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Abstract— Recent breakthroughs in the reinforcement learn-
ing (RL) community have made significant advances towards
learning and deploying policies on real world robotic systems.
However, even with the current state-of-the-art algorithms and
computational resources, these algorithms are still plagued
with high sample complexity, and thus long training times,
especially for high degree of freedom (DOF) systems. There
are also concerns arising from lack of perceived stability or
robustness guarantees from emerging policies. This paper aims
at mitigating these drawbacks by: (1) modeling a complex,
high DOF system with a representative simple one, (2) making
explicit use of forward and inverse kinematics without forcing
the RL algorithm to “learn” them on its own, and (3) learning
locomotion policies in Cartesian space instead of joint space.
In this paper these methods are applied to JPL’s Robosimian,
but can be readily used on any system with a base and end
effector(s). These locomotion policies can be produced in just
a few minutes, trained on a single laptop. We compare the
robustness of the resulting learned policies to those of other
control methods. An accompanying video for this paper can be
found at https://youtu.be/xDxxSw5ahnc.

I. INTRODUCTION

Without loss of generality to other systems with end effec-
tors, this work aims specifically at increasing robustness and
stability of skating motions designed for JPL’s Robosimian
quadruped [1], [2], [3], [4], [5], which is shown in Figure 1.
Previous work in [6] describes an overview of hand-designed
skating motions on passive unactuated wheels mounted at
each forearm of Robosimian’s four identical limbs, com-
paring specifically skating with three vs. four wheels in
contact with the ground. Results showed that on flat ground,
skating on four wheels demonstrated greater robustness due
to symmetry and thus decreased wheel slip. However on
terrain with bumps or other curvature, the asymmetry in
configuration and contact force distribution over time from
skating on three wheels had the advantage of guaranteeing
continuous ground contact for all skates. It is clear in either
case that such hand-designed open-loop trajectories leave
much to be desired in terms of robustness to disturbances
and noise in the environment. We would like guarantees on
performance, and ideally to have some confidence estimate
on performance/time to complete a task in a new scenario.

This lack of robustness, combined with impressive recent
results applying reinforcement learning algorithms such as
Proximal Policy Optimization (PPO) [8] [9], Trust Re-
gion Policy Optimization (TRPO) [10], Actor Critic us-
ing Kronecker-Factored Trust Region (ACKTR) [11], Deep
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Fig. 1. Versatile Locomotion with Robosimian. Top: Skating on flat
ground with the real system. Bottom: Simple Cartesian space model and
full Robosimian model, in MuJoCo [7].

Deterministic Policy Gradients (DDPG) [12], and Asyn-
chronous Advantage Actor-Critic (A3C) [13], to continuous
control tasks in robotics, suggests the use of (deep) rein-
forcement learning as a way to increase skating stability and
robustness. However, as powerful and promising as these
recent results have been, the sample complexity and training
time of these methods remains a major issue when seeking
to deploy solutions in real time in the real world. Even for
state-of-the-art algorithms and implementations, especially
for high degree of freedom (DOF) complex systems such as
Robosimian, a policy can take millions of iterations to train
for a solution that may or may not be stable. It must also be
noted that there are no robustness, stability, or performance
guarantees on the policies learned, or at least no way to
readily quantify these metrics.

One prominent example is shown in the video associated
with Heess et. al’s Emergence of Locomotion Behaviours in
Rich Environments [8], where for the higher DOF system
humanoid, we see the emergence of (probably) non-optimal
and non-intuitive arm-flailing to “help” locomote the system,
as a probable local optimum. The video accompanying
the present paper shows an example of the emergence of
similar non-intuitive behavior when learning a locomotion
policy with PPO [9] for Robosimian in joint space. We
seek to avoid such local optima for locomotion policies
in our system, and propose intuitively limiting the action
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space for reinforcement learning algorithms towards quickly
generating robust and stable motions.

Most of this recent work in applying reinforcement learn-
ing to robotic systems seeks to learn a policy that, given an
observation of the current state, outputs raw motor torques to
the available actuators in joint space to maximize rewards for
the task at hand. However, for an overactuated system such as
Robosimian, which has 28 actuators with high (160:1) gear
ratios as well as velocity limits of 1 rad/sec at each joint [4],
applying a torque from a learned distribution at each time
step is not intuitive. Rather, each motor is modeled as a
position actuator, and supplied with a reference position at
each time step. This naturally extends to, instead of selecting
a torque at each time step, incrementing each motor’s current
desired position by ∆ ∈ {−ε,0,+ε}.

We also note that these recent learning algorithms
(proudly) incorporate no prior knowledge of the system
during training, and thus the agent must essentially “learn”
forward and inverse kinematics through interacting with its
environment, early termination conditions specified by a
human, and hand-crafted reward shaping functions.

Work in imitation learning, transfer learning, and warm-
starting the policy network, either with existing trajectories
or using more traditional controllers, has been done to
try to reduce the high sample complexity of the vanilla
reinforcement learning methods. We propose a much simpler
idea of incorporating control techniques readily available for
most systems such as forward and inverse kinematics, in
the spirit that we should use the domain knowledge of the
problem that we possess, rather than requiring the system to
learn it on its own.

The rest of this paper is organized as follows. Section II
provides an overview of reinforcement learning and Proximal
Policy Optimization (PPO). Sections III and IV describe
modeling and training environment details, respectively.
Section V presents results for tasks such as skating with
maximum velocity or to a goal location over noisy terrain,
and a brief conclusion is given in Section VI.

II. BACKGROUND

A. Reinforcement Learning

The reinforcement learning framework, which is described
thoroughly by Sutton and Barto [14] and elsewhere, typically
consists of an agent interacting with an environment modeled
as a Markov Decision Process (MDP). An MDP is given by
a 4-tuple (S,A,T,R), where S is the set of states, A is the
set of actions available to the agent, T : S×A×S→R is the
transition function, where T (s,a,s′) gives the probability of
being in state s, taking action a, and ending up in state s′,
and R : S×A×S→R is the reward function, where R(s,a,s′)
gives the expected reward for being in state s, taking action
a, and ending up in state s′. The goal of an agent is thus to
interact with the environment by selecting actions that will
maximize future rewards.

In this paper, the states consist of a subset of the robot’s
(Robosimian’s) positions and velocities, the actions are motor
positions or Cartesian coordinate end effector offsets, the

transition function is modeled by a physics engine (Mu-
JoCo [7]), and the reward changes based on the task (for
example forward velocity or distance to a goal).

B. Proximal Policy Optimization

Although we expect any of the aforementioned rein-
forcement learning algorithms in Section I to learn effec-
tive skating maneuvers for locomotion (especially when we
change the action space from continuous to discrete), for this
paper we use the current state-of-the-art, Proximal Policy
Optimization (PPO) [9]. In particular, PPO has achieved
breakthrough results for continuous control robotics tasks
by optimizing the following surrogate objective with clipped
probability ratio:

LCLIP(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât ] (1)

where Ât is an estimator of the advantage function at time
step t [15], and rt(θ) denotes the probability ratio

rt(θ) =
πθ (at |st)

πθold (at |st)
(2)

where πθ is a stochastic policy, and θold is the vector of
policy parameters before the update. This objective seeks to
penalize too large of a policy update, which means penalizing
deviations of rt(θ) from 1.

III. MODELING

As outlined in [6], planning effective, feasible skating mo-
tions for Robosimian involves two complementary problems.
The motions of the skates must enable generation of required
ground reaction forces without excessive slipping, to move
the robot as desired, and solutions for inverse kinematics
must be tractable, smooth, and within the dynamic velocity
and acceleration limits of the joint actuators of the robot.

A. Simple “Representative” System

The first of the complementary problems is primarily
focused on the skate locations, contact forces, and directions
of motion. In fact, when designing the skating motions
by hand, reasoning about the skate (x,y,z) and yaw (φ)
positions over time are the first things accounted for, and
inverse kinematics are computed along this desired trajectory
afterwards to ensure smoothness.

This gives rise to developing a more simple model to
“represent” the full Robosimian model. As shown in the
bottom left of Figure 1 and in Figure 2, the model consists of
the same torso/body, but without legs, which are replaced by
floating bases above the skates. The top rectangular link of
the floating bases is moved with slide joints in MuJoCo [7],
meaning motion is allowed along a single axis. Depending
on the desired task, these can be actuated in the x, y, and/or
z directions in the floating base local frame. The bottom
rectangular link is actuated by a hinge joint about the z axis,
allowing yaw rotation only, which sets (φ) for the skate. The
total mass of one of Robosimian’s limbs (excluding the skate)
is distributed evenly between these two links. Although this
simple system does not exactly model the true dynamics of



the full Robosimian system, we hypothesize that it will be
“close enough”, making it faster to train a locomotion policy
with deep reinforcement learning algorithms in Cartesian
space. We hope to transfer this learned policy on the simple
system onto the full system.

B. Inverse Kinematics

To use learned policies from the simple model, at run time
(or for transfer learning and additional training on the full
model), inverse kinematics (IK) must be used to map the
desired skate motion back to the full model.

The IK to set the 6-DOF pose of the skate require choosing
from among one of eight IK families, each analogous to a
choice of “elbow bending direction” for each of three elbows
on a limb [3]. Providing guarantees of smoothness requires
precalculation of IK solutions across a region as well as
compromises between ideal theoretical contact locations and
achievable solutions for our particular robot. In particular,
for many desired skate configurations, achieving exact sym-
metry in end effector locations is either non-trivial or not
achievable.

[3] details algorithmic solutions for computing IK tables
that satisfy the above conditions. However, as calculating
such an IK table can be computationally expensive, there
is a trade-off for training on the full model in joint space
(without IK) vs. training in Cartesian space (making use of
an IK table, or computing IK at each time step).

Depending on the implementation, a function calculating
IK can add significant overhead to training time in Cartesian
space, as each time step requires 4 calls to this function
(once for each limb). However, if the range of (x,y,z,φ ) of
each skate in the simple model is limited to a subspace
for which IK solutions of the full model both exist and are
smooth, either through intuition or some pre-calculation, we
can learn a policy on the simple model in Cartesian space,
and then map the solution back at test time to the full system,
computing IK at each time step for each limb. This eliminates
the need to compute IK during training altogether.

IV. TRAINING ENVIRONMENT

This section describes the environment set up and MDP
details of our implementations to learn a locomotion policy
for either the simple system or full Robosimian.

A. Observation Space

In order to use the policy trained on the simple model for
the full model, the observation space (input to the network)
must be the same, or similar. As there is no sensing available
at the passive wheel in the real model, it is not fair to include
any related observations to learn a policy in simulation. So
neither the rotational position nor velocity of each skate
wheel about its axis are included in the observation space.

At minimum, the observation space for the simple model
consists of the following:
• (xb, yb, zb), body global coordinates
• (w, xw, yw, zw), body orientation (from origin x-axis) in

the form of a quaternion

• (xs,i, ys,i, zs,i, φs,i), skate local Cartesian positions and
yaws, with respect to the body

• (dxb/dt, dyb/dt, dzb/dt), body translational velocities
• (dθxb/dt, dθyb/dt, dθzb/dt), body rotational velocities
• (dxs,i/dt, dys,i/dt, dzs,i/dt, dφs,i/dt), skate local trans-

lational and rotational velocities w.r.t. body
The above observation space is (more than) enough to

locomote the system in any given direction; for example to
train for x-directed locomotion, the reward function can be a
difference in potential between the current and previous body
positions in the x direction. For tasks that involve moving to
a specific (xg,yg) goal coordinate in the environment, the
above observation space is augmented with the following:
• (xg,yg,zg), global goal coordinates
• −d, negative of the absolute Euclidean distance between

(xb,yb,zb) and (xg,yg,zg)
• θgoal , local angle between current body heading (w, xw,

yw, zw) and (xg,yg,zg)
The simple representative model and the full model using

IK in Cartesian space thus have the same observation space
in their respective simulations. The observations for which
the real robot does not have direct sensing can readily be
estimated with forward kinematics or Jacobians in real time
on the real system.

When training in joint space for the full system, in addition
to the body positions, orientation, and velocities, each joint’s
position and velocity (28 actuated motors) is now part of
the observation space. Again, the rotational positions and
velocities of the skate wheels are not included.

Fig. 2. Equivalent states and action spaces for the simple Cartesian space
model and full Robosimian model using IK. Actions are translation offsets
along each skate’s local x,y,z axes, and rotational about the z axis, shown
here for φ = π/4[rad].

B. Action Space

As discussed in Sections I and III, it is more intuitive
to model the actuators for Robosimian as position servos
rather than torque motors. For the full system trained in
joint space, the action space is chosen to be discrete, and
the policy chooses an offset from {−ε,0,+ε} from each
motor’s current desired position as its new reference.

For the simple model and full model using IK, the action
space is also discrete, but in Cartesian coordinates. This is
shown in Figure 2. At each time step, the policy chooses
an offset from {−ε,0,+ε} from each skate’s (xs,i, ys,i, zs,i,
φs,i) current desired positions. This ε is a design parameter,
and can change based on the task and state. It is logical



for ys,i and φs,i to change by different offsets εy and εφ , for
example, due to the difference in units (meters vs. radians).
A caveat is that the IK joint position differences of the full
model between time steps must be bounded. We note that a
small difference in the end effector location can have a large
difference in the IK solution, even when using the same IK
family, if near a singularity. We seek to minimize these events
by keeping the simple model’s workspace within smooth IK
solution spaces for the full model.

C. Reward Functions

We consider potential-based shaping functions of the form:

F(s,a,s′) = γΦ(s′)−Φ(s) (3)

to guarantee consistency with the optimal policy, as proved
by Ng et. al in [16]. The real valued function Φ : S→R varies
between tasks, with two such example tasks consisting of:

1) maximizing forward velocity in the x direction:

Φ(s) =
xb

∆t
(4)

2) minimizing the distance to a target goal (xg,yg,zg):

Φ(s) =−
√
(xb− xg)2 +(yb− yg)2 +(zb− zg)2 (5)

This reward scheme gives dense rewards at each time
step, towards ensuring the optimal policy is learned, and
allows us to avoid complicated hand-crafted reward functions
with many variables that ultimately output a single number
anyway. Such schemes can result in slow training and sub-
optimal behavior.

D. Implementation Details

We use a combination of OpenAI Gym [17] to represent
the MDP and MuJoCo [7] as the physics engine for training
and simulation purposes. We additionally use the OpenAI
Baselines [18] implementation of PPO (PPO2) as a basis,
making some key modifications for our system. Our neural
network architecture is the default Multi-Layer Perceptron
(MLP), which consists of 2 fully connected hidden layers of
64 neurons each, with tanh activation. The policy and value
networks both have this same network structure.

The default design parameters of these implementations
are kept the same, while perhaps not producing the most
optimal or time-efficient policies for our system, to show
that intuitively reducing the action space has a large effect
on training time and policy robustness.

V. RESULTS

We seek to compare the training times and robustness of
learned policies for the following systems:
• SS: Simple “representative” system
• FS in JS: Full system trained in joint space
• FS in CS: Full system trained in Cartesian space with

IK (to set joints)
We also seek to evaluate how well the learned policy of

the simple system transfers to the full system with inverse

kinematics. SS and FS in CS always have the same obser-
vation and action spaces, for fair comparisons. We consider
tasks of skating at maximum velocity in the +x direction,
and of locomoting to a particular goal location (xg,yg). All
policies along with additional comparisons to other control
methods are shown in the supplementary video for this paper.

A. Skate Straight

First we consider the task of maximizing forward velocity
in the +x direction. The observation and action spaces are
as detailed in Sections IV-A and IV-B, with ε = 0.01. The
action space for SS and FS in CS is limited to a ±0.1[m]
offset of ys,i and ±0.3[rad] offset of φs,i for each skate from
it’s given starting position, with xs,i and zs,i fixed, to match
the constraints used in designing skating motions for forward
locomotion in [6]. The action space for FS in JS is bounded
only by the joint limits. Training on FS in JS also enforces
early termination of an episode if any self-collisions are
detected, or if contact occurs with the ground from any part
of the robot other than the skates. The reward at each time
step is a potential-based shaping function where Φ is as in
Equation 4, resulting in:

F(s,a,s′) =
x′b− xb

∆t
, (6)

rewarding body velocity in the +x direction.
1) Training Sample Complexity Comparison: Figure 3

shows the episode reward mean vs. number of training time
steps, with mean and standard deviation of three training
runs for each system. The episode reward is the sum of
the individual rewards at every time step, so it is the sum
of all instantaneous velocities, a maximum of 1000 values
(without early termination). We see that training in Cartesian
space gives much higher total returns, with far fewer time
steps. This is likely due to both the smaller observation and
action spaces for SS and FS in CS, as well as to the fact
that the agent for the full system is being forced to learn
forward and inverse kinematics in conjunction with trying to
maximize returns. A training episode terminates early if there
are any self-collisions in the current robot configuration, or
if non-skate limbs come in contact with the ground, where
the average duration of a training episode before one of these
occurrences is shown in Figure 4.

In addition to learning a policy that produces returns that
are not nearly as high as those for SS and FS in CS, the
resulting motions for training on FS in JS also do not look
optimal, where typical behavior appears to be sinking quite
low to the ground (always on the brink of a collision) and
waving one of it’s rear limbs around in the air while only
the other three limbs actually skate (see video). Even after
training for 10 million time steps, which takes about 12 hours
on a single laptop, the policy has still not completely learned
kinematics, frequently terminating episodes early, and it is
still not achieving the same returns as the policy trained in
Cartesian space.



Fig. 3. Average episode reward over training 1 million time steps for the
full system in joint space (FS in JS), simple system (SS), and full system in
limited Cartesian space (FS in CS) for a task rewarding forward velocity in
the +x direction. The pink line shows the results of transferring the learned
policy on the simple system (SS) to the full system in Cartesian space (FS
in CS) and further training for 2e5 timesteps. As the dynamics do not match
perfectly, using the SS can be a means to accelerate training, especially if
fast IK computation during training is not available.

Fig. 4. Episode length mean vs. number of training time steps, where each
episode normally lasts 1000 training time steps unless ended prematurely.
Early termination is the result of any internal self-collisions, or any part
of the robot body touching the ground other than the skates, which is still
occurring even after training for over 1e6 timesteps.

2) Training Wall Clock Time Comparison: Figure 5 shows
the episode reward mean vs. wall clock time. The overhead
in training time for the FS in JS compared to the SS can be
attributed to more weights in the neural networks having to
be learned due to the larger observation and action spaces,
more frequent environment resets from early terminations,
and possibly also from simulating more complex dynamics.
If an IK table (implemented as a hash table, where the keys
are (x,y,z,φ) position tuples and values are the correspond-
ing joint positions) is available during training time, this adds
a small overhead from 4 constant time look ups per training
time step. Without such a table, calculating IK 4 times at each
time step introduces a very significant overhead. Without a
fast method for computing IK, this may suggest transferring
a policy learned on the SS onto the FS in CS, calculating IK
only at run time.

An IK table can also be dynamically generated as training
progresses, to avoid frequently re-calculating the same posi-
tion tuples as the policy learns subspaces of the workspace
that maximize rewards. We also note that the training time
from slow IK calculations is still worth it, as the alternative
of training in joint space produces less robust policies that
attain far fewer rewards.

Fig. 5. Episode reward mean vs. real clock time for training over 1 million
time steps. The SS is fastest to train due to the fewest number of weights
to learn in the network, limited search space (along with FS in CS), and
the simplest dynamics to simulate in MuJoCo. If an IK table is available
for use, the overheard of looking up values does increase training time, but
this overhead is not significant compared to using the IK function during
training (4000 times per training episode!).

3) Policy Transfer from SS to FS in CS: To test how
well the policy learned on the simple model transfers to
the full system, we initialize the weights of the policy and
value networks for the FS in CS with those learned from
the SS. Since the observation and action spaces are the same
for both models, we do not run into any implementation
complications. The pink line in Fig. 3 shows the episode
reward mean for training 2e5 time steps after initializing the
FS in CS network weights with those learned with the SS.

The initial returns start much higher than 0, but not as high
as the returns from running the SS policy on its own system.
This is expected since the dynamics do not match perfectly,
but it is encouraging that locomotion can be transferred in
this manner. This suggests the possibility of training on the
simple system for other tasks, and then executing the learned
policy on the full system, to accelerate training.

A noteworthy observation from our experiments is that the
learned policy for the SS could not traverse randomly vary-
ing, sinusoidally-smooth terrain, as the amplitude increased,
as defined in Section V-B. This could be due to the dynamics
of the system being incapable of generating the forces to
traverse this new terrain, or that this new observation space
had not been explored during training, and thus the policy
had not learned which actions to take in these slightly varying
states. However, the full robot was able to make forward
progress after transferring that same SS policy onto the FS
in CS, without further training of that policy. This implies
that the policy was robust enough, but the SS version of the
system itself may not have the means to produce the forces
necessary to get over the small hills. This further encourages
the use of training a policy on the SS and then transferring



it to the full system for other tasks.

B. Skate To Goal Under Uncertainty

The next task we consider is locomoting the system from
the origin (0,0) to a goal location (xg,yg), in particular
(5,0)[m], over randomly varying, sinusoidally-smooth ter-
rain with varying friction coefficients. For this task, the
observation spaces from the maximum velocity skating task
are augmented with the global goal coordinates, negative
distance to the goal from the robot’s current location, and the
angle between the robot’s heading and the goal, as discussed
in the latter part of Section IV-A. The action spaces are
left unchanged, as the limited spaces for SS and FS in CS
should be enough to locomote the system to the goal (it is
always possible to increase ranges, or allow x and z skate
position changes if the terrain is too rough). The reward at
each time step is again a potential-based function, with Φ as
in Equation 5, where we assume zg = zb, resulting in:

F(s,a,s′) =−
√
(x′b− xg)2 +(y′b− yg)2

−(−
√

(xb− xg)2 +(yb− yg)2)
(7)

rewarding a decrease in the distance to the goal, and penal-
izing moving away from the goal.

We train the policy to reach the goal (5,0) for 2 million
time steps over smooth, sinusoidal terrain with amplitude
A = 0.1 [m], period 2π [m] in both x and y directions, and
coefficient of friction µ ∈ [0.5,1]. The terrain is randomly
generated and moved in the xy plane by (δx,δy) ∈ [−1,1]
[m] at the start of each training episode (environment reset),
on top of random perturbations of the joints, positions, and
velocities of the initial states. An episode is considered
completed when (xb,yb) is within 0.2 meters of (xg,yg), or
when the episode times out after 1000 time steps.

We then test the policy over the same family of smooth
sinusoidally varying terrain now also varying amplitude A ∈
[0,0.2] [m] (the period 2π [m] and coefficient of friction
range µ ∈ [0.5,1] are unchanged), and compare results with
runs of our previously designed open-loop trajectory to
locomote the system 5 meters forwards from [6].

Figure 6 shows the end (xb,yb) positions and distributions
for 100 runs each for the trained stochastic policy on the FS
in CS as well as for the hand-designed trajectory. Reaching
the goal is defined as successful if (xb,yb) ends within 0.2
meters of (xg,yg), for both methods. The large cluster of
policy points in a radius of 0.2 meters around (5,0) is
due to the episode completion condition. Of the 100 trials,
there are 57 successes using the learned policy, vs. only 23
successes for the hand-designed open loop trajectory. From
the resulting end positions and observing the policy in action,
we see that if the robot has too much lateral error, due to the
small action space ranges, it cannot move laterally towards
the goal and gets “stuck”. An even more robust policy might
thus be learned by increasing the action space ranges, and
incorporating more knowledge into the observation space
such as sensor readings of terrain height, for future work.
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Fig. 6. Starting from the origin and with a goal of reaching (5,0) in
the environment, resulting end positions for the robot body center of mass
from 100 runs each of the learned policy on the FS in CS as well as
of a hand-designed trajectory. The terrain consists of randomly varying
smooth, sinusoidal curves with amplitude A ∈ [0,0.2] [m], period 2π [m],
and coefficient of friction µ ∈ [0.5,1].

C. Policy and Hand-Designed Trajectory Comparison

The first 15 (s) of a sample skating trajectory from a policy
trained to achieve maximum velocity in the x direction for
the FS in CS are shown in Figure 7. The resulting motions
are quite similar to our hand-designed trajectories in [6],
with symmetric motions in both φ and y position between
the left and right limbs, as well as an approximate phase
difference of π/2 between the front and rear limbs. There
are two key differences: (1) although φ is allowed to vary in
[−0.3,0.3] radians, the policy learns trajectories that never
reach those limits, and (2) as the robot builds speed, the φ

offsets chosen decay to a smaller range and oscillate more
quickly, along with y, once slip is avoided at the start of
the motion. The non-smooth φ motions could be due to the
nature of executing a stochastic policy, or that the policy
has learned to make small corrections in its heading with φ ,
rather than with y, to maximize forward velocity reward.
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Fig. 7. The first 15 (s) of a sample skating trajectory from a policy learned
for the full system in Cartesian space, after training for 1 million time steps
while rewarding forward velocity in the +x direction. When viewing the
robot from above, skate i = 1 is on the front right limb, i = 2 is the rear
right, i = 3 is on rear left, and i = 4 is the front left.



VI. CONCLUSION

This paper details the use of targeting state-of-the-art
reinforcement learning algorithms on simple, representative
systems with standard control techniques, and intuitively lim-
iting the action space to reduce sample complexity, increase
robustness, and accelerate training time.

We showed that using inverse kinematics and training in
Cartesian space significantly speeds up training time. Even
without a fast way to compute IK, the resulting policies are
more stable and robust than training in joint space, where
even after millions of time steps, the agent is still learning
kinematics, producing non-intuitive motions, and terminating
training episodes early. Such considerations are especially
important for a high DOF system such as Robosimian.

We also provide a workaround in the case of no fast IK be-
ing available, by training a policy on a simple representative
system, and transfer learning onto the full system, calculating
IK only at run time, or for fewer time steps if further training
of the policy is needed due to mismatching dynamics.

Although it may seem intuitive to use inverse kinematics
to learn on a lower dimensional system, to the best of the
authors’ knowledge, this is the first such work in this area.
Here this is applied to a skating system, but the ideas can
be readily implemented on any system with a base and end
effector(s). Example applications could include moving a
manipulator to grasp an object in 3D space, or a quadruped
placing down a foot during a particular gait.
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