space. The latent random variable is denoted as zk,
where k is the current time step. The sequence of context
images up to time step k is denoted as Ik−Th:k. Our goal
is to predict the conditional distribution of future trajec-
tories given the historical context images and trajectories
p(Tk+1:k+Tf |Tk−Th:k, Ik−Th:k). The long-term prediction
is realized by propagating the generative system multiple
times to the future. To simplify the notations in the fol-
lowing sections, we denote the condition variable as C =
{Tk−Th:k, Ik−Th:k}, the sequence of predicted variables as
Y = {Tk+1:k+Tf }.

IV. METHODOLOGY

In this section, we first provide an overview of the key
components and the architecture of the proposed Conditional
Generative Neural System (CGNS). The detailed theories and
models of each component are then illustrated.

A. System Overview
The architecture of CGNS is shown in Fig. 2 where

there is a deep feature extractor (DFE) with an environment
attention mechanism (EAM) as well as a generative neural
sampler (GNS). First, the DFE extracts deep features from
a sequence of historical context images and trajectories of
multiple interactive agents to obtain both the information of
static and dynamic obstacles, where the EAM tells which
areas and dynamic entities should be paid more attention
to than others when predicting the trajectory of a certain
entity. The above information is utilized as the input of GNS
which takes advantage of a deep latent variable model and a
variational divergence minimization approach to generate a
set of feasible, realistic and diverse future trajectories of all
the involved entities. All the components are implemented
with deep neural networks thus can be trained end-to-end
efficiently and consistently.
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Fig. 2. The overview of proposed conditional generative neural system (CGNS), which consists of four key components: (a) A deep feature extractor
with soft attention mechanism, which extracts multi-level features from scene context image sequences and trajectories; (b) An encoder to learn conditional
latent space representations; (c) A generator (decoder) to sample future trajectory hypotheses; (d) A discriminator to distinguish predicted trajectories from
groundtruth.

B. Environment-Aware Deep Feature Extraction

We take advantage of both context images and historical
trajectories of interactive agents to extract deep features of
both static and dynamic environments. In order to figure
out the most crucial parts to consider when forecasting
behaviors of certain agents, we propose a soft block attention
mechanism applied to trajectories and a Gaussian mixture
attention mechanism applied to context images. The details
are illustrated below.

The historical and future trajectories are constructed as
matrices which are treated as 2D images. The former is
fed into a convolutional neural network (CNN) and an
average pooling layer to obtain a contractable attention mask
over the whole trajectory matrix, which is then expanded
to the same size as the trajectory matrix by duplicating
each column twice corresponding to coordinates x and y.
The original trajectory matrix is multiplied by the block
attention mask elementwisely. This mechanism is not applied
to the future trajectory matrix since it is unreasonable to
have particular attention on the future evolution. The context
image sequences are also fed into a CNN followed by fully
connected layers to obtain a set of parameters of the Gaussian
mixture distribution, which is used to calculate the context
attention mask. The elementwise multiplication of original
images and attention masks is fed to a pre-trained feature
extractor, which is the convolution base of VGG-19 [21]
in this paper. The interaction-aware features and context-
aware features are concatenated and fed into a recurrent layer
followed by fully connected layers to obtain a comprehensive
and consistent feature embedding.

C. Deep Generative Sampling

The GNS is composed of an encoder E and a generator
G. The goal of encoder is to learn a consistent distribution
in a lower-dimensional latent space, from which the latent
variable can be sampled efficiently. The generator aims
to produce trajectories as real as possible. An auxiliary

discriminator D is adopted, which aims to distinguish fake
trajectories from groundtruth. The generator G and discrimi-
nator D formulates a minimax game. The three components
can be optimized jointly via conditional latent space learning
and variational divergence minimization.

Conditional Latent Space Learning (CLSL)
The conditional latent variable model defined in this paper

contains three classes of variables: condition variable C,
predicted variable Y and latent variable z. We aim to
obtain the conditional distribution p(Y |C). Given the training
data (C, Y ), the model first samples z from an arbitrary
distribution Q. Our goal is to maximize the variational lower
bound, which is written as

log p(Y |C)−DKL[Q(z|C, Y )||p(z|C, Y )] =

Ez∼Q[log p(Y |z, C)]−DKL[Q(z|C, Y )||p(z|C)]. (2)

where p(z|C) = N (0, I). This process can be realized with
a Conditional Variational Auto-Encoder which consists of
an encoder network E to obtain Q(z|C, Y ) and a decoder
(generator) network G to model p(Y |z, C). The loss function
can be formulated as a weighted sum of the reconstruction
error and KL divergence:

LG,ERC = Etk+1:k+Tf
,zk∼Q

[
‖tk+1:k+Tf −G(Ck, zk)‖2

]
, (3)

LEKL = Etk+1:k+Tf
[DKL(E(Ck)||p(zk))] , (4)

where zk ∼ N (0, I). The optimal encoder and generator can
be obtained by

G∗, E∗ = argmin
G,E

λ1LG,ERC + λ2LEKL. (5)

Variational Divergence Minimization (VDM)
Given two conditional distributions Pdata(Y |C) and

PGNS(Y |C) with absolutely continuous density function
pdata(Y |C) and pGNS(Y |C) which denotes the real data dis-
tribution and its approximation with GNS, the f -divergence



[22] is defined as

Df (Pdata || PGNS) =
∫
Y pGNS(Y |C)f

(
pdata(Y |C)
pGNS(Y |C)

)
dY , (6)

where f : R+ → R is a convex and lower-semicontinuous
function with f(1) = 0. A lower bound of f -divergence can
be derived with the convex conjugate function f∗

Df (Pdata || PGNS)

≥ sup
T∈T

(∫
Y
pdata(Y |C)T (Y |C))dY −

∫
Y
pGNS(Y |C)f∗(T (Y |C))dY

)
= sup
T∈T

(EY∼Pdata [T (Y |C)]− EY∼PGNS [f
∗(T (Y |C))]),

(7)

where T is an arbitrary class of mapping T : Y → R. In
order to minimize the variational lower bound in (7), we
can formulate a minimax game of pGNS(Y |C) and T (Y |C),
which are parameterized by θ and φ, respectively. Then the
optimal θ∗ and φ∗ can be obtained by

θ∗, φ∗ = argmin
θ

max
φ

EY∼pdata(Y |C)[Tφ(Y |C)]

− EY∼pθ(Y |C)[f
∗(Tφ(Y |C))].

(8)

In this work, we propose to minimize the Pearson-χ2 diver-
gence between Pdata+PGNS and 2PGNS

Dχ2
Pearson

=

∫
Y

(2pGNS − (pdata + pGNS))
2

pdata + pGNS
dY. (9)

Since (9) is intractable, we leverage the adversarial learning
techniques with a generator G and a discriminator D imple-
mented as deep networks. The adversarial loss functions are
derived as

LGVDM =
1

2
Ezk∼p(z)[(D(G(Ck, zk)))

2], (10)

LDVDM =
1

2
Etk+1:k+Tf

[(D(tk+1:k+Tf )− 1)2]

+
1

2
Ezk∼p(z)[(D(G(Ck, zk)) + 1)2],

(11)

To discriminate the effect of latent space learning, we also
involve two additional terms LG,EVDM and LD,EVDM where the
input zk are sampled from the encoded latent distribution.
Thus, the optimal encoder, generator and discriminator by
variational divergence minimization can be obtained as

E∗, G∗, D∗ =

argmin
G,E

max
D

λ3(LGVDM + LDVDM) + λ4(LG,EVDM + LD,EVDM).
(12)

D. Soft Constraint Incorporation
In order to make generated samples compliant to fea-

sibility constraints of vehicle kinematics, we propose to
incorporate a differentiable barrier (indicator) function I(·)
in the loss function, which enables soft constraints in deep
neural networks via pushing predicted trajectories to the
feasible regions. In this work, we denote the empirical upper
bounds on the absolute values of accelerations ak+1:k+Tf

and path curvatures κk+1:k+Tf as amax and κmax, respectively.
Then the feasibility loss can be calculated as

LG,EF = α1Eak+1:k+Tf

 k+Tf∑
t=k+1

max (0, sgn(|at| − amax))


+ α2Eκk+1:k+Tf

 k+Tf∑
t=k+1

max (0, sgn(|κt| − κmax))

 ,
(13)

where sgn(·) refers to the sign function and at,κt can be
calculated with the predicted waypoints. This loss term is
not applied to human trajectory prediction.

E. Conditional Generative Neural System (CGNS)

We leverage both CLSL and VDM in the proposed sys-
tem, which provides complementary strengths. The objective
function of the whole system is formulated as

LCGNS = λ1LG,ERC + λ2LEKL + λ3(LGVDM + LDVDM)

+λ4(LG,EVDM + LD,EVDM) + λ5LG,EF ,
(14)

which can be trained end-to-end. In practice, due to the exis-
tence of reconstruction loss, the generator tends to improve
faster than the discriminator, which may result in unbalanced
training. Therefore, we compensate the unbalance by training
the discriminator multiple times in each iteration.

V. EXPERIMENTS

In this section, we validate the proposed CGNS on three
benchmark datasets for trajectory prediction which are avail-
able online and solve a task of probabilistic behavior predic-
tion for multiple interactive on-road vehicles in a roundabout
scenario. The model performance is compared with several
state-of-the-art baselines.

A. Datasets

ETH [23] and UCY [24]: These datasets include bird-eye-
view videos and image annotations of pedestrians in various
outdoor and indoor scenarios. The trajectories were extracted
in the world space.
Stanford Drone Dataset (SDD) [25]: The dataset also
contains a set of bird-eye-view videos and the corresponding
trajectories of involved entities, which was collected in multi-
ple scenarios within a university campus full of pedestrians,
bikers and vehicles. The trajectories were extracted in the
pixel space instead of the world space.
INTERACTION Dataset (ID) [26], [27]: The raw dataset
was collected by a drone with camera and our testing vehicle
equipped with LiDAR. The trajectories were extracted by
visual detection. We visualized the real trajectories in our
simulator to obtain the bird-eye-view images, where the static
context information came from the Google Earth.

B. Evaluation Metrics and Baselines

We evaluate the model performance in terms of average
displacement error (ADE) defined as the average distance
between the predicted trajectories and the groundtruth over
all the involved entities within the prediction horizon, as well
as final displacement error (FDE) defined as the distance at
the last predicted time step. To allow for fair comparisons
with prior works [5], [12], [28], we predicted the future 12
time steps (4.8s) based on the previous 8 time steps (3.2s) for
ETH and UCY in the Euclidean space. We used the standard
training and testing split for SDD and make predictions in
the pixel space. For our own dataset ID, we predicted the
future 10 time steps (5s) based on the historical 4 time steps
(2s) in the Euclidean space.



TABLE I
ADE / FDE COMPARISONS OF PEDESTRIAN TRAJECTORY PREDICTION (ETH AND UCY DATASET).

CVM LR P-LSTM S-LSTM S-GAN S-GAN-P SoPhie CGNS

ETH 1.42 / 2.88 1.33 / 2.94 1.13 / 2.38 1.09 / 2.35 0.81 / 1.52 0.87 / 1.62 0.70 / 1.43 0.62 / 1.40
HOTEL 0.51 / 0.68 0.39 / 0.72 0.91 / 1.89 0.79 / 1.76 0.72 / 0.61 0.67 / 1.37 0.76 / 1.67 0.70 / 0.93
UNIV 0.73 / 1.63 0.82 / 1.59 0.63 / 1.36 0.67 / 1.40 0.60 / 1.26 0.76 / 1.52 0.54 / 1.24 0.48 / 1.22

ZARA1 0.59 / 1.36 0.62 / 1.21 0.44 / 0.84 0.47 / 1,00 0.34 / 0.69 0.35 / 0.68 0.30 / 0.63 0.32 / 0.59
ZARA2 0.84 / 1.55 0.77 / 1.48 0.51 / 1.16 0.56 / 1.17 0.42 / 0.84 0.42 / 0.84 0.38 / 0.78 0.35 / 0.71

AVG 0.82 / 1.62 0.79 / 1.59 0.72 / 1.53 0.72 / 1.54 0.58 / 1.18 0.61 / 1.21 0.54 / 1.15 0.49 / 0.97

TABLE II
ADE / FDE COMPARISONS OF PEDESTRIAN TRAJECTORY PREDICTION (SDD DATASET).

LR P-LSTM S-LSTM S-GAN SoPhie CAR-Net DESIRE CGNS

SDD 37.1 / 63.5 35.8 / 55.4 31.2 / 57.0 24.8 / 38.6 17.8 / 32.1 25.7 / 51.8 19.3 / 34.1 15.6 / 28.2

TABLE III
ADE / FDE COMPARISONS OF VEHICLE TRAJECTORY PREDICTION (RD DATASET). T REPRESENTS ONLY USING INTERACTION-AWARE

(TRAJECTORY) FEATURES AND T + I REPRESENTS USING ADDITIONAL CONTEXT-AWARE (IMAGE) FEATURES.

Baseline Models Proposed CGNS

CVM LR P-LSTM S-LSTM S-GAN T +
CLSL T + VDM T + CLSL

+ VDM
T + I +

CLSL+VDM

1.0s 0.16 / 0.29 0.24 / 0.32 0.23 / 0.28 0.24 / 0.30 0.22 / 0.28 0.19 / 0.23 0.22 / 0.27 0.17 / 0.25 0.21 / 0.26
2.0s 0.59 / 0.78 0.58 / 0.92 0.47 / 0.60 0.45 / 0.57 0.42 / 0.58 0.34 / 0.42 0.38 / 0.45 0.38 / 0.44 0.35 / 0.40
3.0s 1.21 / 1.92 1.43 / 2.28 0.84 / 1.53 0.80 / 1.48 0.81 / 1.54 0.72 / 1.33 0.75 / 1.37 0.69 / 1.24 0.64 / 1.15
4.0s 2.94 / 3.98 3.85 / 4.73 1.27 / 1.51 1.21 / 1.69 1.28 / 1.87 1.26 / 1.81 1.35 / 1.76 0.86 / 1.33 0.79 / 1.23
5.0s 4.28 / 6.12 5.89 / 6.91 1.78 / 2.21 1.69 / 2.77 1.65 / 2.68 1.85 / 3.20 1.72 / 2.89 1.54 / 2.37 1.47 / 2.12

We compared the performance of our proposed system
with the following baseline approaches on multiple datasets:
Constant Velocity Model (CVM), Linear Regression (LR),
Probabilistic LSTM (P-LSTM), Social LSTM (S-LSTM) [5],
Social GAN (S-GAN and S-GAN-P) [28], Clairvoyant at-
tentive recurrent network (CAR-Net) [13], SoPhie [12] and
DESIRE [19].

C. Implementation Details

Since the whole system consists of differentiable functions
approximated by deep neural networks, it can be trained end-
to-end efficiently. The detailed model architecture and hyper-
parameters are introduced below.

In the deep feature extractor, the CNNI contains one conv-
layer with kernel size 5 × 5 and zero padding to keep the
same dimension. The CNNII contains three conv-layers with
kernel size 3 × 3 and the FCI contains two layers with 64
hidden units. The CNNIII is the convolution base of pre-
trained VGG-19 whose weights are fixed during training. The
GRUI, GRUII, FCII and FCIII all have 128 hidden units. The
Encoder FCIV has three fully-connected layers with 256, 128
and 64 hidden units, respectively. The dimension of encoded
latent space is two. The Generator GRUIII has 128 hidden
units. The Discriminator GRUIV has 128 hidden units and
FCV has three layers with 128, 128 and 1 units, respectively.
In all the experiments, we set λ1 = 5.0, λ2 = λ3 = λ4 =
λ5 = 1.0 and α1 = α2 = 1000. The Adam optimizer was
employed with a learning rate of 0.002. Moreover, we found
that the Gaussian mixture in the context image attention mask
does not lead to obvious improvement in terms of prediction

accuracy and diversity than a single Gaussian in this task.
Therefore, we utilized the latter to reduce model complexity
and show the corresponding results.

D. Quantitative Analysis

ETH and UCY Dataset: To allow for fair comparisons
with multiple baseline approaches which only leverage his-
torical trajectory information, we deactivated the branch of
context feature extraction in our system to illustrate its
superiority on prediction accuracy based on the same input as
prior works. The ADE and FDE of the proposed CGNS and
baseline models in Euclidean space are compared in Table I.
Some of the reported statistics are adapted from the original
papers.

It can be seen that the CVM performs the worst as
expected since the constant velocity approximation is in-
sufficient for a crowded scenario with highly interactive
agents. The LR performs slightly better in most scenarios
than CVM but achieves the smallest error on the HOTEL
dataset. A possible reason is that the human trajectories in
this dataset tend to be more straight and smooth, which
brings an advantage for linear fitting methods. The P-LSTM
and S-LSTM provide an improvement with similar accuracy
due to the exploitation of recurrent neural networks. The S-
GAN and Sophie achieve a bigger progress thanks to the
implicit generative modeling of trajectory distribution. Our
approach makes a step forward on prediction accuracy, which
implies the effectiveness of latent space learning.

Stanford Drone Dataset: We also compared the ADE



and FDE of the CGNS and baseline models in pixel space,
which is shown in Table II. Similarly, the linear method LR
performs the worst and the ordinary P-LSTM and S-LSTM
give a slightly better accuracy. The CAR-Net makes a step
forward by utilizing a physical attention module. The S-GAN
and DESIRE provide better results than the above baselines
since they solve the task from a probabilistic perspective
by learning implicit data distribution and latent space rep-
resentations, respectively. Our approach achieves the best
performance in terms of prediction error, which implies the
significance and necessity of leveraging both context and
trajectory information. The combination of CLSL and VDM
also contributes to the enhancement.

INTERACTION Dataset: We finally compared the
model performance on our roundabout driving dataset in Ta-
ble III. The SoPhie, CAR-Net and DESIRE are not involved
since their codes are not publicly available. It is shown that
the linear models CVM and LR have similar performance
to advanced learning-based models for short-term prediction
since the velocity and yaw angle of vehicles cannot vary
much in a short period due to kinematics feasibility con-
straints. However, as the prediction horizon increases, their
performance deteriorates much faster. A potential reason is
that due to the curving roads within the roundabout area,
the vehicles tend to advance along the curving lines to avoid
collisions, which is not able to be captured by linear approx-
imations. The P-LSTM and S-LSTM provide similar results,
which implies that the social pooling mechanism has little
effects on feature extraction in this scenario. Our CGNS is
able to achieve the smallest prediction error among baseline
models in most cases especially for long-term prediction.

E. Qualitative Analysis

We provide a qualitative analysis of the prediction results
on our INTERACTION dataset. To illustrate the effectiveness
of the attention module, we visualize the context image
masks and trajectory block masks of several typical testing
cases in Fig. 3. Detailed analysis can be found in the caption.
The distribution of generated future trajectories is approxi-
mated by the kernel density estimation, which is visualized
in Fig. 4. We can see that the system can generate smooth,
feasible and realistic vehicle trajectories, which evolve along
the road curves. The groundtruth is located at the most
dense part of the distribution in most cases. In general, our
proposed CGNS can achieve better generation performance
in terms of realism and diversity.

F. Ablative Analysis

We conduct an ablative analysis on the RD dataset to
demonstrate relative significance of each component in the
proposed CGNS. The ADE and FDE of each model setting
are shown in Table III. We notice that using the T +
CLSL and T + VDM achieves similar performance in terms
of prediction error while T + CLSL + VDM provides a
notable improvement. Moreover, it is demonstrated that the
complete system T + I + CLSL + VDM does not lead to
obvious improvement compared with three partial systems

for short-term prediction while its superiority becomes more
remarkable as the forecasting horizon increases. This is
reasonable since the static context has little effect on driver
behaviors in a short period. More specifically, since the
trajectory segment within a short period can be approximated
by a linear segment, learning the road curvature from context
images does not provide much assistance for prediction. As
the forecasting horizon increases, however, the restriction of
road geometry on vehicle motions cannot be ignored any
more, which results in larger performance gain of leveraging
context information.

VI. CONCLUSIONS

In this paper, we propose a conditional generative neural
system for long-term trajectory prediction, which takes into
account both static context information through images and
dynamic evolution of traffic situations through trajectories of
interactive agents. We also incorporate attention mechanisms
to figure out the most critical portions for predicting motions
of a certain entity. The system combines the strengths of both
latent space learning and variational divergence minimization
to approximate the data distribution, from which realistic and
diverse trajectory hypotheses can be sampled. The proposed
system is validated on various benchmark datasets as well
as a roundabout driving dataset collected by ourselves. The
results show that our system can achieve better performance
than various baseline models on most datasets in terms of
prediction accuracy.
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