
Seeing Beyond Appearance – Mapping Real Images into Geometrical Domains
for Unsupervised CAD-based Recognition

Benjamin PlancheCO ,1,2, Sergey ZakharovCO ,1,3, Ziyan Wu1,
Andreas Hutter1, Harald Kosch2, Slobodan Ilic1,3

1Siemens Corporate Technology
{benjamin.planche, andreas.hutter, slobodan.ilic, ziyan.wu}@siemens.com

2University of Passau
harald.kosch@uni-passau.de

3Technical University of Munich
sergey.zakharov@tum.de

Abstract

While convolutional neural networks are dominating the
field of computer vision, one usually does not have access to
the large amount of domain-relevant data needed for their
training. It thus became common to use available synthetic
samples along domain adaptation schemes to prepare algo-
rithms for the target domain. Tackling this problem from a
different angle, we introduce a pipeline to map unseen tar-
get samples into the synthetic domain used to train task-
specific methods. Denoising the data and retaining only
the features these recognition algorithms are familiar with,
our solution greatly improves their performance. As this
mapping is easier to learn than the opposite one (i.e. to
learn to generate realistic features to augment the source
samples), we demonstrate how our whole solution can be
trained purely on augmented synthetic data, and still per-
form better than methods trained with domain-relevant in-
formation (e.g. real images or realistic textures for the 3D
models). Applying our approach to object recognition from
texture-less CAD data, we present a custom generative net-
work which fully utilizes the purely geometrical information
to learn robust features and achieve a more refined mapping
for unseen color images.

1. Introduction
The ever-increasing popularity of deep convolutional

neural networks seems well-deserved, as they are adopted
for more and more complex applications. This success has
to be slightly nuanced though, as these methods usually rely
on large annotated datasets for their training. In many cases
still (e.g. for scalable industrial applications), it would be
extremely costly, if not impossible, to gather the required

COThese authors contributed equally to the work.

data. For such use-cases and many others, synthetic models
representing the target elements are however usually pre-
available (industrial 3D CAD blueprints, simulation mod-
els, etc.). It thus became common to leverage such data to
train recognition methods e.g. by rendering huge datasets of
relevant synthetic images and their annotations.

However, the development of exhaustive, precise mod-
els behaving like their real counterparts is often as costly as
gathering annotated data (e.g. acquiring precise texture in-
formation, to render proper images from CAD data, actually
imply capturing and processing images of target objects).
As a result, the salient discrepancies between model-based
samples and target real ones (known as realism gap) still
heavily impairs the application of synthetically-trained al-
gorithms to real data. Research in domain adaptation thus
gained impetus the last years. Several solutions have been
proposed, but most of them require access to real relevant
data (even if unlabeled) or access to synthetic models too
precise for scalable real-world use-cases (e.g. access to re-
alistic textures for 3D models).

In our work, we introduce a novel approach, SynDA,
tackling domain adaptation and realism gap from a differ-
ent angle. SynDA is composed of a custom generative net-
work to map unseen real samples toward a relevant, easily-
available synthetic domain (e.g. normal maps), in order to
improve recognition for methods themselves trained on this
noiseless synthetic modality. Along this paper, we demon-
strate that it is sensible to train task-specific networks on
noiseless information so they learn clean discriminative fea-
tures, and then develop a mapping function from real to syn-
thetic data; rather than to focus on developing or learning
pseudo-realistic noise models to train against (though the
two can be complementary to bridge the gap both ways).

Applied in this paper to CAD-based recognition in color
pictures, our approach is based on the assumptions that real-
world images can be mapped to the synthetic domain; and
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Figure 1: Pipeline Usage. We present G, a custom generative network which maps real unseen data into discriminative synthetic domains
Xs available for training (e.g. normal maps rendered from provided CAD models). The pre-processed data can then be handed to any
recognition methods T s, themselves simply trained on Xs, to achieve high performance despite the lack of any domain-relevant training
information.

that, in absence of any real training data, this mapping can
be learned by recovering the synthetic samples altered by
a stochastic noise source. Since our method only needs to
eliminate noise and retain features, it performs better than
usual generative solutions for domain adaptation, which
learns the more difficult task of generating complex features
to mimic the target data. As long as the synthetic domains
contain all relevant features and as long as those features
are contained in real images, our approach successful en-
hances recognition, as demonstrated through our empirical
evaluation. In summary, we are making the following con-
tributions:

(a) Synthetic modality regression for domain adaptation
– We propose a novel framework to learn a mapping from
unseen real data to relevant synthetic domains, denoising
and recovering the information needed for further recogni-
tion. Our solution thus not only covers the real-synthetic
gap, but also takes care of cross-modality mapping. More
specifically, we present how color images can be mapped to
normal maps, to help pose-regression and classification in
absence of reliable texture information for training.

(b) Decoupling domain adaptation from recognition –
Most domain adaptation schemes constrain the methods
training, by adding pseudo-realistic or noisy features to
their training set, editing their architecture or losses, etc.
In our framework, task-specific algorithms simply learn on
available, relevant synthetic data (clean normal maps from
CAD models in our case), while separately our networkG is
trained on noisy data to map them into the selected synthetic
domain. This decoupling makes training more straightfor-
ward, and allows G to be used along any number of recog-
nition methods. We furthermore observe better results com-
pared to recognition methods directly trained on augmented
data. Results even compare to solutions using real informa-
tion for training.

(c) Performance in complete absence of real training

data – Domain adaptation approaches usually assume the
realism gap to be already partially bridged, requiring access
to some target domain images or realistic synthetic models
(e.g. textured 3D data). Opting for recognition tasks with
texture-less CAD data for only prior, we demonstrate how
our pipeline can be trained on purely synthetic data and still
generalize well to real situations. For that we leverage an
extensive augmentation pipeline, used as a noise source ap-
plied to training samples so our solution learns to denoise
and retain the relevant features.
(d) Multi-task metwork with self-attentive distillation –
The one advantage of synthetic models such as CAD data
is the possibility to easily extract various precise modali-
ties and ground-truths to learn from. We thus consolidate
several state-of-the-art works [22, 18, 45, 48] to develop a
custom generator with multiple convolutional decoders for
each relevant synthetic modality (e.g. normal maps, seman-
tic masks, etc.), and a distillation module on top making use
of self-attention maps to refine the final outputs.

After providing a pertinent survey in Section 2 and de-
scribing our methodology in Section 3, we evaluate our so-
lution in Section 4 over a set of different recognition meth-
ods and datasets to support our claims.

2. Related Work

Domain adaptation became an increasingly present chal-
lenge with the rise of deep-learning methods. We thus ded-
icate most of our literature review to listing main solutions
developed to bridge the gap between real and synthetic data.
In a second time, we present convolutional neural network
(CNN) methods for shape regression, as we put emphasis
on the mapping from real color images to synthetic geomet-
rical domains in this paper.
Bridging the realism gap: The realism gap is a very well
known problem for computer vision methods that rely on
synthetic data, as the knowledge acquired on these modal-



ities usually poorly translates to the more complex real do-
main, resulting in a dramatic accuracy drop. Several ways
to tackle this issue have been investigated so far. A first ob-
vious solution is to improve the quality and realism of the
synthetic models. Several works tries to push forward simu-
lation tools for sensing devices and environmental phenom-
ena. State-of-the-art depth sensor simulators work fairly
well for instance, as the mechanisms impairing depth scans
have been well studied and can be rather well reproduced
[24, 35]. In case of color data however, the problem lies
not in the sensor simulation but in the actual complexity
and variability of the color domain (e.g. sensibility to light-
ing conditions, texture changes with wear-and-tear, etc.).
This makes it extremely arduous to come up with a satis-
factory mapping, unless precise, exhaustive synthetic mod-
els are provided (e.g. by capturing realistic textures). Proper
modeling of target classes is however often not enough, as
recognition methods would also need information on their
environment (background, occlusions, etc.) to be applied to
real-life scenarios. For this reason, and in complement of
simulation tools, recent CNN-based methods are trying to
further bridge the realism gap by learning a mapping from
rendered to real data, directly in the image domain. Mostly
based on unsupervised conditional generative adversarial
networks (GANs) [39, 38, 4] or style-transfer solutions [11],
these methods still need a set of real samples to learn their
mapping.

Other approaches are instead focusing on adapting the
recognition methods themselves, to make them more robust
to domain changes. For instance, solutions like DANN [10]
or ADDA [41] are also using unlabeled samples from the tar-
get domain along the source data to teach the task-specific
method domain-invariant features. Considering real-world
and industrial use-cases when only texture-less CAD mod-
els are provided, some researchers [37, 40] are compensat-
ing the lack of target domain information by training their
recognition algorithms on heavy image augmentations or
on a randomized rendering engine. The claim is that with
enough variability in the simulator, real data may appear
just as another variation to the model. Considering similar
applications (when no real samples nor texture information
are available), our method follows the same principle, but
applies it to the training of a domain-mapping function in-
stead of the recognition networks. We demonstrate how this
different approach not only improves the end accuracy, but
also makes the overall solution more modular.

Regression of geometrical information: As no textural in-
formation is provided for training, we apply our domain
adaptation method to the mapping of real cluttered color
images into the only prior domain: the geometrical repre-
sentation of target objects, extracted from their CAD data.
The regression of such view-based shape information (e.g.
normal or depth maps) from monocular color images is not

a new task in the field of computer vision, and it has been
already explored by several works. The pioneer approaches
tackled this complex mapping either by using probabilistic
graphical models relying on hand-crafted features [16, 26],
or by using feature matching between an RGB image and
a set of RGB-D samples to find the nearest neighbors and
warp them into a final result [17, 28]. Unsurprisingly,
the latest works employ CNNs as a basis for their algo-
rithms [8, 36, 23]. Eigen et al. [9] are the first ones to apply
a CNN (the popular AlexNet [21]) to this problem, making
predictions in a two-stage fashion: coarse prediction and re-
finement. This approach was further improved by addition-
ally regressing labels and normals, with a refinement step
for the final estimation [8].

Another way of improving the quality of predicted depth
or normal data is to use neural networks together with graph
probabilistic models. Liu et al. [27] use a unified Deep Con-
volutional Neural Fields (DCNF) framework based on the
combination of a CNN and conditional random field (CRF)
to regress depth from monocular color images of various
scenes. Their pipeline consists of two sub-CNNs with a
common CRF loss layer, and yields detailed depth maps.
Building on the previous framework, Cao et al. [6] train the
DCNF model jointly for depth regression and semantic seg-
mentation, demonstrating how joint training can improve
the overall results. Similarly, Kendall et al. [18] proposed a
multi-task Bayesian network approach (including depth re-
gression) which weighs multiple loss functions by consider-
ing the uncertainty of each task. Another way of efficiently
combining a multi-task output was presented in [45], which
uses so-called distillation modules to supervise and improve
the output result. Unfortunately, all aforementioned meth-
ods require real labeled images from the target domain for
their training, which is too strong a constraint for real-life
scalable applications. Our own method does build upon
their conclusions [8, 42, 12, 22, 18, 45], making use of a
custom cross-modality network with advanced distillation
to learn a robust mapping from noisy domains to synthetic
ones.

3. Methodology
Driven by the necessity of learning only from synthetic

data for scalable recognition processes, we developed a
method to map unseen real samples (e.g. color images) into
the noiseless synthetic domain (e.g. normal maps rendered
from CAD models) the task-specific solutions were trained
on (c.f . Figure 1), to enable recognition.

Following the same formalization as in [47], let Xs
c =

{xsc,i | ∀i ∈ Ns
c } be a dataset made of a number Ns

c of
uncluttered, noiseless training samples xsc of class c. Let
Xs = {Xs

c | ∀c ∈ C } be the complete clean train-
ing dataset. We similarly define Xr the set of target C-
related real data, completely unavailable for training. Note
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Figure 2: Training of our network GGG. Taking full advantage of available synthetic data e.g. texture-less CAD models, G consists
of a custom multi-modal pipeline with self-attentive distillation, trained to recover noiseless geometrical and semantic modalities from
randomly augmented synthetic samples (detailed architecture in Figure 3).

that samples xr can also be of a different modality than xs

(e.g. xr being color images while xs being normal maps,
when no texture were available to render synthetic color
images). Finally, let T (x ; θT )→ ỹ be any recognition al-
gorithm which given a sample x returns an estimate ỹ of a
task-specific label or feature y (e.g. class, pose, mask im-
age, hash vector, etc.). We define as T s the method trained
on noiseless Xs.

Given this setup, our pipeline trains a function G purely
on synthetic data (and thus in an unsupervised manner), to
learn a mapping from complex C-related instances to their
corresponding clean signal (c.f . Figure 2). To achieve this
when no domain-relevant data is available for training, we
describe in this section how G is trained against a data aug-
mentation pipeline A(xs, z)→ xaz , with z a noise vector
randomly defined at every training iteration and xaz the re-
sulting noisy data. Our training approach assumes that G
removes the artificially introduced noise z such that only
the original synthetic signals xs are retained. Thus, G can
be seen as a noise filter that removes unneeded elements
in input data, and can be also applied over the domain Xr

of real samples as long as synthetic information can be ex-
tracted from them. We demonstrate that, in the case of
CAD-based visual recognition, we can indeed define a new
generative method G fully utilizing the synthetic modali-
ties, and a complex and stochastic augmentation pipeline
A to train G against, such that G maps real images into
the learnt synthetic domain with high accuracy. We even
demonstrate how this process increases the probability that

T s(G(xr)) = ỹg is accurate compared to T a(xr) = ỹr,
with T a the task-specific algorithm directly trained on data
augmented by A. Though we focus the rest of the paper on
CAD-based visual recognition for clarity, the principles be-
hind our solution can be directly applied to other use-cases.

3.1. Real-to-Synthetic Mapping through Multi-
Modal Distillation

3.1.1 Multi-Modal U-Net Architecture

As demonstrated by previous works in multi-task learning
[8, 42, 12, 22, 18, 45], it is often advantageous to train a net-
work on several tasks (even when considering only one), as
the synergy between the tasks can make each of them per-
form better, and make the common layers for feature extrac-
tion more robust and focused on abstract, cross-modality
information.

We thus adopt such a scheme to guide our generator in its
main task of extracting the chosen synthetic features from
noisy samples. Not limited to the scarce, sometimes impre-
cise, annotations of real training datasets, we can rely on
a multitude of different synthetically-rendered modalities.
For industrial CAD-based recognition, G would learn to
map real images into a geometrical domain (normal and/or
depth maps), using for sub-tasks the regression of depth
and normal maps, semantic or contour mask, etc. (c.f . Sec-
tion 3.2).

Inspired by previous multi-modal generative
pipelines [22, 18, 45], our network is composed of a
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Figure 3: Detailed architecture of our network GGG, on the left. Reused layer blocks (BC for encoding, BD for decoding, SA for self-
attention) are detailed on the right. conv k4s2 stands for a convolutional layer with 4 × 4 filters and a stride of 2; convT stands for a
transposed convolution.

single convolutional encoder E and m decoders Dmod,
with m the number of sub-tasks. For the rest of the paper,
we only consider up to 4 sub-tasks—normal and depth
regression, semantic segmentation, foreground lightness
evaluation—though it would be straightforward to add
more (e.g. contour extraction as in [45]).

In our solution, each intermediary modality is fully de-
coded in order to be compared to its synthetic ground-truth.
Each generative loss Lmodg (L1 distance for images, cross-
entropy for binary masks) is back-propagated through its
decoder, then jointly through the common encoder (c.f . Fig-
ure 2).

A triplet loss Lt is optionally added at the network bot-
tleneck to improve the feature distribution in the embedding
space, using task-specific metrics to push apart encoded fea-
tures of images from semantically-different images, while
bringing together features of similar elements.

Lt(E) =
∑

(xb,xp,xn)∈X

max

(
0, 1− ||E(xb)− E(xn)||22

||E(xb)− E(xp)||22 +m

)
(1)

with xb the input image used as binding anchor , xp a posi-
tive or similar sample, xn a negative or dissimilar one, and
m the task-specific margin setting the minimum ratio for
the distance between similar and dissimilar pairs of sam-
ples. For instance, for the task of instance classification and
pose estimation (ICPE), we set m = 2 arccos(|qb · qp|) if
xb and xp are images of the same class, else m = n (with
qb and qp the pose quaternions corresponding to xb and xp,
and n > π a fixed margin).

Further distinguishing our solution from usual multi-
modal auto-encoders, we add skip connections from each
encoding block to its reciprocal decoding block. As demon-
strated in previous works [22, 49], passing high-resolution
features from the contracting layers along the outputs of
previous decoding blocks not only improves the training by
avoiding vanishing gradients, but also guides the decoding
blocks in upsampling and localizing the features. We ob-
serve a clear performance boost from this change, as shown
in Table 3.

3.1.2 Distillation with Self-Attention

s If training the target decoder along others already im-
proves its performance by synergy, several works [45, 12,
31] demonstrated how one can further take advantage of
multi-modal architectures by adding a distillation module
on top of the decoders, merging their outputs to distill a fi-
nal result.

In their work [45], Pad-Net authors present several distil-
lation strategies, with the most efficient one making use of
attention mechanism [30, 2, 29] to better weigh the cross-
modality merging, bringing forward the most relevant fea-
tures for the final modality.

Using this insight, we built our own module R to re-
fine the target results from the partially re-encoded interme-
diary modalities by using self-attention computations [7].
This mechanism, adapted by Zhang et al. [48] for image
generation and detailed in Figure 3, is used to efficiently
model relationships between widely-separated spatial re-
gions. Given a feature map x ∈ RC×H×W , the output of
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Figure 4: Augmentation and training results. On the left, we demonstrate how normal maps are step by step transformed into complex,
random color images by our online augmentation pipeline. On the right, we present how G is trained on these images, learning to map
them back to the noiseless geometrical information.

the self-attention operation is:

xsa = x+ γ · σ
(
(Wf ∗ x)ᵀ · (Wg ∗ x)

)
· (Wh ∗ x) (2)

with σ the softmax activation function; Wf ∈ RC̄×C ,
Wg ∈ RC̄×C , Wh ∈ RC×C learned weight matrices (we
opt for C̄ = C/8 as in [48]); and γ a trainable scalar weight.
Instantiating and applying this process to each re-encoded
modality, we sum the resulting feature maps, before decod-
ing them to obtain the final output. This new distillation
process not only allows to pass messages between the in-
termediary modalities, but also between distant regions in
each of them.

Our distillator is trained jointly with the rest of the gen-
erator, with a final generative loss Lg (L1 distance here)
applied to the distillation results. Not only our whole gen-
erator can thus be efficiently trained in a single pass, but
no manual weighing of the sub-task losses is needed, as
the distillator implicitly covers it (this furthermore suits our
use-cases, as manual fine-tuning is technically possible only
when validation data from target domains are available).

3.2. Learning from Purely Geometrical CAD Data

3.2.1 Synthetic Data Generation

The aforementioned architecture has been developed to es-
pecially shine for one particular use-case, poorly covered in
the literature despite being common in industrial applica-
tions: the training of recognition methods on pure 3D CAD
data, i.e. without any real relevant images and their anno-
tations, nor captured textures for the 3D models to render
realistic images. Despite the apparent meagerness of the
available training data, covering only the geometrical as-
pects of target classes with no appearance information, it is
still possible to render multiple synthetic modalities from
the CAD models in order to build a rich annotated dataset,

to guide the training of complex generative networks such
as our proposed one.

Without any relevant texture information, usual dataset
rendering and training methods for the color domain cannot
be directly applied. Since only geometrical information is
made available, we select the surface normal and/or depth
domains as target modality for the mapping performed by
G. For this reason and similarly to other view-based train-
ing methods from CAD data [43, 46, 47], we use a simple
3D engine to generate noiseless normal and depth maps for
each class c from a large set of relevant viewpoints (e.g.
defined as vertices of an icosahedron centered on the tar-
get elements). This dataset of geometrical mappings is both
used as ground-truth for the final outputs of G and some of
its sub-tasks, and as inputs for the augmentation pipeline A
deployed when no color data is available to train G.

3.2.2 Online Color Rendering and Augmentation

A(xs, z) → xaz is an extensive online augmentation
pipeline we designed, parametrized by a noise vector z ran-
domly sampled at every call from a k-dimensional finite set
Zk, with k the number of augmentation parameters. In order
to make up for the complete lack of appearance and clutter
information, A follows the principle of domain randomiza-
tion [40], i.e. it is meant to add enough visual variability to
the training inputs so that the trained method can general-
ize to real unseen samples. This means conceiving an aug-
mentation pipeline with a large enough |Zk|. In our case,
A first dynamically transforms the input geometrical views
into color images through random shading and texturing,
before applying further noise and clutter to the images, in
order to prepare G for the complexity of real data.

To maximize the training variability, A is built to run
in parallel of GPU-based trainings (online), providing new
randomized samples every iteration (unlike offline solu-
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Figure 5: Qualitative results (intermediary and final mappings), when applying G purely trained on synthetic data to real samples, on
LineMOD [14] and T-LESS [15] datasets.

tions, generating a fixed training dataset beforehand). In-
spired by the literature both in computer vision [32] and
computer graphics [3, 34], the following operations are thus
composing A (illustrated in Figure 4):
Simple random shading: A first takes the provided nor-
mal maps and convert them into color images by applying
simple Blinn-Phong shading [3]. Randomly sampling am-
bient and directional light sources, as well as diffusion and
specular color factors for the objects, the provided surface
normals are used to compute the diffuse and specular light-
ness maps through direct matrix products. Since distance
information is lost in normal maps, this shading model is
simplified by supposing the light sources at an infinite dis-
tance, hence the same light source vector for every surface
point. This way, one can easily simulate an infinity of light-
ing conditions, returning the resulting lightness map.
Stochastic texturing: Given the lack of relevant texture
information, random texture maps are procedurally gener-
ated using noise functions e.g. fractal Perlin noise [34] and
Voronoi texturing. Downsampled to 2D vector maps, the
original normals are used to index the generated textures; to
achieve a more “organic” appearance, with patterns some-
times following some of the shape features.
Background addition: To simulate cluttered scenes, back-
grounds are added to the rendered images, either re-using
the previously-introduced noise functions, or using ran-
dom patches from any publicly available image dataset (e.g.
COCO [25]). Lightness maps from the shading step are fur-
thermore used to homogenize the background brightness.
Random occlusion: Occlusions are introduced to further
simulate clutter, but also so that G can learn to recover hid-
den or lost geometrical information. Based on [32], occlud-
ing polygons are generated by walking around the image,
taking random angular steps and random radii at each step;
then by painting it on top of the images with color noise.
Blur: To reproduce possible motion blur or unfocused im-
ages, Gaussian, uniform or median blur is applied with vari-

able intensity.

4. Evaluation
Pursuing our application of SynDA to CAD-based recog-

nition tasks, we evaluate our method on two different tasks
of localized object classification and pose estimation, opt-
ing for well-known algorithms on datasets commonly used
in this domain [43, 4, 47]. First presenting concise quali-
tative observations, we then quantitatively and extensively
evaluate SynDA through a comparison of its performance to
state-of-the-art solutions depending on the available train-
ing modalities, and through an ablation study.

4.1. Experimental Setup

4.1.1 Instance Classification (IC) on T-LESS

As a preliminary experiment, we consider localized classi-
fication on T-LESS [15], a dataset of industrial objects with
texture-less CAD models and RGB-D images from differ-
ent complex scenes. Strong textural and geometrical sim-
ilarities between the objects and heavy occlusions make it
a challenging dataset for geometry-based classification. As
in [47], we select the first 3 scenes and their 11 objects,
building a set of 5,514 RGB patches of objects occluded up
to 60%. For our task-specific method, we opt for the well-
known ResNet [13], with 9 residual blocks.

4.1.2 Instance Classification and Pose Estimation
(ICPE) on LineMOD

LineMOD [14] contains 15 mesh models of distinctive tex-
tured objects, along their RGB-D sequences and camera
poses. We take advantage of this dataset to demonstrate how
texture information is too often taken for granted in CAD-
based application, and how its absence can heavily impact
usual methods (e.g. in industrial settings). LineMOD has
4 symmetric objects. While some works simply removed



Table 1: Quantitative comparison of recognition pipelines, depending on the available training data, for the task of localized instance
classification on T-LESS [15] with T ResNet9 network [13]. Methods are explicitly described in annex.

Training Classification
accuracy

Data Method

GT T (Xr
train)→ y (∅) 99.34%

Td
(
A(Xs) ; Xr

train

)
→ y, cdom (DANN) 60.58%

Gpix(Xs, Xr
train)→ Xr′ , T (Xr′ )→ y (PixelDA) 63.12%

Gpre(Xr
other)→ Xs , T (Xs)→ y (Iro et al.) 36.03%

T
(
A(Xs)

)
→ y (∅) 53.81%

G(A(Xs)
)
→ Xs , T (Xs)→ y (ours) 71.78%

these ambiguous elements for evaluation [4, 5], others only
constrain the real views by keeping the unambiguous poses
for these 4 objects [43, 46, 47]. We opt for the latter so-
lution, to highlight the generalization capabilities of SynDA
w.r.t. the number of objects. To further demonstrate that our
method is tailored neither to a dataset nor to a recognition
method, we select a different solution, the so-called triplet
CNN [43, 46], which uses the aforementioned triplet loss
Lt, to map images to an embedding space which enforces
separation for distinct classes and poses.

4.1.3 Tasks Preparation

For both tasks, synthetic training data Xs (normal, depth
and semantic maps) are generated with a basic 3D engine
(while lightness maps are obtained from A), following the
procedure described in Section 3.2, taking into account in-
plane rotations. For each task, the real color images are
split 50/50 into a test setXr

test, and a training setXr
train for

comparative methods which require real data. Similarly, we
render Xs,t, realistic images from textured models to train
some opponent methods on.

4.2. Qualitative Observations

Qualitative results can be found in Figures 1, 4, 5, as well
as in the supplementary material. For both datasets, our
method clearly learns to recover the clean geometrical fea-
tures of target objects in unseen real images (Fig. 5), even
though it has been trained with no information about the real
domain (Fig. 4). The monochrome appearance of T-LESS
objects may make the task easier; but as this information
is not known during training, G is still trained on random
noisy textures, and yet manages to map the real samples
and even to recover occluded parts. As demonstrated on

LineMOD, our solution indeed learns to ignore visual prop-
erties such as textures to retain the synthetic features, using
the prior CAD data.

GAN-based domain adaptation methods such as Pix-
elDA [4] fail to learn their opposite mapping when only
geometrical properties are provided, as shown in the an-
nex. Indeed, learning both to add clutter and assign the
proper texture to each class is a much more complex task,
which would require further supervision (for instance, the
foreground-similarity loss of PixelDA cannot be used in this
setting to guide the network).

Finally, we can visually observe the improvements be-
tween the intermediary normal maps (directly from decoder
DN ) and the refined outputs after self-attentive distillation,
both in terms of segmentation and internal details. As men-
tioned in Section 3.1.1, one could easily add or replace in-
termediary modalities (for instance, regressing the objects
lightness maps may not seem fully relevant, though it can
be used to provide the latest layers of the network with in-
formation from the original color domain).

4.3. Comparison with other Domain Adaptation
Approaches

Given the two pre-defined evaluation tasks, we quantita-
tively evaluate the performance of our pipeline, and com-
pare it with usual, state-of-the-art methods, depending on
the available training data (real images, corresponding an-
notations, CAD models, corresponding realistic textures, or
real images from a different domain). For each setup, the
same task-specific network is used (ResNet for IC on T-
LESS, Triplet CNN for ICPE on LineMOD), trained by it-
self, against our augmentation pipeline A (with texturing
augmentation disabled for pre-textured data), or along some
auxiliary generators or sub-networks for domain adaptation



Table 2: Quantitative comparison of recognition pipelines, depending on the available training data, for the task of localized instance
classification and pose estimation (ICPE) on LineMOD [14] with T triplet CNN [43, 46].

Training Angular error Classification
accuracy

Data Method Median Mean

GT T (Xr
train)→ y (∅) 9.50◦◦◦ 12.42◦◦◦ 99.72%

T d
(
A(Xs,t) ; Xr

train

)
→ y, cdom (DANN) 14.33◦ 30.45◦ 89.84%

Gpix(Xs,t, Xr
train)→ Xr′ , T (Xr′)→ y (PixelDA) 15.38◦ 35.17◦ 91.06%

T d
(
A(Xs) ; Xr

train

)
→ y, cdom (DANN) 43.63◦ 68.59◦ 40.13%

Gpix(Xs, Xr
train)→ Xr′ , T (Xr′)→ y (PixelDA) 95.14◦ 97.36◦ 35.39%

T (Xs,t)→ y (∅) 88.62◦ 92.35◦ 43.62%
T
(
A(Xs,t)

)
→ y (∅) 70.18◦ 84.22◦ 49.11%

Gpre(Xr
other)→ Xs , T (Xs)→ y (Iro et al.) 52.43◦ 71.69◦ 41.49%

T
(
A(Xs)

)
→ y (∅) 41.23◦ 67.50◦ 34.38%

G(A(Xs)
)
→ Xs , T (Xs)→ y (ours) 13.37◦ 27.46◦ 91.28%

(e.g. for PixelDA [4] or DANN [10]; for T used with a pre-
trained monocular-RGB-to-depth generator Gpre [23]; or
for SynDA).

For both tasks, we consistently observe the positive im-
pact of SynDA on recognition, as shown in Tables 1-2. De-
spite being trained on the scarcest data, with the largest
domain gap, our generator G brings the performance of
the task-specific methods T above other solutions trained
on more relevant information. The accuracy improvement
is even more apparent for the pose regression task, as our
pipeline precisely recovers geometrical features. It also ap-
pears clear that decoupling data augmentation and recog-
nition training is beneficial, as illustrated by the accuracy
difference between the two last lines of each table. This fol-
lows our initial intuition on the logic of teaching task meth-
ods in the available clean synthetic domain, while learn-
ing in parallel a mapping to project real data into this prior
domain. This separation furthermore makes it straightfor-
ward to train new task-specific methods, with G ready to be
plugged on top.

4.4. Architecture Validation through Ablation

Table 3 presents the results of an extensive ablation
study done on our novel network architecture. By con-
solidating several state-of-the-art works on generative net-
works [22, 18, 45, 48], we developed a robust architecture
to tackle extreme domain mappings (e.g. real RGB to syn-
thetic normals).

As mentioned in Section 4.2, we can observe how the
addition of decoders for auxiliary tasks improves the final
output by synergy. The inclusion of self-attention mecha-

nism (SA layers) in the distillation module further enhances
this effect, weighting the contribution of features between
intermediary modalities, but also between distant internal
regions. Finally, the benefits of passing messages directly
between each encoder block and their opposite block for
each decoder D1..m, through the use of skip layers (c.f .
U-Net architectures [22, 49]), is clearly highlighted in the
table, as well as the use of a triplet loss Lt at the bottleneck
to improve the quality of the embedding space.

All in all, our network relies on a powerful multi-task
architecture, structured to tackle real-to-synthetic mapping
challenges, by utilizing any available synthetic modalities
to learn robust features. One could easily build on this so-
lution by considering additional or more use-case relevant
sub-tasks (e.g. contour regression, part segmentation, etc.).

5. Conclusion
We present SynDA, a novel strategy for complex domain

adaptation scenarios. Applied to several CAD-based recog-
nition tasks and making use of a state-of-the-art genera-
tive network, our solution outperforms other supervised or
unsupervised methods. For the challenging task of local-
ized instance recognition and pose estimation e.g. on RGB
LineMOD data, SynDA more than doubles the angular and
class accuracy compared to other methods trained on syn-
thetic data, and even surpasses previous domain adaptation
methods requiring real data.

This is made possible by tackling the domain mapping
from the opposite direction, using our custom generator to
denoise unseen real samples and retain only the recognition-
relevant features available during training.



Table 3: Architectural ablation study, with the “IC on LineMOD” task.

Encoder Decoders Distill. Layers Losses Angular error Classification
accuracy

E DN DD DM DL R
−→
SA

−−→
skip L1..m

g Lt Median Mean

X X X X 15.75◦ 32.80◦ 87.35%

X X X X X 15.76◦ 33.76◦ 88.04%

X X X X X X X X 14.32◦ 30.31◦ 89.00%

X X X X X X X X 14.48◦ 30.71◦ 89.32%

X X X X X X X X X 14.22◦ 29.26◦ 89.67%

X X X X X X X X 14.66◦ 30.83◦ 88.59%

X X X X X X X X 16.07◦ 33.22◦ 87.69%

X X X X X X X X X 14.43◦ 29.56◦ 90.38%

X X X X X X X X X X 13.37◦◦◦ 27.46◦◦◦ 91.28%

Supplementary Material
A. Schematic Overview of the Different Gap-

Bridging Methods
Table S1 contains a schematic comparison of the training

and testing solutions for recognition tasks addressed in the
paper, depending on the type of data available for training
(real images, corresponding annotations, CAD models, cor-
responding realistic textures, or real images from a different
domain).

While usual domain adaptation methods such as Pix-
elDA [4] or DANN [10] focus on use-cases when real-world
data are available—in terms or unlabeled target images but
also realistic textures for 3D CAD models—we develop our
solution on the assumption of minimal information on the
target domain. For CAD-based recognition applications,
we demonstrate in the main paper how SynDA yields state-
of-the-art results when only pure geometrical data is avail-
able. For comparison, both PixelDA [4] and DANN [10]
fail to map real and synthetic domains when provided with
texture-less rendered images and real pictures, as illustrated
in Figure S1.

B. Implementation Details
This section contains more in depth details on network

architecture and parameters, augmentation pipeline, as well
as synthetic data generation.

B.1. Network Architecture and Parameters

Figure 3 of the paper already provides the readers with
an exhaustive overview of our state-of-the-art architecture,
layer by layer. Our solution is implemented in Python using
the TensorFlow framework [1].

Layer parameterization:

• All Convolution layers have 4× 4 filter kernels;

• All Dropout layers have a dropout rate of 50%;

• All LeakyReLU layers have a leakiness of 0.2;

• Input and output images are 64 × 64px, normalized
between −1 and 1.

Training parameters:

• Weights are initialized from a zero-centered Gaussian
distribution, with a standard deviation of 0.02 ;

• The Adam optimizer [20] is used, with β1 = 0.5;

• The base learning rate is initialized at 2e−4.

B.2. Augmentation Pipeline Details

Simple random shading: To generate a virtually infinite
dataset of color images, we transform our set of geomet-
rical maps (i.e. normal maps) into random images with an
online augmentation procedure. Its main and first opera-
tion thus consists in shading, i.e. generating lightness maps
from the normal maps, sampling random light conditions. It
is done through a custom Blinn-Phong shading [3] method,
as described in Algorithm 1.

Lighting parameters, defined through the augmentation
noise vector z, are sampled using uniform distributions e.g.
U(0.05, 0.3) for each color components of a, U(0.1, 0.8)
for each component of d, U(0, 0.1) for each component of
s, U(0.9, 1.1) for each component of sp, etc.
Stochastic texturing: Random textures are applied to the
objects every iteration. They are noise-generated, using the
open-source FastNoise library [33]. In particular, Perlin
noise [34], cellular noise [44], and white noise are used,



Table S1: Visual comparison of recognition schemes, depending on the available training data.

Training Inference
Data Method

GT supervised B A B A ✓ T B A B A ✓ T 
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sampled from the uniform distribution U(0.0001, 0.1), to
obtain hue and saturation maps. These maps are either di-
rectly merged to the lightness map of the objects to obtain
their final HSL appearance, or either used as texture maps.
In the second case, the original surface normals are pro-
jected on two dimensions (randomly dropping their X , Y
or Z axis), to be used as an UV map for the texture.
Background addition: As mentioned in the paper, random
backgrounds are added, either generated using the afore-
mentioned noise sources or obtained by randomly crop-
ping and resizing color images from public datasets (e.g.
COCO [25]). The background pixel values are multiplied
by the normalized foreground brightness, to get more ho-
mogenized results.
Random occlusions: To generate occlusions we use a func-
tion from [32], where they generate 2D obstacles for a drone
moving planning simulation. The points p are sampled by
walking around the circle taking random angular steps and
random radii at each step. A polygon is then generated us-
ing the points p and filled with either random noise (c.f .
main paper) or textures if provided.

The polygon’s complexity is defined by two parame-
ters: σ (”spikeyness”), which controls how much point co-
ordinates vary from the radius rave, and ε (”irregularity”),
which sets an error to the default uniform angular distribu-
tion. Variables cX and cY define the polygon center; rave

its average radius; δθ and θ are a vector of angle steps, and
a vector of angles respectively; and lx × ly are the image
dimensions (equal to 64 × 64 px here). The pseudocode is
listed in Algorithm 2.

Occlusion parameters are also set by the noise vector z.
In our experiments, the following sampling distributions are
used (with B – Bernoulli, U – Uniform, andN – Gaussian):

• B
(
U(0, lx/4), U(lx/4, l)

)
for cX ,

B
(
U(0, ly/4), U(ly/4, l)

)
for cY ;

• U(10, l/4) for rave, with l = min(lx, ly);

• U(3, 10) for Nvert;

• U(0, 0.5) for σ.

B.3. Synthetic Data Generation

Subsection 3.2 of the main paper gives an overview of
the data generation method used for our pipeline. In order
to produce normal maps of objects of interest for our aug-
mentation pipeline, we use OpenGL [19] with a custom nor-
mal shader printing its output in 3 output channels. View-
point are defined by the verteces of an icosahedron cen-
tered on target objects. In order to achieve a finer sampling,
one needs to subsequently subdivide triangular faces of the
icosahedron to smaller triangles until the desired level of
detail is achieved. In-plane rotations can also be introduced
by rotating the camera around the ray pointing to the object.

re
al

 
o

u
tp

u
t 

re
al

 
in

p
u

t 
o

u
p

u
t 

in
p

u
t 

Figure S1: Qualitative comparison of results for PixelDA [4] trained with or without realistic texturing of the target objects. The
method fails to bridge the realism gap when too wide.



Algorithm 1: Approximate Blinn-Phong shading [3]
from normal maps

Input: N ∈ Rh×w×3 normal map, L ∈ R3

directional light vector, a ∈ R3 RGB ambient
light coefficient, d ∈ R3 RGB diffusion
coefficient, s ∈ R3 RGB specularity
coefficient, sp ∈ R specular hardness, fx ∈ R2

pixel focal range used to render N
Output: M ∈ Rh×w×3 color lightness map
/* - Simplification #1: we recover

an approximate viewer vector V
from N indices and fx. */

/* - Simplification #2: we suppose
the light source at +∞ distance,
hence the same L for every
surface point. */

/* - Note: we use Einstein notation
for matrix-vector operations. */

/* */
/* View vector approximation: */

1 V ←
{

(j, i, 1)
}h,w
j=0,i=0

;

2 Vj ← − (Vj−h/2)
fx,j

;Vi ← − (Vi−w/2)
fx,i

;

3 V ← V
‖V ‖ ;

/* Computation of half-way vector
map: */

4 H ← V + L;
/* Diffuse shading: */

5 Dij ← N ij
kL

k;
/* Specular shading: */

6 Sij ← (N ij
kH

k
ij)

sp ;
/* Adding all contributions (given

eijc = ei ⊗ ej ⊗ ec) : */
7 M ijc ←

min
(

max(a · eijc + d ·Dijec + s · Sijec , 0) , 1
)
;

8 return M

For the T-LESS dataset [15], synthetic data is rendered
using the full icosahedron with a radius of 600mm and
3 subdivisions since real sequence contain objects shown
from below as well. No in-plane rotations were added to the
training data neither due to the same reason. This resulted
in generation of 642 samples per object (given 11 objects
— numbers 2, 5, 6, 7, 8, 11, 12, 18, 25, 29 and 30).

LineMOD data was generated using an icosahedron of
radius 600mm with 3 consecutive subdivisions. Only the
upper part of the icosahedron is used since in real se-
quences all objects are shot from above. In-plane rotations
also added for each vertex, parametrized from -45◦ to 45◦

with a stride of 15◦. Rotation invariance of four irregu-
lar LineMOD objects (bowl, cup, eggbox, and glue) was

Algorithm 2: Random polygon generation [32]

Input: z ∈ Zk noise vector
Output: p = {pi ∈ R2}Nvert

i=0 polygon points
/* occlusion parameters sampling:

*/
1 cx, cy, rave, Nvert, ε, σ ← sampleFromVector2(z);
/* angle steps generation: */

2 sum = 0 ;
3 for i ∈ {1, . . . , Nvert} do
4 δθi ← U(2π/Nvert − ε, 2π/Nvert + ε) ;
5 sum← sum+ step ;
6 end
/* steps normalization: */

7 k ← sum/(2π) ;
8 for i ∈ {1, . . . , Nvert} do
9 δθi ← δθi/k ;

10 end
/* polygon points generation: */

11 θ1 ← U(0, 2π) ;
12 for i ∈ {1, . . . , Nvert} do
13 r ← N (rave, σ) ;
14 pi ← (cX + r cos(θi), cY + r sin(θi)) ;
15 θi ← θi + δθi
16 end
17 return p

(a) Axis symmetric (b) Plane symmetric (c) Regular

Figure S2: Vertices sampling for different LineMOD objects –
each vertex represents a camera position from which the object is
rendered.

also taken into account by limiting the amount of sampling
points, such that each patch is unique. Figure S2 demon-
strates the results of the output vertex sampling for different
object types. We therefore generated 2,359 data points for
each of the 11 regular objects, 1,239 for 3 plane symmetric
objects (cup, glue, and eggbox) and 119 for the axis sym-
metric bowl.

C. Additional Qualitative Results
Figures S3 and S4 contain further visual results, demon-

strating how our pipeline fairs on real color images when
trained purely on synthetic geometrical data.
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Figure S3: Qualitative results on LineMOD [14] for SynDA trained on texture-less CAD data.
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Figure S4: Qualitative results on T-LESS [15], for SynDA trained on texture-less CAD data.
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