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Abstract— Local trajectory optimisation techniques are a
powerful tool for motion planning. However, they often get
stuck in local optima depending on the quality of the initial
solution and consequently, often do not find a valid (i.e.
collision free) trajectory. Moreover, they often require fine
tuning of a cost function to obtain the desired motions. In this
paper, we address both problems by combining local trajectory
optimisation with learning from demonstrations. The human
expert demonstrates how to reach different target end-effector
locations in different ways. From these demonstrations, we
estimate a trajectory distribution, represented by a Probabilistic
Movement Primitive (ProMP). For a new target location, we
sample different trajectories from the ProMP and use these
trajectories as initial solutions for the local optimisation. As the
ProMP generates versatile initial solutions for the optimisation,
the chance of finding poor local minima is significantly reduced.
Moreover, the learned trajectory distribution is used to specify
the smoothness costs for the optimisation, resulting in solutions
of similar shape than the demonstrations. We demonstrate
the effectiveness of our approach in several complex obstacle
avoidance scenarios.

Keywords: motion planning, obstacle avoidance, gradient op-
timisation, probabilistic movement primitives, robot manipula-
tion, learning from demonstrations.

I. INTRODUCTION

Trajectory planning is a classic problem within robotics
research which addresses the issue of traversing a robot
through a potentially complex obstacle-cluttered environment
from a start state to a goal state.

For humans, trajectory planning is relatively straight for-
ward. One of the main goals of this work is to replicate
that natural or human-like motion. This type of motion can
be characterised as one which not only minimises energy
consumption but also avoids motor or actuator damage by
producing a smooth and jerk-free trajectory. Another aspect
of this work is to provide a more general solution to local
planning problems as compared to the work [1] as well as
providing a solution which less frequently gets stuck at local
minima. Utilising learning from kinesthetic demonstrations
provides the opportunity to understand human motion, while
combining this with optimisation-based obstacle avoidance
results in trajectories which can be both reliably generated
and natural looking.

In this work we use Probabilistic Movement Primitives
(ProMPs) to learn the trajectory distribution from which any
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Fig. 1. End-effector trajectories in task space after conditioning from the
learned distribution

number of trajectories could be sampled. The reason for
choosing a probabilistic approach is due to its properties
like time modulation, encoding the variability, conditioning
to desired state etc. For motion planning the conditioned
trajectories can be optimised by minimising the weighted
sum of the smoothness and obstacle costs which produces
a collision-free trajectory. The smoothness cost incorporates
the dynamics of the trajectories by penalising random jerky
motions whereas the force required to push the robot away
from obstacles is encapsulated within the obstacle cost.
We compare the performance of our new planner, based
on ProMPs, against other local planners like CHOMP and
STOMP in respect of planning time, ability to successfully
plan a trajectory and total cost of the final trajectory. To
illustrate that local planners produce a smoother trajectory,
the smoothness cost of the ProMP planner is compared with
a sampling based planner, RRT.

To avoid getting stuck at local minima, initialisation of
the ProMP planner can be achieved with several feasible
trajectories sampled from the conditioned distribution. Un-
like CHOMP, where optimisation is carried out in trajectory
space, our study optimises the cost function in parameter
space. Thus the number of parameters to optimise is con-
siderably reduced and the computational time consequently
much less than is required for CHOMP.
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II. RELATED WORK

The evolution of movement primitives can be traced back
to the late 1990s where the works [2], [3] demonstrated
that several human kinematic movements can be expressed
as a linear combination of a small number of components.
This is known as Principal Component Analysis and states
that 80% of the variance in a human grasp can be captured
using only two principal components [4]. Following this, the
pioneering work by Schaal called the Dynamic Movement
Primitives (DMPs) [5] formalised the theory for trajectory
planning and control for dynamic non-linear systems with-
out causing instability. However, DMPs also have many
weaknesses including their inability to adapt to unforeseen
situations and changing intermediate points. In addition to
these shortcomings, works by [6] have also demonstrated
that DMPs often produce sub-optimal solutions.

To encode variability in movements, a probabilistic frame-
work for motion planning was proposed by Calinon et. al
in [7]. Paraschos et. al. then extended this concept to be
what is known as Probabilistic Movement Primitives [6].
Compared to DMPs, ProMPs is a more general framework
which encodes the distribution of possible trajectories which
can be conditioned to the desired start and goal state to
achieve a motion plan.

Motion planning can generally be categorised into three
sets: sampling-based [8], optimisation based [9] and learning
from demonstrations [1], each of which have advantages and
drawbacks. Sampling-based planners like Rapidly-exploring
Random Trees (RRT) [10] and Probabilistic Road Maps
(PRM) [11], along with its variants, are particularly well
suited for mobile robots and have been used successfully in
computational biology [12], computer graphics [13] and an-
imations [14]. However, sampling-based planners can often
suffer from a high computational cost as discussed in detail
in [15], [16] & [17]. In addition, the random nature of these
algorithms can lead to inconsistent behaviour with a large
amount of variance even when all other constraints are the
same. This level of variation is prone to producing trajec-
tories which a human would likely deem as unnatural like
motion. This can be further emphasised with the introduction
of obstacles. In order to avoid obstacles within the scene,
sampling-based methods utilise a validation condition which
rejects sample positions which would collide with an object,
resulting in trajectories with a potentially low smoothness
cost.

Optimisation planners, on the other hand, were originally
developed by Quinlan and Khatib [18] and requires an objec-
tive function to be minimised which forces the manipulator
to go from a start position to a goal state and can be used
to push the robot away from obstacles. Such algorithms
are often capable of handling constraints imposed by the
platform such as the robots joint limits. However, one of
the main concerns with optimisation based algorithms is
that they depend entirely on the minimising function which
can often become stuck at local minima. In other words,
formulating a convex functional for optimisation is the key to

guaranteeing a solution which in certain task-specific cases,
like a robot disentangling a rope, is extremely difficult [1].
More traditional approaches to robot motion planning are
also typically derived, by an expert, from mathematically-
based policies. This approach not only requires a specialist
to develop it, but is also heavily impacted by inaccuracies of
the world model [19]. This is where learning from demon-
strations (LfD) can be useful. Here, human demonstrations
of a desired motion (which is capable of being taught to a
robot) are provided from which a policy can be produced
in order to replicate the behaviour similar to the actions
which were taught. As a result, complex behaviours can
be adopted without having to be specifically encoded. An
example of using learning from demonstration to produce
motion plans can be found in work by Lauretti et. al. [20] but
it is important to note, however, that where demonstrations
are carried out when there are no obstacles, post-processing
of the trajectories is essential to make the resulting motion
plan obstacle free.

As far as the optimisation is concerned, the result should
be an obstacle-free, smooth trajectory. There are two signif-
icant costs involved in optimisation namely the smoothness
cost of the trajectory and the cost of being near an obstacle.
Various researchers have incorporated smoothness as the sum
of the squared velocity or acceleration or jerk [9], [15]
in trajectory space and hence the number of variables to
optimise is large. To avoid colliding with obstacles, a force
is needed to push the robot away from obstacles. This was
modelled as elastic bands in the work [18].

III. THE PROMP ALGORITHM

A. Learning from demonstrations

In this work, we consider τ to be the trajectory which
maps time to robot configurations (y). This can be written
as τ : [0, 1] −→ y where y ⊂ Rd where ’d’ corresponds to
the number of joints. The linear basis function (φ) model
representation of the robot configuration, yt at any time
instant, t, and the probability of observing a trajectory given
the weight vector w can be written as in [6] as

yt =

[
qt
q̇t

]
=

[
φt
φ̇t

]
w + εy (1)

p(τ |w) =
∏
t

N (yt|Φtw,Σy) (2)

where εy ∼ N (0, Σy) represents the Gaussian noise asso-
ciated with each observation. The choice of basis function
depends on the type of task to be carried out. For example,
Gaussian or Von-Mises basis functions can be used respec-
tively to learn stroke-based or rhythmic movements. The
mean and variance of the weight vector w can be captured
by introducing another parameter θ and the trajectory distri-
bution can finally be obtained as

p(τ ; θ) =

∫
p(τ |w)p(w; θ)dw (3)
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For estimating the weights, a ridge regression could be
carried out as given in eq. (4)

wi = (ΦT Φ + λI)−1 ΦTYi (4)

where Yi is the concatenation of all joint positions from the
demonstrated data. The mean and variance of the parameter
vector, w, are estimated as in eq. (5)

µw =
1

N

N∑
i=1

wi

Σw =
1

N

N∑
i=1

(wi − µw)(wi − µw)T (5)

For a motion planning problem, we need to take the robot
from a start configuration to a goal configuration. This
implies that τ(0) and τ(1) are start and goal configuration
respectively and are known in advance either in task space
or configuration space.

B. Conditioning

One of the most important properties of probabilistic
distributions which is especially useful for motion planning
is conditioning. A probabilistic trajectory distribution can be
conditioned to follow not only the desired start and goal state
but also follow through the via-points [6]. For example if our
trajectory has to pass through a desired state y∗t at any time
point t, it is incorporated by adding a desired observation to
the probabilistic model and using Bayes theorem.

x∗t = {y∗t ,Σy∗} (6)

It can be shown that for Gaussian trajectory distributions, the
new mean and variance of the conditioned trajectory can be
written as

µ[new]
w = µw + L(y∗t − ΦT

t µw)

Σ[new]
w = Σw − LΦT

t Σw (7)

where L is

L = ΣwΦt(Σ
∗
y + ΦT

t ΣwΦt)
−1 (8)

A typical plot of the end-effector trajectory in task space after
conditioning the learned distribution can be seen as shown
in Fig 1.

C. Trajectory optimisation

For the optimisation part, without loss of generality, it is
assumed that the start and goal configurations are collision-
free. We assume at this point the trajectories are already
conditioned and the only objective is obstacle avoidance by
perturbing the conditioned distributions by a small amount
without affecting the conditioned states.

1) Smoothness cost: The time evolution of the trajectory
can be written as

τ = Φw + εy (9)

where Φ is the concatenation of the basis function matrix φ.
The smoothness cost of the trajectory can be described in
the parameter space as

S =
1

2
(w − µw)T Σ−1w (w − µw) +

1

2
α wTw (10)

where µw and Σw are the mean and covariance of the learned
trajectory distribution and α is a regularisation coefficient.
The term 1

2 (w−µw)T Σ−1w (w−µw) penalises those trajecto-
ries which go far away from the mean µw whereas the term
1
2α wTw prevents the parameter w from having very high
values. The gradient of the smoothness cost with respect to
the parameter w is

∇S = Σ−1w (w − µw) + α ∗ w (11)

2) Obstacle cost: As discussed in CHOMP [15], for the
formulation of obstacle cost, we consider that each link of the
manipulator is made up of several geometric primitive shapes
whose dimensions and spacing are good enough to specify
the physical dimensions of the robot. In a similar manner,
we can consider the obstacles in the planning environment to
be made up of several small geometric primitive shapes. For
simplicity, we consider the robot body and the obstacles are
made of several spheres. From the Denavit-Hartenberg [21]
parameters, it is possible to find the forward kinematics and
jacobian of each of the robot body points given the joint
values, yt ⊂ Rd. As mentioned earlier, a trajectory is a time
series of joint values and for one particular trajectory it is
possible to calculate the signed minimum distance between
the robot body spheres and the obstacle spheres. The value
of the signed distance is an indication as to whether the robot
is away from the obstacle (positive), touching the obstacle
(zero) or hitting the obstacle (negative). There are various
ways we could construct such a signed distance field and for
the purpose of our study we used the following

c =

{
0 if d > ε

k(d− ε)2 if d ≤ ε (12)

where d, ε and k are respectively the Euclidean distance
between the sphere surfaces, the threshold value up to which
the robot can reach near the obstacle and a gain parameter.
In order to make sure that the obstacle cost is invariant to the
choice of parameter value, we multiply the cost, c, with the
velocity of the body sphere and the obstacle cost functional
becomes

O[w] =

∫ 1

0

∫
u

c(xu(w, t))

∥∥∥∥ ddtxu(w, t)

∥∥∥∥ du dt (13)

where u and xu represent the body spheres and position
of the body sphere in task space given by the parameter w
and time respectively. The gradient of the obstacle functional
with respect to the parameter w is
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∇O[w] = ΦT

∫
u

JT

[
‖ẋu‖

(
(I − ˆ̇xu ˆ̇xTu )∇c− cκ

)]
(14)

where ẋu, ˆ̇xu, J and κ are respectively the velocity of the
robot body point u, the unit velocity vector, the jacobian of
each robot body point and the curvature of the trajectory
defined by

κ =
1

‖ẋu‖
2(

(I − ˆ̇xu ˆ̇xTu )ẍu (15)

where ẍu is the acceleration.
3) Total objective cost and gradient: From eq. (10) and

eq. (13), the total cost function can be written as

TC = λsmooth × S + λobs ×O (16)

and the gradient becomes

TG = λsmooth ×∇S + λobs ×∇O (17)

where λsmooth and λobs are scalar weight parameters. It is
to be noted that the λ’s need tuning.

The algorithm can be summarised as given below
• Given:

– Start, τ(0) and goal, τ(1) configurations either in
joint or task space

– Kinesthetic demonstration data (joint parameters)
– DH table of the robot
– A weight dependent cost function, C(w)

• Precompute:
– Compute the basis function, Φ
– Compute the mean, µw and covariance, Σw of the

parameter vector
– Compute IK if τ(0) or τ(1) is given in task space.
– Compute µnew

w and Σnew
w

• Repeat Until Convergence:
– Sample weight vector from the learned distribution
– Calculate the total cost and gradient
– Repeat for several iterations if the sampled weight

vector takes the cost to the tolerance:
1) if cost greater than tolerance,

w1 = w − α × C(w)

C ′(w)

2) Calculate trajectory cost, C(w)

IV. EXPERIMENT

A. Methodology

For our experiments, we used Franka Emika’s 7-DOF
panda robot [22]. For our study, the robot was tasked with
moving under the table from an upright starting position,
shown in Fig 2, to a goal state beneath the table identified
by a fiducial marker [23]. This involved the robot moving

Fig. 2. Planning Scene

through the gaps between the table legs in various ways.
Hundreds of kinesthetic demonstrations by a human expert
were carried out and the joint parameters recorded. This
data was used to find the mean and co-variance of the
parameter vector w. In most real-world applications, the task
space end-effector goal state is specified but our learning
is carried out in joint space. The transformation from task
space to joint space can easily be carried out by another
optimisation-based inverse kinematic approach. Since the
panda robot has a redundant degree of freedom we were
able to get several inverse kinematic solutions (IKs) but we
penalise those IKs which deviate too greatly from the mean
of the demonstrated data. The learning can be carried out as
described in section III-A. A plot of the learned trajectories
by maximum-a-posteriori sampling is shown in Fig 3. The
trajectories are then conditioned to the required start and
goal state as per eq. (7). This new mean and variance of the
parameter vector can be used to sample several trajectories
with all the trajectories having the same end-effector pose. A
plot of the mean and variance of the conditioned trajectories
for joint 1 is shown in Fig 4.
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0.0

q

Fig. 3. MAP sampling of learned trajectory for joint 1

For the optimisation, the solution generally depends on the
initial estimate provided to the algorithm. The trajectories
obtained after conditioning are all possible candidates as
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Fig. 4. Mean and variance of the conditioned trajectory for joint 1

an initial estimate to the optimisation, which eliminates the
possibility of getting stuck at the local minima. In general,
it is safe to assume that the demonstrations are more or less
smooth since they were carried out by a human expert and
hence the weights to multiply the smoothness cost are set to
small, whereas the cost of being near an obstacle is penalised
much higher.

(a) Start state (b) Start of motion

(c) Going under the table (d) Goal state

Fig. 5. Evolution of the trajectory planning

We used a Microsoft Kinect camera and integrated it
with Robot Operating System (ROS) [24] for our vision
system and is calibrated to the robot base. The obstacles
are represented as octomaps [25] in the planning scene
as shown in Fig 5. It also shows the evolution of the
motion plan to reach a pose under the table. The comparison
of our algorithm against two existing local planners, viz.,
CHOMP [15] and STOMP [9] is carried out and is shown
in Table I. For CHOMP, a linearly discretised straight line

trajectory from the start to the goal state is provided as the
initial guess. For STOMP, as described in the work, the
initialisation is carried out by perturbing the straight line
trajectory by εk = N (0, R−1) where R can be derived from
the finite difference matrix.

V. EVALUATION & RESULTS

A. Experiments in Simulation

For our simulation study, a real scene with a table as
an obstacle was recorded with Kinect as point-clouds and
was imported to RViz, as shown in Fig 5. The position the
robot end-effector has to reach is carefully chosen to be
under the table (and the table can be moved in the work
space as long as there are enough demonstrations to learn
effectively). ProMP, CHOMP and STOMP are implemented
in Python whereas RRT is used directly from the Open
Motion Planning Library (OMPL) [26]. The purpose of
this is to show that the plan generated by local planners
is smoother than sampling-based planners. Quantitatively,
the ProMP generated a plan which on average is 52% and
79% smoother than CHOMP/STOMP and RRT respectively.
The success rate for planning was found to be 87%, 21%
and 71% for ProMP, CHOMP and STOMP respectively.
Average planning time to success for local planners was
relatively high. This could be attributed to implementation
in Python and can be significantly reduced by opting for
other programming languages like C/C++. However, from the
results obtained, it was clearly demonstrated that for ProMP
the average time for successful plan is 17% and 10% better
than CHOMP and STOMP respectively.

B. Experiments With a Real Robot

In addition to the tests in simulation, our algorithm has
also been measured using a real 7 DOF Frank Emika’s Panda
robot. The video attached shows how the planner goes to a
location under the table in two different ways

VI. CONCLUSION

From the results presented here, it is clear that local trajec-
tory optimisation by learning from demonstrations results in
a much smoother trajectory. Additionally, when compared to
other optimisation-based planners, the likelihood of getting
stuck at local minima is considerably reduced, as seen from
the success rate given in Table I. There is also the potential
for more complicated motion plans to be achieved with the
help of expert human demonstrators.

Potential future work could include the creation of a
more robust planner, achieved by modelling using Gaussian
mixtures. It would be worthwhile to both investigate those
scenarios where the planner fails to find a solution and to
incorporate parameters for sequential learning.
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TABLE I
RESULTS OF MOTION PLANNING IN SIMULATION

Scenario ProMP Chomp (Straight line initialisation) STOMP (stochastic initialisation) RRT

Number of successful plans 87/100 21/100 71/100 92/100
Average planning time to success (s) 58.15 ± 11.56 68.19 ± 13.42 63.99 ± 12.65 0.15 ± 0.06

Average smoothness cost 0.079 ± 0.0082 0.167 ± 0.03 0.161 ± 0.03 0.377 ± 0.06
Average obstacle cost 0.038 ± 0.034 0.0165 ± 0.014 0.022 ± 0.015 0.063 ± 0.022
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