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Abstract— Existing works on control of tractor-trailers sys-
tems only consider the kinematics model without taking dynam-
ics into account. Also, most of them treat the issue as a pure con-
trol theory problem whose solutions are difficult to implement.
This paper presents a trajectory tracking control approach for
a full-scale industrial tractor-trailers vehicle composed of a car-
like tractor and arbitrary number of passive full trailers. To
deal with dynamic effects of trailing units, a force sensor is
innovatively installed at the connection between the tractor and
the first trailer to measure the forces acting on the tractor.
The tractor’s dynamic model that explicitly accounts for the
measured forces is derived. A tracking controller that compen-
sates the pulling/pushing forces in real time and simultaneously
drives the system onto desired trajectories is proposed. The
propulsion map between throttle opening and the propulsion
force is proposed to be modeled with a fifth-order polynomial.
The parameters are estimated by fitting experimental data,
in order to provide accurate driving force. Stability of the
control algorithm is rigorously proved by Lyapunov methods.
Experiments of full-size vehicles are conducted to validate the
performance of the control approach.

I. INTRODUCTION

Cargo transportation is one of the major tasks in big
warehouses, railway stations, cargo terminals, airports, etc.
A tractor pulling multiple passive trailers has been widely
utilized for such tasks because of its higher efficiency and
lower cost, compared to a group of individual vehicles.
An autonomous tractor-trailers vehicle can further increase
the productivity and give a perfect solution to the serious
shortage of human drivers and their rapidly growing wages.
However, these systems with payloads on trailers pose a com-
plex nonlinear and underactuated dynamic control problem.

Numerous works in the literature have been devoted to this
problem. Different control methods are proposed depending
on the type of trailer hitching. A hitching is called “on-axle”
when the rotary hitching joint is located at middle point of
the trailer’s wheel axles (points marked A in Fig. 1). While a
hitching is called “off-axle” when the hitching joint is located
somewhere between two consecutive trailers (points marked
B in Fig. 1). Off-axle Kingpin hitching is broadly deployed
in real applications thanks to its simpler mechanics, though
the control problem is more difficult than that of on-axle
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joints. In our case, both on-axle and off-axle joints exist in
the vehicle system (Fig. 1).

Early contributions to tractor-trailers vehicle control
mainly focused on on-axle hitching systems using nonlinear
control theory. Laumond [1] proved the controllability of on-
axle n-trailer vehicles with tools from differential geome-
try. Tilbury et al. [2] proposed a Goursat canonical form,
which is dual to the chained form, to model a class of
driftless non-holonomic systems including the tractor with
N trailers systems. Sordalen and Wichlund [3] then achieved
the exponential stability using exact feedback linearization
with a time-varying state feedback control law, which pro-
vided a theoretical basis for stabilizing the system at a
goal pose or a path with constant curvature. Lamiraux and
Laumond [4] applied the method for global obstacle-free
path planning and trajectory following, but the results were
quite complex. On the other side, however, these feedback
linearization techniques cannot be applied for systems with
two or more off-axle trailers, since the kinematics loses the
property of differential flatness and becomes not feedback
linearizable (Rouchon et al. [5], Bushnell [6]). This is why
Lizarraga et al. [7] utilized some configurations that are able
to be approximated locally by a chained form such that
exponential stabilization can be achieved. Bolzern et al. [8]
approximated the kinematics of off-axle connection by an
on-axle system model which has similar steady response and
model differences are regarded as disturbances. Alternatively,
control of off-axle tractor-trailers systems has also been
approached by means of off-tracking analysis, i.e., analysis
of trailer’s tracking deviation from the tractor’s path. This is
mainly due to the property of open-loop stability. Different
from the on-axle case, the trailers’ tracking errors do not
necessarily grow with increasing number of units (Lee et
al. [9]). In this sense, Bushnell et al. [10] investigated the
off-tracking bounds in transition from a beeline to an arc of
a circle and vice versa. This enables conventional obstacle-
avoidance path planners to be applied as if the tractor-trailers
system is an enlarged tractor [11]. It is easy to observe
that existing works on control of tractor-trailers systems
only consider the kinematics model without taking dynamic
effects into account. Besides, most of them treat the issue as
a pure control theory problem whose solutions are difficult
to implement.

In our work, we treat the on-axle hitching in the system
as an off-axle hitching whose front connection bar has zero
length. Partially using the ideas and methods from [11],
trajectories that ensure safety handling of dynamic industrial
scenarios can then be planned. Though the planned trajectory
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Fig. 1. Tractor-trailers vehicle and its geometric model.

is for the lead tractor, it can simultaneously guarantee the
whole system to be collision-free and executable for time-
critical maneuvers. Therefore, the control issue of the tractor-
trailers system can be simplified to the control problem of
the single lead tractor. Since this paper focuses on trajectory
control, details for trajectory planning will not be presented
and we assume the reference trajectory is given in our
problem.

To the best of our knowledge, this paper is the first to
report trajectory control of full-size industrial tractor-trailers
vehicles. The novelty of this work manifests in two aspects.

Firstly, a two-dimensional force sensor is installed at
the connection (rightmost B point in Fig. 1) between the
tractor and the first trailer. The tractor’s dynamic model that
explicitly accounts for the measured forces is introduced.
A trajectory tracking controller is proposed to compensate
the forces in real time and simultaneously drive the tractor
onto the desired trajectory. In contrast to existing works, by
reflecting trailers’ motion effects onto the real-time force
measurements, our approach considers the complex dynamic
effects introduced by trailers, such as varying number and
diverse configurations of and different payloads on the trail-
ers. Moreover, since the lead tractor is the final object to
be controlled, the controller does not require knowledge of
trailers’ dynamic parameters (mass, moment of inertia, etc.)
or the unavailable states of the trailers.

Secondly, though the control of wheeled mobile robots
has always been a hot topic for numerous research activities
(see [12], [13], [14], [15], [16]), real-world implementation
of trajectory tracking for full-scale vehicles is barely seen, let
alone for the tractor-trailers systems. The main challenge is
to achieve high precision of acceleration and deacceleration
commands. Hence, our second novelty arises from applying a
fifth-order polynomial to model the map between propulsion
force and throttle opening and velocity. The parameters are
estimated by fitting the experimental data in order to provide
accurate driving force for propulsion of the system and
compensation of trailer dynamics, when directly controlling
the throttle.

The paper is organized as follows. Section II presents the
dynamic model of the lead tractor. Section III details the
controller design and stability analysis. Section IV shows the
practical implementation on the full-size industrial tractor-
trailers vehicle. Section V concludes the work.

II. DYNAMIC MODELING

The tractor is a rear-drive, front-steer car-like vehicle. To
derive its dynamics, the nonlinear one-track model [17] is
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Fig. 2. Nonholonomic tractor model with force measurements.

employed where the front and rear wheels are respectively
replaced by an intermediate wheel in the middle, see Fig.
2. It is assumed that the motion is planar and the height of
Center of Gravity (COG) is zero, thus the road bank and
grade are not considered and the roll and pitch dynamics
are neglected. The rolling resistance and aerodynamics drag
are also assumed to be negligible. In this sense, the tractor
is subject to the driving force Fd that is modeled to act at
center of the rear wheel, two lateral slip forces Fr, Ff applied
perpendicular to the wheels and two measurable forces Hx

and Hy that are exerted on the tractor at the off-axle hitch
point by trailing trailers. Be noted that the hitch joint does
not transmit torque. Applying the Newton-Euler method, we
obtain the following dynamic equations.

mv̇x = Fd − Ff sinψ −Hx +mvy θ̇ (1)

mv̇y = Fr + Ff cosψ +Hy −mvxθ̇ (2)

Jθ̈ = aFf cosψ − bFr − (b+ c)Hy, (3)

where m is the tractor mass, J is the moment of inertia,
vx, vy are longitudinal and lateral velocity (in tractor’s local
frame) at COG. ψ is the steering angle, θ is tractor’s yaw
angle, a, b are distances from COG to front wheel and rear
wheel respectively and c is the distance between the force
sensor and the rear wheel. The position of COG is denoted as
(xg, yg) in the inertial frame. For our application, considering
the required low speed of the tractor (≤ 8 km/h when towing
trailers in industrial scenarios), slippage-free condition can
always be assumed to hold at the wheels [17]. Hence, two
nonholonomic constraints (4), (5) respectively for rear and
front wheels can further be introduced.

ẏg cos θ − ẋg sin θ = bθ̇ (4)

ẏg cos(θ + ψ)− ẋg sin(θ + ψ) = −aθ̇ cosψ (5)

The rotational transformation between velocity in local and
inertial frame is as below.(

ẋg
ẏg

)
=

(
cos θ − sin θ
sin θ cos θ

)(
vx
vy

)
(6)

Substituting (6) into (4), (5) yields (7) and it’s differentiation
(8).

vy = bθ̇, θ̇ =
vx tanψ

L
(7)

v̇y = bθ̈, θ̈ =
v̇x tanψ

L
+

ψ̇vx
L cos2 ψ

(8)



Combining (1) - (8) and choosing
[
xg yg θ vx

]
as part

of the states, we can get the simplified vehicle dynamic
equations (9) - (12):

ẋg = vx
[
cos θ − b sin θ tanψ

L

]
(9)

ẏg = vx
[
sin θ + b cos θ tanψ

L

]
(10)

θ̇ = vx
tanψ

L
(11)

v̇x = ϕ1 + ϕ2(Fd −Hx)− ϕ3Hy (12)

with

ϕ1 = −(1/Z)(mb2 + J) tanψψ̇vx

ϕ2 = (1/Z)L2 cos2 ψ

ϕ3 = (1/Z)L2c sinψ cosψ

Z = cos2 ψ[L2m+ (mb2 + J) tan2 ψ] (13)

Furthermore, to ensure and improve the capability of trajec-
tory tracking control, it is essential to model the actuation
process. The dynamic behavior of the steering actuator is
assumed, and experimentally proven, to be well-captured by
a first-order lag element

ψ̇ = (u2 − ψ)
1

τ
, (14)

where τ denotes the time constant and u2 is the control input
for steering. The driving force Fd is either the propulsion
force Fp transmitted to the rear wheel from the engine
through driveline or braking force Fb generated by brake
actuation. The engine torque is normally modeled as being
proportional to the throttle opening u1 and also being a
second-order polynomial w.r.t the engine speed [18], [19].
The engine speed can also be proportionally related to
vehicle speed vx, when assuming that the torque converter
in the tractor is locked and that there is no slippage at the
wheels [20]. The propulsion force can be further assumed
to have a proportional relationship with engine torque [18].
In light of these ideas and also considering the inherently
complex nonlinear mapping of the tractor’s driveline, we
propose the fifth-order-polynomial propulsion map (15) be-
tween the propulsion force and the throttle opening and
vehicle velocity. The coefficients Φ are estimated by fitting
experimental data. As shown in Fig. 3, each of the black
curves corresponds to a set of experimental force-speed data
under a certain level of throttle opening. The throttle opening
value is set from 0 to 300 and a few samples between are
chosen to generate different black curves. The velocity is
less than 5 m/s, which is the normal operation range for
industrial tractors. The propulsion force is achieved in real
time with an EKF force estimator combining IMU readings,
encoders on the steering wheel and driven wheels and the
vehicle dynamic model. The fifth-order polynomial is found
to be the best candidate to fit the data as a propulsion
map in the sense of simplicity and accuracy, compared to
polynomials of other orders. The colored surface in Fig. 3 is
the resultant polynomial map after data fitting.

Fig. 3. Map between propulsion force and throttle opening and velocity.

Fp = u1
[
1 vx v2x v3x v4x v5x

]

β1
β2
β3
β4
β5
β6

 = u1V
TΦ

(15)
The braking force Fb generated by brake actuation is mod-
eled to be proportional to the available control input of
braking pressure u3.

Fb = u3nb (16)

with nb the constant ratio. Finally, equations (9) - (16)
constitute the complete dynamic model of the tractor.

III. NONLINEAR TRAJECTORY CONTROL

A. Trajectory Representation

Since the dynamic equations for heading (11), velocity
(12), steering (14) and driving force (15)(16) do not depend
on the position of the tractor, the coordinates of interest
(xg, yg) can be redefined as being the center point (x, y)
of the tractor’s rear axle. Therefore, equations (9) and (10)
can be rewritten as

ẋ = vx cos θ (17)
ẏ = vx sin θ (18)

The trajectory planning is then to continuously parameterize
the desired position and orientation of the point (x, y). As
mentioned, the reference trajectory is planned for the tractor,
and it also respects collision-free conditions for the whole
tractor-trailers system. Besides, the planned trajectory is
required to guarantee sufficient smoothness and account for
actuation limitations introduced by the structure of the whole
system. The reference trajectory is assumed to be given and
is formulated as follows

qd(t) = [xd(t), yd(t), θd(t), vd(t)]
T

q̇d(t) = [ẋd(t), ẏd(t), θ̇d(t), v̇d(t)]
T (19)

with

vd =
√
ẋ2d(t) + ẏ2d(t), θd = atan2(ẏd(t), ẋd(t))

It should be noted that, to avoid the jack-knife phenomenon
in tractor-trailers system, the desired velocity vd is always
positive.
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Fig. 4. Transformation of error coordinates.

B. Switching Policy between Throttle and Brake Control

In our work, the control input for driving force is exclu-
sively throttle opening rate u1 or braking pressure u3, which
means only one type of input applies in a control cycle to
generate Fd. The switch between throttle and brake depends
on the sign of the desired value ω2 of the driving force,
which is provided by the nonlinear control law presented in
the following subsection. The switch policy is given by

Fd =

{
u1V

TΦ ω2 > 0
u3nb ω2 < 0

(20)

C. Trajectory Tracking Control Design

We first define the posture and velocity errors with respect
to a Frenet frame as follows (see Fig. 4).

xe = (x− xd) cos θd + (y − yd) sin θd
ye = (y − yd) cos θd − (x− xd) sin θd
θe = θ − θd
ve = vx − vd (21)

Taking the derivative and applying equations (11)-(18), the
system finally becomes

ẋe = vx cos θe + θ̇dye − vd (22)

ẏe = vx sin θe − θ̇dxe (23)

θ̇e = vxcψ − θ̇d (24)
v̇e = ϕ1 + ϕ2(Fd −Hx)− ϕ3Hy − v̇d (25)

˙cψ = (
tanψ

L
)′ = (

1

L
+ Lc2ψ)ψ̇ (26)

ψ̇ = (u2 − ψ)
1

τ
(27)

Fd =

{
Fp = u1V

TΦ, or
Fb = u3nb

(28)

Therefore, when all the states are available, the tracking
control objective is to find control laws for throttle opening
rate u1, steering input u2 and braking pressure u3, such that
limt→∞ [xe(t), ye(t), θe(t), ve(t)] = 0.

Consider, first, only the truncated system (22) - (25), and
pretend that cψ in (24) and Fd in (25) can be directly
manipulated by ω1 and ω2 respectively. We propose the
following lemma.

Lemma 1: The virtual control input ω1 and ω2 given by

ω1 =
1

θe
[xe(1− cos θe)− ye sin θe]− kθθe +

θ̇d
vd

(29)

ω2 =Hx +
1

ϕ2
(ϕ3Hy − ϕ1 + v̇d − kvve − xe + kθθ

2
e

− θ̇d
vd
θe) (30)

with kθ, kv > 0, makes [xe(t), ye(t), θe(t), ve(t)] = 0 of the
partial system (22) - (25) globally asymptotically stable.

Proof: The scalar function V1 is proposed to be a
Lyapunov function candidate,

V1 =
1

2
(x2e + y2e + θ2e + v2e) (31)

its time derivative is given by

V̇1 =xeẋe + yeẏe + θeθ̇e + vev̇e

=xe(vx cos θe + θ̇dye − vd) + ye(vx sin θe − θ̇dxe)
+ θe(vxω1 − θ̇d) + ve[ϕ1 + ϕ2(ω2 −Hx)

− ϕ3Hy − v̇d] = −kθvdθ2e − kvv2e ≤ 0

Considering the boundness of variables inside the system,
from Barbalat’s lemma [21], we can easily show that
limt→∞ V̇1 = 0. Then,

lim
t→∞

θe = 0, lim
t→∞

ve = 0

with Fd = ω2 and ve ≡ 0 =⇒ v̇e ≡ 0, from (30) and (25),
we get

xe = 0 (32)

with cψ = ω1 and θe ≡ 0 =⇒ θ̇e ≡ 0, from (29) and (24),
we get

ye = 0 (33)

Notice that in (29), terms sin θe/θe and (1−cos θe)/θe have
removable singularities and are accurately implemented with
Taylor series approximation. Therefore, we can conclude the
asymptotic stability of [xe(t), ye(t), θe(t), ve(t)] = 0

1) Control Design for Throttle and Steering: First con-
sider the situation when the desired driving force ω2 > 0,
where Fd = Fp = u1V

TΦ.
Following the backstepping procedure [21], we further

design the real control input u1, u2 such that cψ and Fp
converge to the virtual control law ω1 and ω2 respectively.
With the known polynomial coefficients Φ and measurable
velocity vector V , driving force Fd can be directly manipu-
lated by u1. Define the distance between cψ and its goal ω1

as
δψ = cψ − ω1 (34)

we propose the following theorem,
Theorem 1: When ω2 > 0, the control law for the throttle

input u1 and steering input u2 given by

u1 = ω2(V
TΦ)−1 (35)

u2 =
τ

1
L + Lc2ψ

(ω̇1 − vxθe − kψδψ) + ψ (36)



with kψ > 0, forces [xe, ye, θe, ve, δψ] to asymptotically
converge to zero.

Proof: From (26) and (27), the time derivative of (34)
yields

˙δψ = ċψ − ω̇1 = (
1

L
+ Lc2ψ)(u2 − ψ)

1

τ
− ω̇1 (37)

Define the new composite Lyapunov function candidate

V2 = V1 +
1

2
δ2ψ

its time derivative yields

V̇2 =V̇1 + δψ δ̇ψ (38)

=xe(vx cos θe + θ̇dye − vd) + ye(vx sin θe − θ̇dxe)
+ θe[vx(ω1 + δψ)− θ̇d] + ve[ϕ1 + ϕ2(u1V

TΦ−Hx)

− ϕ3Hy − v̇d] + δψ(ċψ − ω̇1)

=− kθvdθ2e − kvv2e + θevxδψ

+ δψ[(
1

L
+ Lc2ψ)(u2 − ψ)

1

τ
− ω̇1]

=− kθvdθ2e − kvv2e − kψδ2ψ ≤ 0

Analogous to Lemma 1, we can easily conclude that
limt→∞ V̇2 = 0, which means

lim
t→∞

θe = 0, lim
t→∞

ve = 0, lim
t→∞

δψ = 0 (39)

With δψ = 0, and from (34), we have cψ = ω1. With (35),
Fp is directly controlled to be ω2 . Therefore, (32) and (33)
still hold. Hence, the statement in the theorem can be readily
proved.

Be noted again that the derivatives of the expressions
sin θe/θe and (1 − cos θe)/θe in ω̇1 also have removable
singularities, which poses no problem for accurate imple-
mentation.

2) Control Design for Brake and Steering: When the
desired driving force ω2 < 0, then Fd = Fb = u3nb. We
need to design steering input u2 and braking input u3, such
that cψ and Fb converge to the virtual control input ω1 and
ω2 respectively. With knowledge of the value nb, Fb can
be directly manipulated by control input u3. u2 needs to be
further designed. We propose the following theorem,

Theorem 2: When ω2 < 0, the control law for steering
input u2 and brake input u3 given by

u2 =
τ

1
L + Lc2ψ

(ω̇1 − vxθe − kψδψ) + ψ (40)

u3 = ω2/nb (41)

asymptotically stabilizes [xe, ye, θe, ve] = 0 of the system
(22)-(28).

Proof: Using again the lyapunov function candidate

V2 = V1 +
1

2
δ2ψ

with (29), (30), (37) and analogous to Lemma 1, we get

V̇2 = −kθvdθ2e − kvv2e − kψδ2ψ ≤ 0 (42)

Mimicking the same arguments applied in the proof of
Lemma 1 and Theorem 1, we can readily show that
[xe, ye, θe, ve] = 0 is asymptotically stable.

3) Discussion: Since (21) is a diffeomorphic coor-
dinate transformation, the convergence of error vector
[xe, ye, θe, ve] to zero guarantees the convergence of trajec-
tory tracking.

IV. PRACTICAL IMPLEMENTATION AND RESULTS

In this section, we implement the derived trajectory track-
ing controller with a full-size industrial tractor-trailers vehi-
cle on an even test site inside a big warehouse (Fig. 5). The
tractor is the Toyota 52-2TD25 model and is retrofitted with
drive-by-wire throttling, braking and steering. The tractor
as well as the full trailers (dollies) in the experiments are
all standard models applied in the Hong Kong International
Airport for luggage or cargo transportation. All the physical
parameters of the tractor (mass, inertia, COG and dimen-
sions) can be determined with standard measurements.

We adopt the 3-axis force sensor ME K3D160 with a
measuring range of ±50KN (enough for normal indus-
trial task execution) in each mutually perpendicular axes.
Only two forces parallel to the road surface are counted.
The force sensor is fixed on the tractor and is con-
nected to the trailer bar via an intermediate link. Due
to the small dimension of the link, we can assume that
the trailer is directly connected to the force sensor with
a hitch joint. Yaw rate and acceleration measurements
are obtained with Xsens MTi-300-AHRS IMU. The self-
localization process (providing position and orientation) is
conducted by fusing sensory information from UWB, 3D
laser scanner, cameras and inertial and odometry measure-
ments. The coefficient vector is calculated off-line as Φ =[
26.2 −9.999 3.018 −1.041 0.2354 −0.021

]T
.

We remove the obstacles and make the tractor running in
a roundabout way to eliminate possible negative effects of
the trajectory planning level on the tracking results. We con-
ducted two experiments with different number and different
size of trailers. Fig. 6 shows the results of the experiment
where the tractor tows two relatively small full trailers. The
weight of one small full trailer is 630kg. Besides, sandbags
with total weight of 2000kg are loaded on the first trailer to
act as extra payload. The desired trajectory is planned online
and keeps the tractor running with a velocity of 1 m/s along
the trajectory. The total running time is 98s. The position
error is calculated by |ep(t)| =

√
x2e(t) + y2e(t), with its sign

being negative when the tractor is on the left of the desired
trajectory. Fig. 7 shows the results of the second experiment
where the tractor tows two extra big full trailers, with each
weighing 1300kg. The running time is 103s and the con-
stant desired velocity is 0.8 m/s. Above results demonstrate

Force sensor

Fig. 5. The autonomous full-size industrial tractor-trailers vehicle.
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Fig. 6. Trajectory control performance with two full trailers and payload.

-30 -25 -20 -15 -10 -5 0 5 10 15 20
X / m

-12

-10

-8

-6

-4

-2

0

2

Y
 / 

m

Reference Trajectory

Tractor Trajectory

start position
 

stop position

0 10 20 30 40 50 60 70 80 90 100
t / s

-0.1

-0.05

0

0.05

P
os

iti
on

 E
rr

or
 e

p / 
m

0 10 20 30 40 50 60 70 80 90 100

t / s

-0.1

-0.05

0

0.05

0.1

v e
 / 

m
/s

0 10 20 30 40 50 60 70 80 90 100
t /s 

-0.04

-0.02

0

0.02

0.04

e
 / 

ra
d

0 20 40 60 80 100
t / s

-2000

0

2000

4000

6000

F
or

ce
 m

ea
su

re
 / 

N

Hx

Hy

Fig. 7. Trajectory control performance with four full trailers and payload.

precise and robust performance of the proposed trajectory
controller under different physical properties and dynamic
configurations of the industrial tractor-trailers vehicle.

V. CONCLUSION

In order to handle the complex dynamics of industrial
vehicles with tractor-trailer structure and finally realize the
autonomous trajectory tracking control, a force sensor is
proposed to be installed at the connection between the
tractor and the first trailer. The tractor’s dynamic model
that explicitly accounts for the measured forces has been
derived. Both throttle & steering control and brake & steering
control are proposed. The practical implementation results
on full-size industrial tractor-trailers vehicles have shown
good performance of the proposed approaches in trajectory
tracking and the handling of complex dynamics.
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