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Abstract— In this paper, a novel robotic grasping system is
established to automatically pick up objects in cluttered scenes.
A composite robotic hand composed of a suction cup and a
gripper is designed for grasping the object stably. The suction
cup is used for lifting the object from the clutter first and
the gripper for grasping the object accordingly. We utilize the
affordance map to provide pixel-wise lifting point candidates
for the suction cup. To obtain a good affordance map, the
active exploration mechanism is introduced to the system. An
effective metric is designed to calculate the reward for the
current affordance map, and a deep Q-Network (DQN) is
employed to guide the robotic hand to actively explore the
environment until the generated affordance map is suitable
for grasping. Experimental results have demonstrated that the
proposed robotic grasping system is able to greatly increase the
success rate of the robotic grasping in cluttered scenes.

I. INTRODUCTION

With the rapid development of e-commerce, a growing
demand has been put on using autonomous robots in lo-
gistics. There have been already a lot of mobile robots
working at real warehouses for product transportation. It is
still a great challenge for the robot to pick and sort products
in real scenarios automatically [1]. This kind of work is
highly dependent on human workers nowadays, which is not
economically and time efficient. In this work, we propose a
novel robotic grasping system which is able to automatically
pick up objects in cluttered scenes. A composite robotic
hand which is able to grasp many kinds of different objects
robustly is designed. A deep Q-Network (DQN) [2] is
employed to guide the robotic hand to actively explore the
environment to find proper grasping points.

The design of robotic hands have been studied for years,
and many different types of robotic hands have been pro-
posed. The robotic hand with suction cup is very popular and
widely used in robotic grasping tasks [3], [4]. It is because
that the suction cup is usually with a simple structure and
robust to many different objects. In [5], self-sealing suction
cup arrays are proposed to greatly improve the robotic
grasping ability in uncertain environments. To increase the
adhesion force of the suction cup, a stretchable suction cup
with electroadhesion is designed [6]. There are also some
other suction cups inspired by biometric designs [7], [8], [9],
[10], [11]. However, the working mechanism of the suction
cup imposes many restrictions on the surface and postures of
the object. In addition, the inconsistency between the moving
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Fig. 1. Grasping System. Our grasping system consists of a composite
robotic hand, a UR5 manipulator, and a Kinect camera. An active explo-
ration strategy is integrated to this system to implement effective robotic
grasping.

direction of the suction cup and the force direction makes
the grasping unstable [12] and causes the working life of the
suction cup short. Therefore, it is important for the robotic
hand to find proper grasping points when using the suction
cup.

Zeng et al. [13] have proposed to use affordance map
to indicate grasping points by analyzing the whole scene,
which greatly improves the accuracy of robotic grasping. The
affordance map is a graph which shows the confidence rate of
each pixel in the input image for grasping. However, since the
environment is usually complex and unstructured, sometimes
the grasping location that the affordance map indicates is
difficult for the robot to grasp. To solve this problem, the
active exploration mechanism is introduced [14], [15], [16].
By actively exploring the environment, the robot is able to
make some changes to the environment until it is suitable
for grasping. For example, when the objects in the scene are
too close to each other for grasping, the robot can actively
explore the environment and change the position of the object
until it is suitable for grasping. Similarly, the robot can
rearrange positions of objects by pushing them apart [17].

In this paper, a composite robotic hand composed of a
suction cup and a gripper is designed. With a deep Q-
Network (DQN), the robotic hand can actively explore the
environment until a good affordance map is obtained. The
whole grasp system (Fig. 1) is able to effectively grasp many
kinds of objects in a real cluttered environment. The main
contributions are summarized as follows:

• A novel composite robotic hand which combines a
suction cup and a gripper is designed. It is able to grasp
different objects quickly and stably.

• An active exploration algorithm which leverages the
deep Q-Network (DQN) is proposed to facilitate the
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robot to actively explore the environment until a good
affordance map is generated.

• The composite hand and the active exploration algo-
rithm are fully integrated and the experimental results
demonstrate the superior performance of this system
when grasping objects in a real cluttered environment.

The rest of this paper is organized as follows. Some related
work is introduced in Section II. A brief overview of the
proposed robotic grasping system is presented in Section
IV-A. Section IV and Section V describes the composite
robotic hand we designed and the grasping strategy in
details. Extensive experimental results are demonstrated in
Section VI to verify the effectiveness of the proposed robotic
grasping system.

II. RELATED WORK

Robotic grasping is playing a more and more important
role in many application areas such as industrial manufactur-
ing, domestic service, logistics, etc. Because of the diversity
and complexity of both the object and environment, higher
requirements have been placed on the design of robotic
hands. In general, robotic hands can be divided into two
classes: 1) robotic hand with suction cup and 2) multi-finger
robotic hand. Either design has its own specific application
scenario. It is difficult to use only one single operation mode
to fulfill all the tasks.

Therefore, many researchers try to leverage advantages
of both types of robotic hands and some composite robotic
hands are proposed [18], [19], [20]. For example, a multi-
functional gripper with a retractable mechanism is designed,
which can switch between suction mode and grasping mode
quickly and automatically [13]. It provides a hardware basis
for implementing different grasp strategies. However, this
multi-functional gripper doesn’t consider the coupling be-
tween the two modes. It can only choose to execute one
operation mode at a time. In addition, Hasegawa et al.
[19] propose the Suction Pinching Hand, which has two
underactuated fingers and one extendable and foldable finger
whose fingertip has a suction cup mounted on it. Experiments
have shown that it can grasp various objects stably by
using both the suction and pinching at the same time. Some
other similar type of robotic hand has already been used in
industrial solutions[21], [22].

Compared with the above composite robotic hand, the
robotic hand proposed in this paper is of a much more
simple and flexible structure. It seamlessly combines both
a suction cup and a two-finger gripper. It has a suction
mode and a grasping mode, which can be coupled to work
simultaneously and also work separately. What’s more, the
proposed composite robotic hand is able to close its two
fingers to push objects in order to actively explore the
environment. A preliminary version of this paper has been
published in [23], which discussed this robotic finger but
it did not provide the design guidelines of the reward. In
this paper, we present more detailed illustrations about the
experimental results and provide the details about the reward
function design for the deep reinforcement learning.

III. SYSTEM OVERVIEW

The pipeline of the proposed robotic grasping system is
illustrated in Fig. 3. The RGB image and depth image of the
scene are obtained firstly. The affordance ConvNet [13] is
then used to calculate the affordance map based on the input
images. A metric Φ is proposed to evaluate the quality of
the current affordance map. If Φ is above a certain threshold
value, the composite robotic hand will implement the suction
operation with the suction cup and then grasp the object
accordingly. Otherwise, the affordance map will be fed into
the DQN, which guides the composite robotic hand to make
some disturbances to the environment by pushing objects in
the front. This process will be iterated until all the objects
in the environment are successfully picked up.

IV. ARCHITECTURE

At present, the robotic hands can be mainly divided into
two classes: 1) robotic hand with suction cup and 2) multi-
finger robotic hand. Either design of the robotic hand has its
own characteristics. It is reasonable to leverage advantages of
both robotic hands to construct a composite one. Therefore,
we propose a new type of composite robotic hand, which
combines a gripper and a suction cup together.

A. Robotic Hand Structure

The structure of our composite robotic hand is shown
in Fig. 2. The composite robotic hand is composed of two
parallel fingers and a suction cup. The two fingers are sym-
metrically distributed on the base. There is a motor-driven
parallelogram mechanism for each finger, which ensures that
the surfaces of the two fingers are always parallel when the
finger is grasping the object.

The suction cup system consists of a suction cup, a push
rod, a cylinder, two air pumps, a miniature motor and a
solenoid valve. The suction cup is placed in the middle of
the two fingers. Two air pumps are respecptively equipped
inside and outside of the composite robotic hand. The inside
one and miniature motor are used for controlling the suction
cup, while the outside one with solenoid valve drives the
push rod with a range of 75mm.

Fig. 2. Structure of the Composite Robotic Hand. The composite robotic
hand is composed of two parallel fingers and a suction cup system.



Fig. 3. System Pipeline. The system firstly obtains the RGB image and depth image of the scene, and the images are fed into the affordance ConvNet to
calculate the affordance map. The system will then evaluate the quality of the affordance map by a metric. If the affordance map is not good enough, the
current affordance map will be fed into the DQN, which can suggest an appropriate operation for the robotic hand to explore the environment. Otherwise,
the composite robotic hand will implement the suction operation and then grasp the object.

B. Grasp Process

During the process of grasping (Fig. 4), the two fingers
are in an open state, and the suction cup is held in the initial
state. The robotic hand moves to the lifting point, and when
the lifting point is reached, the suction cup will be popped
out to approach the surface of the objects. Then the air pump
generates the negative pressure in the suction cup so that the
object is lifted. Next, the push rod retracts to take the object
between the two fingers. Finally, the fingers close to ensure
the stability of the grasp. At last, the object will be released.
The process of releasing the object is opposite to the suction
process.

(a) localization (b) suction (c) grasping

Fig. 4. Object Grasping Process. The suction cup extends first to lift the
object, and then the gripper closes to grasp the object.

C. Characteristics of Grasp Process

Compared with other suction grasping systems, the pro-
posed composite robotic hand uses the two fingers to hold the

object after the suction cup lifts the object, which increases
the stability of the grasp. Especially, when the robotic hand is
moving, the force applied by the fingers and suction cup can
coordinate together to guarantee the object is stably grasped.
Experiments have proved that our composite robotic hand
can grasp objects of different sizes and shapes effectively
and stably. Some results are demonstrated in Fig. 5.

Fig. 5. Prototype and Grasp Experiment. The composite robotic hand
is grasping several objects of different shapes.

V. DEEP Q-NETWORK STRUCTURE

A. Affordance Map

The affordance map is a graph which shows the confidence
rate of each point in input images for grasping [13]. In



Fig. 6. Deep Q-Network Structure. For current RGBD frame, we utilize the affordance map to output a primitive operation guidance, and crop and
resize the input frame around the pixel with maximum confidence. We feed this local patch into 8 paralleled tiny U-Net and 8 diverse action directions are
output on subpixel-wise locations. The reward for this network is calculated according to a specific designed metric which is derived from the affordance
map.

this paper, it is used to provide pixel-wise lifting point
candidates for the suction cup. It solves the problem in
traditional grasping strategy that requires to recognize the
object first before grasping. However, it is inevitable that
sometimes it is hard to distinguish good grasping points from
the obtained affordance map, especially when the scenario is
complicated. In this situation, we propose that the robot is
supposed to have the ability to actively explore and change
the environment until a good affordance map is obtained.

1) Affordance ConvNet: Affordance ConvNet [13] is a
network which takes RGB and depth images as input and
outputs the affordance map which is a dense pixel-wise
heatmap with values ranging from 0 to 1. The closer the
values are to 1, the more preferable the lifting locations are.
For training purpose, we manually label the scene images,
in which areas that are suitable for grasping are annotated.

2) Failure cases: In cluttered scenes, the affordance map
usually fails in three situations. The first situation is when
objects of similar height or color are close to each other
(Fig. 7(a)). These objects are likely to be regarded as one
single object by the affordance ConvNet. In this situation,
the junction between adjacent objects will be identified as
suitable picking point, which will result in grasp failures. The
second situation is when two objects are partially overlapped
(Fig. 7(b)). The two objects may be treated as one by the
affordance ConvNet, and the boundary of the two objects

may be identified as suitable picking location. The third
situation is that when the pose of the object is over-tilted
(Fig. 7(c)). In this case, the picking point indicated by the
affordance map may not be suitable for realistic operation,
especially when the surface of the object is not smooth
enough.

(a) gathering (b) covering (c) tilting

Fig. 7. Affordance Map’s Failure Case. Typical failure situations:
gathering, covering and tilting. In these situations, the affordance map
outputs locations that are not suitable for lifting.

B. Active Exploration

In order to solve the above problem, the active exploration
is introduced into the proposed system. Different from using



only one static affordance map, the robot will actively
explore and change the environment until a good affordance
map is obtained. The deep Q-Network (DQN) is employed to
train an agent which indicates actions given the affordance
map for the current scene. The network structure (Fig. 6)
is based on the U-Net [24], which indicates the pixel-wise
action. U-Net is a powerful and lightweight network structure
proposed recently for image segmentation, including times
of downsampling and upsampling. It demonstrates good
performance in yielding pixel-wise semantic information. To
minimize the size of the network for speed reason, we adjust
this structure to a more tiny one, with one downsampling
and upsampling, and resize the RGBD image to a quarter
resolution.

1) Local patch: Since our goal is to change the scene
according to the current affordance map Ia f f , we don’t need
to consider the whole scene at each time, which may lead
to opposite results. Therefore, we propose a local-patch U-
Net structure in the network, which can obtain a better scene
with less steps and also minimize the model size for faster
computation.

Assuming that in the current state, pM is the most
promising picking point with the highest confidence score
in the affordance map (pM = argmax{Ia f f }). We crop the
input RGBD image around this corresponding pixel with a
size of 128× 128 and downsample it to a size of 32× 32
(32= 128/4) before feeding it into our U-Net based network,
which greatly reduces the model size.

2) Paralleled tiny U-Net: The U-Net [24] is able to
indicate pixel-wise actions given image inputs. For each
action, it outputs a confidence score on each location. We
define 8 specific actions in this work. The robot could push
the object from 8 directions with a fixed distance. We use
Oi = i∗45◦(i = 0, . . . ,7) to denote the directions and the push
distance is half the size of the local patch. So the whole
network contains 8 U-Net modules with the same structure.

The U-Net is trimmed to a tiny one, which down-samples
and up-samples for only once. It is good enough for our input
and suitable for our scenarios with subpixel-wise operation
locations. In this way, the action space of DQN is reduced
for a faster learning.

C. The metric of affordance map

Considering the above mentioned failure cases, a novel
metric Φ is designed to calculate the reward for the current
affordance map, which is useful for evaluating each action
obtained from the DQN. And the next action will be gener-
ated accordingly for the robot to change the current scene.
The process will be iterated until a good affordance map is
obtained.

1) Flatness punishment based on Gaussian distribution:
By analyzing the failure cases of the affordance map, it is
found that the maximum affordance value appears around
the area where there is accumulation or tilting and the
distribution of the affordance values around this area is tend
to be directional (Fig. 8). Thus, we extract the connected
area near this maximum affordance value and binarize the

(a) affordance of directional distribution

(b) affordance of well-distributed distribution

Fig. 8. The Distribution of Affordance Value. When the object of the
maximum affordance value is tilted or piled up with other objects, the
actual distribution of affordance value is directional and different from the
Gaussian distribution. When it is not tilted or separate, the actual distribution
is well-distributed and similar to the Gaussian distribution.

affordance map. A Gaussian fitting is applied to this area
and an estimated affordance value ŝ is obtained. With the
real affordance value s of this specific area and the maximum
affordance value vM , we calculate the standard deviation σ

of the relative deviation e between ŝ and s:

ei j =
ŝi j− si j

vM
, σ =

1
m ·n

√
m

∑
i=0

n

∑
j=0

ei j2 (1)

When σ is small, it indicates that the relative deviation
of ŝ and s is in a very small range of fluctuations, so the
distribution of the affordance value in this connected area is
well-distributed. To evaluate the affordance map by σ , a flat
metric Φ f is introduced as Φ f = e−σ .

(a) suitable scene for suction (b) unsuitable scene for suction

Fig. 9. Leaks of Affordance Map. When the accumulation of objects
occurs near the lift point, there will be often several peaks in the affordance
map.

2) Interpeak intervals: In situation where there are too
many objects in the scene, the affordance map often has sev-



eral peak values. Fig. 9 shows this difference. We calculate
the bounding box of the connected area which is closest to
the maximum affordance value and choose the center of this
area as one peak location. Besides, we find other peaks by
detecting points which have higher values than other points in
other small areas. The coordinate of the maximum affordance
value point is denoted as pM . The length of the bounding box
l and the width w are used to denote the size of the object
that will be lifted. Taking k as the number of all the other
peaks in the affordance map, Pm = {p0 · · · pk−1} as the set of
other peaks’ coordinates, an interval metric Φd is defined:

a =
w+ l

2
(2)

Φd = min{ ||pM− pi||2
a

,1}(i = 0, . . . ,k−1) (3)

3) Maximum affordance: We also take the maximum af-
fordance value vM itself into consideration, which is directly
derived from the ConvNet.

4) Reward design: So the final metric Φ is defined as a
weighted sum of the above three metrics:

Φ = λ f ∗Φ f +λd ∗Φd +λv ∗ vM (4)

where λ f +λd +λv = 1. So Φ ∈ [0,1]. And if the metric of
current frame Φi > 0.85, we assume the scene is good enough
for grasping and the robot stops changing the environment.
Please note that Ref.[23] does not provide the details about
the reward design.

Based on the designed metric, the goal of the agent is
to maximize the value of this metric. Therefore, if Φi is
larger than the metric of last frame Φi−1 by δ , the reward
is 1, otherwise, -1. To reduce the noise interference, we set
δ = 0.01.

VI. EXPERIMENT

We test the proposed grasping system by executing a series
of experiments both in simulation environment and real-
world environment.

A. Experiment of DQN Performance in Simulation Environ-
ment

Fig. 10. Simulation Environment

We choose V-REP[25] as the simulation environment. The
simulation scene (Fig. 10) is just the same as that in [23],
where a UR5 manipulator as well as a robotic hand are
introduced to implement the process of the active exploration
and a Kinect camera is utilized to obtain the visual data.
To simulate a cluttered environment, 11 blocks are added
into the scene and we manually design several challenging
scenes for evaluation. During the training and testing phases,
if the Φ value reaches the threshold, we directly remove the
corresponding object.

We compare the proposed model and the random operation
model. In the random operation model, instead of pushing
the object based on the output of the DQN, a random
pushing action is applied. Within 30 continuous operations,
if 5 objects are removed, the test finishes and it is called a
success. Otherwise, it is called a failure. Three metrics are
used to evaluate their performance: 1) average number of
operations per test, 2) average increment of metric Φ per
push, and 3) test success rate, which defined as the number
of successful tests divided by the number of tests.

In our experiments, we empirically choose the weight
parameters as: λ f = 0.75,λd = 0.15,λv = 0.1. So the metric
will be:

Φ = 0.75∗Φ f +0.15∗Φd +0.1∗ vM (5)

1) Evaluation result: The evaluation results in simulation
environment are shown in Table I and Fig. 11. It can be
seen that compared with random operation model, our model
trained by DQN can improve the metric Φ of the affordance
map more quickly for a higher grasp success rate and the
grasping process is more efficient.

2) Training details: We train our U-Net based DQN
model by RMSPropOtimizer, using learning rates decaying
from 10−3 to 2.5×10−4 and setting the momentum equal to
0.9. Our future discount γ is set to be 0.6 for more attention
on current epoch. The exploration ε is initialized with 1
and then to 0.2, giving allowance for more attempts on new
pushing strategies.

TABLE I
SIMULATION RESULT OF RANDOM OPERATION AND DQN

Method Operation
times

Metric Φ

increment
Test

success rate
Random operation 23.6 0.0216 60.0%

Our model 20.4 0.0219 71.4%

B. Robotic Experiments

1) Experiment setup: We choose Microsoft’s Kinect V2
camera as the image acquisition tool to get the RGB image
and depth image of the scene. The composite robotic hand
is mounted on the UR5 manipulator. We select 40 different
objects to build different scenes for our robotic hand to grasp.

2) Evaluation metric: The evaluation metrics of real-
world experiments are different from those in simulation ex-
periments because the real experiments can be more intuitive.
In addition, we find out that when the object of maximum



Fig. 11. Metric Over Operations. Brown line stands for random
operations. Blue line stands for DQN-based operation. Black line stands
for the metric threshold for object removing. Using DQN-based methods,
the metric of affordance map can reach threshold in less steps compared to
random operations which proves that DQN has learned intelligent strategies
to explore the environment.

affordance value is unable to be lifted, the robot will repeat
this failure operation, as the environment and affordance map
are not changed. Therefore, we define a test as failure if the
lift fails at the same object for 3 consecutive times, while a
test is defined as a success if the 10 objects within a scene are
lifted successfully. Based on that, we defined 3 metrics: 1)
the average number of objects grasped successfully per test,
2) suction success rate, which is defined as number of objects
grasped successfully divided by number of lift operations, 3)
test success rate, which is defined as the number of successful
tests divided by the number of tests.

3) Experiment result: We test our robotic hand in 20 dif-
ferent scenes with static affordance map and with affordance
map optimized by active exploration. The result of every
operation is recorded. Experiment results show that after
active exploration optimization, the system performs better
in suction success rate and test success rate. Compared with
lifting only with static affordance map, the active exploration
reduces the possibility of repeating failure lifts, making it
more robust to the scene. The comparison results are shown
in Fig. 12.

Fig. 12. Comparison results.

When the system only relies on the static affordance map
for grasping, it is likely to fail in cluttered scenes. Fig.
13 shows the result of the grasping experiment using static
affordance map.

(a) typical failure scenes

(b) typical successful scenes

Fig. 13. Typical Failure Scenes and Successful Scenes. The failure
scenes happen because the affordance map regards several close objects as
one single object.

By using the affordance map optimized by active explo-
ration, it is easier for the system to find grasping point.
Therefore, the system can find more reliable grasping point.
In Fig. 14, the robotic hand actively explores the environment
to find proper grasping points.

(a) before disturbance (b) after disturbance

Fig. 14. Exploration Strategy. Our system changes scene that are not
suitable for grasping by pushing in a certain direction with fingers.

However, affordance map optimized by active exploration
still has some problems. There are two main problems.
The first problem is that the proposed metric Φ can not
distinguish all bad scenes that are not suitable for grasping
(Fig. 15(a)). When an object does not have enough support
for lifting, our system can not get this information and this
kind of objects are difficult for grasping. The second problem
is that our DQN sometimes outputs useless pushing action
(Fig. 15(b)) in the area with no objects.

4) Result analysis: In some simple scenes, static affor-
dance map can produce good results by quickly analyzing
the whole scene to get the suitable location for grasping.
However, in cluttered scenes, it is likely to output incorrect
results. Especially, when several objects are very close, the
best grasping point in the affordance map will be at the
boundary of objects, leading to a failure grasp. What’s more,



(a) the object without enough support (b) useless push

Fig. 15. Remaining failure cases with Affordance map optimized by
active exploration.

it may always output the same wrong point, making the
operation efficiency low. In the proposed model, the affor-
dance map is optimized by active exploration and appropriate
operations are generated to push the object away from each
other. The situation of the scene is simplified to make the
object easy to grasp.

However, the proposed grasping strategy is still not per-
fect, there exist some useless pushings including pushing
in the place without any objects and the system can not
recognize all kinds of objects that are not suitable for
grasping. In addition, some objects with uneven surface are
still difficult to lift with this strategy. As the objects are
removed continuously, the scene will become more and more
simple. Accordingly, the strategy is gradually inclined to
adopt static affordance map directly or with less pushing,
so as to ensure the efficiency of grasping.

VII. CONCLUSION

In this work, a novel robotic grasping system is proposed,
which includes a composite robotic hand which combines
a suction cup and a two-finger gripper. At the same time,
a DQN based active exploration approach is applied to
the system to intelligently grasp object in the cluttered
environment. The pushing strategy is used for the robot to
actively explore and change the environment until a good
affordance map is obtained. It has been demonstrated that
it’s more efficient to use the suction cup together with the
two-finger gripper for grasping. And the active exploration
strategy shows superior performance compared to methods
with only static affordance map.
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