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Geometric and Physical Constraints for
Drone-Based Head Plane Crowd Density Estimation
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Abstract— State-of-the-art methods for counting people in
crowded scenes rely on deep networks to estimate crowd density
in the image plane. While useful for this purpose, this image-
plane density has no immediate physical meaning because it is
subject to perspective distortion. This is a concern in sequences
acquired by drones because the viewpoint changes often. This
distortion is usually handled implicitly by either learning scale-
invariant features or estimating density in patches of different
sizes, neither of which accounts for the fact that scale changes
must be consistent over the whole scene.

In this paper, we explicitly model the scale changes and
reason in terms of people per square-meter. We show that feed-
ing the perspective model to the network allows us to enforce
global scale consistency and that this model can be obtained on
the fly from the drone sensors. In addition, it also enables us
to enforce physically-inspired temporal consistency constraints
that do not have to be learned. This yields an algorithm that
outperforms state-of-the-art methods in inferring crowd density
from a moving drone camera especially when perspective effects
are strong.

I. INTRODUCTION

With the growing prevalence of drones, drone-based crowd
density estimation becomes increasingly relevant to applica-
tions such as autonomous landing and video surveillance. In
recent years, the emphasis has been on developing counting-
by-density algorithms that rely on regressors trained to es-
timate the density of crowd per unit area so that the total
numbers of people can be obtained by integration, without
explicit detection being required. The regressors can be based
on Random Forests [1], Gaussian Processes [2], or more
recently Deep Nets [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], with most state-of-the-art
approaches now relying on the latter.

While effective, these algorithms all estimate density in
the image plane. As a consequence, and as can be seen in
Fig. [Tfa,b), two regions of the scene containing the same
number of people per square meter can be assigned different
densities. However, for the purposes of autonomous landing
or crowd size estimation, the density of people on the
ground is a more relevant measure and is not subject to such
distortions, as shown in Fig. EKC).

In this paper, we therefore introduce a crowd density
estimation method that explicitly accounts for perspective
distortion to produce a real-world density map, as opposed
to an image-based one. To this end, it takes advantage of
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Fig. 1: Measuring people density. (a) An image of Piazza
San Marco in Venice. The two purple boxes highlight patches in
which the crowd density per square meter is similar. (b) Ground-
truth image density obtained by averaging the head annotations in
the image plane. The two patches are in the same locations as in
(a). The density per square pixel strongly differs due to perspective
distortion: the farther patch 2 wrongly features a higher density
than closer patch 1, even though the people do not stand any closer
to each other. (¢) By contrast the ground-truth head plane density
introduced in Section [[1I-Alis unaffected by perspective distortion.
The density in the two patches now has similar peak values, as it
should.

the fact that drone cameras can be naturally registered to the
scene using the drone’s internal sensors, which as we will
see are accurate enough for our purposes. This contrasts with
methods that implicitly deal with perspective effects by either
learning scale-invariant features [4], [6], [8] or estimating
density in patches of different sizes [5]. Unlike these, we
model perspective distortion globally and account for the
fact that people’s projected size changes consistently across
the image. To this end, we feed to our density-estimation
CNN not only the original image but also an identically-
sized image that contains the local scale, which is a function
of the camera orientation with respect to the ground plane.

An additional benefit of reasoning in the real world is
that we can encode physical constraints to model the motion
of people in a video sequence. Specifically, given a short
sequence as input to our network, we impose temporal
consistency by forcing the densities in the various images
to correspond to physically possible people flows. In other
words, we explicitly model the motion of people, with
physically-justified constraints, instead of implicitly learning
long-term dependencies only across annotated frames, which
are typically sparse over time, via LSTMs, as is commonly
done in the literature [7].

Our contribution is therefore an approach that incorporates
geometric and physical constraints directly into an end-to-
end learning formalism for crowd counting using information
directly obtained from the drone sensors. As evidenced by



our experiments, this enables us to outperform the state-
of-the-art on a drone-based video sequences with severe
perspective distortion.

II. RELATED WORK

Early crowd counting methods [18], [19] tended to rely on
counting-by-detection, that is, explicitly detecting individual
heads or bodies and then counting them. Unfortunately, in
very crowded scenes, occlusions make detection difficult, and
these approaches have been largely displaced by counting-
by-density-estimation ones, which rely on training a regressor
to estimate people density in various parts of the image and
then integrating. This trend started with [1], and [2], which
used Random Forests and Gaussian Process regressors, re-
spectively.

Even though approaches such as these early ones that
rely on low-level features—a survey of which can be found
in [8]—can be effective they have now mostly been super-
seded by CNN-based methods. The same can be said about
methods that count objects instead of people [20], [21].

a) Perspective Distortion: Earlier approaches to han-
dling such distortions [3] involve regressing to both a crowd
count and a density map. Unlike ours that passes a per-
spective map as an input to the deep network, they use
the perspective map to compute a metric and use it to
retrieve candidate training scenes with similar distortions
before tuning the model. This complicates training, which
is not end-to-end, and decreases performance.

These approaches were recently extended by [6], whose
SwitchCNN exploits a classifier that greedily chooses the sub-
network that yields the best crowd counting performance.
Max pooling is used extensively to down-scale the density
map output, which improves the overall accuracy of the
counts but decreases that of the density maps as pooling
incurs a loss in localization precision.

Perspective distortion is also addressed in [5] via a scale-
aware model called HydraCNN, which uses different-sized
patches as input to the CNN to achieve scale-invariance. To
the same end, different kernel sizes are used in [4] and in [15]
features from different layers are extracted instead. In the
recent method of [8], a network dubbed CP-CNN combines
local and global information obtained by learning density
at different resolutions. It also accounts for density map
quality by adding extra information about the pre-defined
density level of different patches and images. While useful,
this information is highly scene specific and would make
generalization difficult. More recent works use different
techniques, such as a growing CNN [12], fusing crowd
counting with people detection [10], adding a new measure-
ment between prediction and ground truth density map [17],
using a scale-consistency regularizer [9], employing a pool
of decorrelated regressors [13], refining the density map in
an iterative process [16], leveraging web-based unlabeled
data [14], to further boost performance. However, none of
them is specifically designed to handle perspective effects.

In any event, all the approaches mentioned above rely
on the network learning about perspective effects without

explicitly modeling them. As evidenced by our results, this
is suboptimal given the finite amounts of data available
in practical situations. Furthermore, while learning about
perspective effects to account for the varying people sizes,
these methods still predict density in the image plane, thus
leading to the unnatural phenomenon that real-world regions
with the same number of people are assigned different
densities, as shown in Fig. [[(b). By contrast, we produce
densities expressed in terms of number of people per square
meter of ground, such as the ones shown in Fig. EKC), and
thus are immune to this problem.

b) Temporal Consistency: The recent method of [7]
is representative of current approaches in enforcing temporal
consistency by incorporating an LSTM module [22] to
perform feature fusion over time. This helps but can only
capture temporal correlation across annotated frames, which
are widely separated in most existing training sets. In other
words, the network can only learn long-term dependencies
at the expense of shorter-term ones.

By contrast, since we reason about crowd density in real
world space, we can model physically-correct temporal de-
pendencies via frame-to-frame feasibility constraints, without
any additional annotations.

III. PERSPECTIVE DISTORTION

All existing approaches estimate the crowd density in the
image plane and in terms of people per square pixel, which
changes across the image even if the true crowd density per
square meter is constant. For example, in many scenes such
as the one of Fig.[I|a), the people density in farther regions is
higher than that in closer regions, as can be seen in Fig. [T[b).

In this work, we train the system to directly predict
the crowd density in the physical world, which does not
suffer from this problem and is therefore unaffected by
perspective distortion, assuming that people are standing on
an approximately flat surface. Our approach could easily be
extended to a non flat one given a terrain model. In a crowded
scene, people’s heads are more often visible than their feet.
Consequently, it is a common practice to provide annotations
in the form of a dot on the head for supervision purposes.
To account for this, we define a head plane, parallel to the
ground and lifted above it by the average person’s height.
We assume that the camera has been calibrated so that we
are given the homography between the image and the head
plane.

A. Image Plane versus Head Plane Density

Let H; be the homography from an image I; to its
corresponding head plane. We define the ground-truth density
as a sum of Gaussian kernels centered on peoples’ heads in
the head plane. Because we work in the physical world, we
can use the same kernel size across the entire scene and
across all scenes. A head annotation F;, that is, a 2D image
point expressed in projective coordinates, is mapped to H; P;
in the head plane. Given a set A; = {P}, ..., P{*} of ¢; such
annotations, we take the head plane density G/, at point P’
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Fig. 2: Three-stream architecture. A spatial stream is a
CSRNet [11] with 3 transposed convolutional layers, that takes as
input the image and a perspective map. It is duplicated three times
to process images taken at different times and minimize a loss that
enforces temporal consistency constraints.

expressed in head plane coordinates to be

Gi(P') = ijN(P’;HiPZ,o) : (1)

j=1

where N (.; i, o) is a 2D Gaussian kernel with mean u and
variance o. We can then map this head plane density to the
image coordinates, which yields a density at pixel location
P given by

Gi(P) = Gi{(H;P) . 2)

An example density G; is shown in Fig. [T{c). Note that,
while the density is Gaussian in the head plane, it is not in
the image plane.

B. Geometry-Aware Crowd Counting

Since the head plane density map can be transformed into
an image of the same size as that of the original image, we
could simply train a deep network to take a 3-channel RGB
image as input and output the corresponding density map.
However, this would mean neglecting the geometry encoded
by the ground plane homography, namely the fact that the
local scale does not vary arbitrarily across the image and
must remain globally consistent.

To account for this, we associate to each image [ a
perspective map M of the same size as I containing the
local scale of each pixel, that is, the factor by which a small
area around the pixel is multiplied when projected to the
head plane. We then use a convolutional network with 4
input channels instead of only 3. The first three are the usual
RGB channels, while the fourth contains the perspective
map. We will show in the result section that this substantially
increases accuracy over using the RGB channels only. This
network is one of the spatial streams depicted by Fig. [2}
To learn its weights ©, we minimize the head plane loss
Ly (I, M,G;0), which we take to be the mean square error
between the predicted head plane density and the ground-
truth one.

To compute the perspective map M, let us first consider
the image pixel (x,y)T and an infinitesimal area dx dy

surrounding it. Let (2,4’)T and da’dy’ be their respective
projections on the head plane. We take M (z,y), the scale
at (z,y)7, to be (dz'dy’)/(dxz dy), which we compute as
follows. Using the variable substitution equation, we write

de'dy’ = | det(J(z,y))|dz dy , (3)

where J(x,y) is the Jacobian matrix of the coordinate
transformation at the point (x,y)T:
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The scale map M is therefore equal to
M(z,y) = [det(J(z, y))]- (5)

The detailed solution can be found in [23]. Eq. |§] enables us
to compute the perspective map that we use as an input to
our network, as discussed above. It also allows us to convert
between people density F' in image space, that is, people
per square pixel, and people density G’ on the head plane.
More precisely, let us consider a surface element dS in the
image around point (z,y)T7. It is scaled by H into dS’ =
M (x,y)dS. Since the projection does not change the number
of people, we have

F(z,y)dS =
:>F(l‘,y) =

G'(a',y)dS" = G'(a',y' ) M (2, y)dS
M(z,y)G'(z",y) . (6)
Expressed in image coordinates, this becomes

F(x,y) = M(z,y)G(z,y) , (7

which we use in the results section to compare our algorithm
that produces head plane densities against the baselines that
estimate image plane densities.

C. Obtaining scene geometry from UAV sensors

We calculate the homography matrix H using the camera’s
altitude h and pitch angle 0 reported by the UAV sensors. We
choose the world coordinate frame such that the head plane
is given by Z = 0 and the origin (0,0,0)7 is directly under
the UAV. The camera extrinsics are described by the rotation
matrix R = R, (5 +6) and translation vector ¢ = (0,0, h)T.

The relation between a point (x, yr, 0)T on the head plane
and its projection (u,v)T onto the image is expressed by the
following equation, in homogenous coordinates:

u Ry Rip Riz U zZ
v| =K [Ro1 Rax Ros to E 3
1 R31 R3x Rsz t3 1

where K is the camera’s intrinsic matrix and w # 0 is an
arbitrary scale factor. Solving for (xp,y)T we obtain:
-1

Tp R1 1 R1 2 t 1 u
Yp| =W K R21 R22 tg v . (9)

1 R31 Rsz 13 1
The transformation from the image to the head
plane is  therefore given by the homography

H=(K[ R |R|t]) "



IV. TEMPORAL CONSISTENCY

The spatial stream network depicted at the top of Fig.
operates on single frames of a video sequence. To increase
robustness, we now show how to enforce temporal consis-
tency across triplets of frames. Unlike in an LSTM-based
approach, such as [7], we can do this across any three frames
instead of only across annotated frames. Furthermore, by
working in the real world plane instead of the image plane,
we can explicitly exploit physical constraints on people’s
motion.

A. People Conservation

An important constraint is that people do not appear or
disappear from the head plane except at the edges or at
specific points that can be marked as exits or entrances. To
model this, we partition the head plane into K blocks. Let
N(k) for 1 < k < K denote the neighborhood of block By,
including By itself. Let m}, be the number of people in By
at time ¢t and let tg < t1 < to be three different time instants.
In experiments, we empirically set the block size to 30 by
30 pixels.

If we take the blocks to be large enough for people not
be able to traverse more than one block between two time
instants, people in the interior blocks can only come from a
block in N (k) at the previous instant and move to a block
in N (k) at the next. As a consequence, we can write

Vk m}? < Z mfo and m? < Z m?.
ieN (k) ieN (k)

(10)

In fact, an even stronger equality constraint could be imposed
as in [24] by explicitly modeling people flows from one block
to the next with additional variables predicted by the net-
work. However, not only would this increase the number of
variables to be estimated, but it would also require enforcing
hard constraints between different network’s outputs.

In practice, since our networks output head plane densities,

we write
> Gy,

(z',y")TE€By

(1)

ml, =

where Gt is the predicted people density at time ¢, as defined
in Section [[TI-Bl This allows us to reformulate the constraints
of Eq. [I0]in terms of densities.

B. Siamese architecture

To enforce these constraints, we introduce the siamese
architecture depicted by Fig. 2| with weights ©. It comprises
three identical streams, each stream is a CSRNet [11] with
3 transposed convolutional layers added before the last
convolutional layer, so that the input image and output
density map have the same size. These three identical steams
take as input images acquired at times ¢y, t;, and t, along
with their corresponding perspective maps, as described
in Section Each one produces a head plane den-
sity estimate G ' and we define the temporal loss term
Lp(Ito It 12 Mt Mt M'2; ©) as

K

% [(maz(0,m} —U))? + (maz(0,mi} —U2))?], (12)

k=1

where mi is the sum of predicted densities in block By, as
in Eq. and Ui = Xien(r) M is the sum of densities in
the neighborhood of Bjy.

In other words, Lt penalizes violations of the constraints
of Eq. At training time, we minimize the composite loss

Lu(I M"™ G ©)+Lp(I' I 12 M M™, M™;0), (13)

where Ly is the head plane loss introduced in Section
Since the loss requires the ground truth density only for
frame I'*, we only need annotations for that frame. There-
fore, we can use arbitrarily-spaced and unannotated frames to
impose temporal consistency and improve robustness, which
is not something LSTM-based methods can do.

V. EXPERIMENTS
A. Datasets and Experimental Setup

Our approach is designed to handle perspective effects
as well as to enforce temporal consistency. As there is no
publicly available drone-based crowd counting dataset, we
filmed a six-minute long sequence using a DJI phantom 4
pro drone flying over a university campus and filming it
from many different perspectives. We manually annotated
90 images such as the one of Fig. 3] and used 54 of them
for training and validation purposes and the remainder for
testing. The people count ranges from 54 to 301 in this
dataset. We will refer to it as Campus. In the supplementary
material, we provide a video showing our results on a
subsequence.

To demonstrate that our approach also works in a very
different context, we also evaluate it on the publicly available
Venice [25] dataset, which was recorded using a mobile
phone. It features Piazza San Marco as seen from various
viewpoints on the second floor of the basilica and substan-
tial perspective effects. This dataset comprises 4 different
sequences and 167 annotated frames. Fig. |1| depicts one of
these. The white lines on the Piazza make it easy to esti-
mate the plane homography using standard photogrammetric
techniques and the sequence is thus a good proxy for drone-
acquired footage.

We focus on head-plane and ground-plane densities, as
opposed to image-plane densities, because they are the ones
that have a true physical meaning independently of the
camera motion. In this section, we therefore report our results
and baselines ones in head-plane density terms. However, we
also provides image plane density results to demonstrate that
our model outperforms the baselines in both cases.

B. Baselines

We benchmark our approach against three recent methods
for which the code is publicly available: CSRNet [11],
MCNN [4] and SwitchCNN [6]. As discussed in the related
work section, they are representative of current approaches
to handling the fact that people’s sizes vary depending on
their distance to the camera.

We will refer to our complete approach as OURS. To
tease out the individual contributions of its components, we



also evaluate two degraded versions of it. OURS-NoGeom
uses the CNN to predict densities but does not feed it
the perspective map as input. OURS-GeomOnly uses the
full approach described in Section but does not impose
temporal consistency.

C. Evaluation Metrics

Most previous works in crowd density estimation use mean
absolute error (MAE) and root mean squared error (RMSE)
as their evaluation metric. They are defined as

N
MAE :% 21: |zi — Z;| and RMSE =

where N is the number of test images, z; denotes the true
number of people inside the ROI of the ith image and Z;
the estimated number of people. While indicative, these two
metrics are very coarse, since these two metrics only take
into consideration the total number of people irrespective
of where in the scene they may be, so they are incapable of
evaluating the correctness of the spatial distribution of crowd
density. A false positive in one region, coupled with a false
negative in another, can still yield a perfect total number of
people.

We therefore introduce one additional metric that provide
finer grained measures, accounting for localization errors. We

name it the mean pixel-level absolute error (MPAE) and take
it to be

ZLZ]H:QIZ; |Di7j7k_Di,J}k Xl{Di,j,keRi}
N ;
where D; ;1 is the ground-truth density of the ¢th image
at pixel (4, k), lA)i’j,k is the corresponding estimated density,
R; is the ROI of the ith image, 1.y is the indicator function,
and W and H are the image dimensions. MPAE quantifies
how wrongly localized the densities are.

The baseline models [4], [11], [6] are designed to predict
density in the image plane instead of the head plane, as
our model does. Fortunately, the densities in image plane
and head plane can be easily converted into each other, as
shown in Section For a fair comparison, we therefore
train the baseline models [4], [11], [6] as reported in original
the papers to estimate density in the image-plane. We then
used Eq. [/| to convert to head-plane density. Thus we can
use the MAE, RMSE, and MPAE metrics to compare both
kinds of densities.

MPAE = (15)

D. Quantitative Evaluation

We report our comparative results in Tables [I}
and Enforcing temporal consistency requires the central
frame to be annotated but the other two can be chosen
arbitrarily. When running OURS, that is, enforcing both ge-
ometry and temporal constraints, we used triplets of images
temporally separated by 1, 5, or 10 frames. We provide a
qualitative comparison in Fig. [3]

In Tables [l and [T, we used Eq. [7] to convert the image
plane densities computed by the baselines into head-plane
densities that can be compared to ours. In Tables |[lI| and
we instead converted our head plane densities into image

Model MAFE | RMSE | MPAFE
CSRNet [11] 50.1 54.2 125.6
MCNN [4] 23.5 30.6 143.9
SwitchCNN [6] 91.0 120.5 330.1
OURS-NoGeom 29.2 34.8 131.2
OURS-GeomOnly 20.1 24.7 135.1
OURS (frame interval 1) 11.9 15.1 116.9
OURS (frame interval 5) 16.1 20.2 113.2
OURS (frame interval 10) 134 17.2 126.2

TABLE I: Comparative results in terms of head plane crowd
density on the Campus dataset.

Model MAFE | RMSE | MPAFE
CSRNet [11] 51.3 57.6 126.4
MCNN [4] 24.2 37.1 146.2
SwitchCNN [6] 91.7 122.1 340.7
OURS-NoGeom 29.8 35.2 132.0
OURS-GeomOnly 21.2 24.7 136.8
OURS (frame interval 1) 12.3 16.0 117.3
OURS (frame interval 5) 16.9 22.3 114.1
OURS (frame interval 10) 14.2 18.0 128.7

TABLE II: Comparative results in terms of image plane
crowd density on the Campus dataset.

plane ones that can be compared to theirs. Either way,
OURS-GeomOnly outperforms the baselines. Furthermore,
imposing temporal consistency gives our approach a further
boost.

VI. CONCLUSION

In this paper, we have shown that providing to a deep
net an explicit model of perspective distortion effects as an
input, along with enforcing physics-based spatio-temporal
constraints, substantially increases performance. In particu-
lar, it yields not only a more accurate people count but also
a better localization of the high-density areas, as can be seen

in Fig. {]

Model MAE | RMSE | MPAE
CSRNet [11] 38.5 42.7 121.3
MCNN [4] 132.7 145.3 367.6
SwitchCNN [6] 61.2 72.9 163.2
OURS-NoGeom 36.8 39.9 115.7
OURS-GeomOnly 26.1 353 107.2
OURS (frame interval 1) 24.8 32.7 103.2
OURS (frame interval 5) 18.2 26.6 98.7
OURS (frame interval 10) 229 34.3 94.2

TABLE III: Comparative results in terms of head-plane
crowd density on the Venice dataset.

Model MAE | RMSE | MPAE
CSRNet [11] 39.2 44.0 124.7
MCNN [4] 133.7 148.4 368.2
SwitchCNN [6] 63.1 75.8 165.4
OURS-NoGeom 37.2 40.4 116.3
OURS-GeomOnly 27.3 37.2 108.9
OURS (frame interval 1) 25.2 334 104.7
OURS (frame interval 5) 18.7 27.0 99.2
OURS (frame interval 10) 23.6 352 95.1

TABLE IV: Comparative results in terms of image plane
crowd density on the Venice dataset.



Fig. 3: Crowd density estimation on the Campus dataset. (a) Input image. (b) ROI overlaid in red. (¢) Ground truth head plane
density. (d-h) Density maps generated by OURS-NoGeom, OURS-GeomOnly, OURS(1), OURS(5), and OURS(10).
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Fig. 4: Crowd density estimation on the Venice dataset.

(a) An image of Piazza San Marco in Venice. The two purple

boxes highlight patches in which the crowd density per square
meter is similar. (b) Ground-truth head plane density. (¢) Density
maps generated by OURS-NoGeom. (d) Density maps generated
by OURS(5). Note that the peak densities are very close, whereas
they are quite different in the OURS-NoGeom version.

This is of particular interest for crowd counting from a
moving drone that can register its camera with respect to
the scene using its internal sensors and therefore estimate
the required perspective model. Our approach is equally
applicable to mobile device that also possess internal sensors
or can use standard photogrammetric techniques to estimate
their 3D pose. In future work, we will incorporate this
approach into the landing system of the drone to allow for
automated landing in potentially crowded scenes.
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