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Abstract—Learned Neural Network based policies have
shown promising results for robot navigation. However, most of
these approaches fall short of being used on a real robot due to
the extensive simulated training they require. These simulations
lack the visuals and dynamics of the real world, which makes it
infeasible to deploy on a real robot. We present a novel Neural
Net based policy, NavNet, which allows for easy deployment on
a real robot. It consists of two sub policies — a high level policy
which can understand real images and perform long range
planning expressed in high level commands; a low level policy
that can translate the long range plan into low level commands
on a specific platform in a safe and robust manner. For every
new deployment, the high level policy is trained on an easily
obtainable scan of the environment modeling its visuals and
layout. We detail the design of such an environment and how
one can use it for training a final navigation policy. Further, we
demonstrate a learned low-level policy. We deploy the model
in a large office building and test it extensively, achieving
0.80 success rate over long navigation runs and outperforming
SLAM-based models in the same settings.

I. INTRODUCTION

Robot navigation is one of the fundamental challenges
in robotics needed for autonomous intelligent agents. This
problem is traditionally defined as finding a path from a
start location to a target location and executing this path in a
robust and safe manner, e.g. go from the office kitchen to the
whiteboard. It requires the ability for the robot to perceive
its environment, localize itself w.r.t. a target, reason about
obstacles in its immediate vicinity, and develop a long range
plan for getting to the target.

There is a huge body of work on navigation [1]. Tradi-
tionally, navigation systems rely on feature extraction and
geometric based reasoning to localize a robot and map its
surroundings [2]. When such maps are generated or given,
the robot can use them to find a navigation path using
planning algorithms [3].

More recently, learning navigation policies has emerged
as a new line of work. Learned policies have the potential to
leverage all aspects of the observations relevant to navigation,
and not only the ones encoded manually in a geometric map
of the environment. Furthermore, they can learn navigation
behaviors which are not expressable with traditional plan-
ners.

Most of the learned policies capitalize on the recent
advances in Deep Reinforcement Learning (RL). Despite
their potential, the current approaches have been difficult to
successfully deploy on real robots. Due to the high sample
complexity of RL algorithms, these neural policies can often
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Fig. 1: Use of two separate environments, the first modeling
the visuals and layout of the deployment environment, the
second modeling the robot physics, allows for easy training
and deployment of neural policies in the real world.

only be successfully trained in simulation environments. For
navigation problems, such environments ought to capture
both the physics and the visual complexity of the real
world. Having both in one simulation environment is very
challenging and practically non-existent (see Sec. [[I).

Contributions In this work, we present a neural net based
policy for navigation, NavNet, which is (i) fully learned and
(i) directly deployable on a real robot (see Fig. [I). This is
in contrast to most of learned policies which are not directly
usable on a real robot (see Sec. [l). Our policy is a two
level policy — long range and short range. The long range is
responsible for high level commands such as ’go forward’,
‘turn left’, etc. while the short range policy executes those
commands. The high level policy is trained to interpret real
images from the deployment environment for the purpose of
planning. While technically any local planner can be used to
execute commands given by the high level policy, we show
that training a short range policy specifically to complement
the needs of the high level planner on a mobile base — being
precise, keeping a straight path, and avoiding collisions —
results in better performance in the real world.

This hierarchical separation into two policies, with the
specified interface between them, allows for training these on
different environments. As a second contribution, we propose
to train the high-level on a ’streetview’-like environment of
our indoor spaces. Training environments which exhibit high
visual truthfulness while precisely modeling robot physics
are hard to create. However, images of the deployment space
organized in a semi-metric graph are easy to obtain. We
show how to easily construct such a graph and train a high-
level policy on it. Furthermore, simple maze-like synthetic
environments, which model a robot mobile base, can be
built using simulators. We train a low-level policy on such a
synthetic environment.



We apply and extend [4] to learn our high-level policy.
The supervision can come from a traditional path planner,
as done in [4], or from human labeled paths. As a further
contribution, we show how to utilize human demonstrations
of navigation paths. These demonstrations allow for the
robot to learn behaviors not easily expressed by traditional
planners.

We extensively test the presented approach in a large
(200mxz100m) office building. We demonstrate that we can
achieve 0.80 success rate navigating to 10 targets from ran-
dom starting points across a building on a real robot, which
is higher than the performance of a SLAM-based system
in the same environment. Furthermore, our performance is
quantitatively new from published neural models, which have
not been deployed in the real world at this scale.

II. RELATED WORK

SLAM-based Navigation As a very old problem, there
is an extensive literature on SLAM, planning and robot
navigation [5], [1], [2], [6], which due to space limitations
will not be discussed here. In a broad sense, our work falls
into mapless navigation. The neural policy requires neither
a geometric map of the environment nor localization at test
time.

Neural Net Based Navigation In recent years, RL-
learned neural net policies have been explored for navigation.
These are usually learned and tested in simulation. Examples
include: using A3C on 3D mazes [7]; A3C on AITHOR [8];
ADDPG tested using a depth sensor on a real robot [9]; RL
algorithms trained and tested on scans only of real spaces
(no real robot) [10], [11] or SUNCG [12]. Due to the large
sample complexity of RL, the above methods cannot be
learned directly on a real robot.

A high level environment has been used by Mirowski et
al. [13] without deployment on a real robot. Bruce et al. [14],
[15] deploy a RL trained neural net policy and use an envi-
ronment constructed from a traversal. However, their system
is not fully deployed on a real robot — the policy actions are
executed by an operator, while our system employs a second
low-level policy to execute these actions. Thus, contrary to
them we provide a fully deployable navigation solution.

An explicit path planning strategy, similar to our approach,
has been employed by Savinov et al. [16], in a learned
topological graph. However, this path planning is used for
inference only, and the system is evaluated in synthetic
environments.

Beyond RL algorithms, investigations have been con-
ducted into appropriate architectures, with emphasis on using
models with external memory [17], [18], [19], [20]. These
approaches, in their current form, are only applied in simula-
tion. Learned low level controllers have been developed [21],
and also combined with traditional PRM planning [22].

Realistic Training Environments for Navigation The
majority of the simulation environments used for navigation
experiments are not visually realistic, and as such the trained
policies are not usable on a robot in the real world. Some

low level continuous
? robot command T T T

Low Level
Obstacle

Avoidance
Controller

ConvNet ConvNet

ConvNet ‘

ConvNet ‘

High Level
Long Range
Controller

Fig. 2: Two level navigation policy. Bottom: the high level
navigation policy uses rich RGB data to perform long range
planning using a simple high level action space. Top: the
high level actions are executed by a low level policy, which
perceives depth and avoids obstacles. See Sec.

of these environments use photo realistic rendering [23], [8],
but are still not extensively tested in real settings.

Recently, captures of real world environments are available
in the form of train/test environments for robotics. The
closest match to our desired environment is the Active
Vision Dataset [24], which is a dense capture of homes.
Unfortunately, these environments, while large in number,
are individually too small to sufficiently challenge long
range navigation. Larger environments ([25], [26], [27]), are
captured too sparsely and contain rendered 3D reconstruc-
tions for locations not in the original scan. Although the
reconstructions are of high visual fidelity, the rendered views
still contain artifacts.

III. NAVIGATION MODEL

The navigation model is a two level policy (see Fig. [2).
The high level policy is responsible for long range planning
— for every observation and target label, it is trained to output
a high level action bringing the robot closer to the target. The
low level policy is responsible for executing the high level
action on the specified platform. It is trained to maintain a
straight path and safe distance to nearby objects.

The two policies have complementary properties. The high
level policy knows and plans in the deployment environment,
but cannot precisely guide the robot. The low level policy
has no knowledge of the deployment environment, as it is
trained on a different simulation environment, but moves the
robot precisely and safely (see Table [I).

A. Long Range High Level Planning Policy

The high level policy takes as inputs an RGB image =,
a target specification g, and a binary proximity indicator
p € {0,1}. The latter indicator is the output of a radar
reading and indicates if a collision is imminent. Currently, it
is defined as 1 iff there is an object within 0.3 m.

We use two ways of specifying targets: a location label
or a target image. To define a location label, we overlay a



regular grid onto the world and define each cell as a potential
target. In our case, we have a 10 x 10 grid where 77 cells
represent valid locations. Each location is defined as a one
hot vector g € {0, 1}*, where k is the number of all possible
locations.

The image-based target specification is defined by an
embedding g € R? of an image from the target location.
The embedding is obtained with same network used to
embed observations. This second target definition is more
flexible, but also more ambiguous as locations might look
quite similar in visually repetitive environments.

The output action space is defined as three possible actions
Anign = {‘forward’, ‘turn left’, ‘turn right’}. The forward
motion is intended to be 1m, the turns are at 15°. Note,
however, that these values are approximate, as their seman-
tics are established during training of the policy. The training
environment, however, does not represent the above actions
with very high precision (see Sec.

With the above notation, the high level policy is trained
to output a value v(a, z;g) estimating the progress towards
the target g, defined as the negative change in distance to g
if action a is taken at observation x. This value function can
be used to estimate which action moves the robot closest to
the target:

Ohigh = arg max v(a, 3 9) (D
high

The above value function is implemented as a recurrent
neural net taking as input the concatenated and transformed
embeddings of the observation z, target g, and the proximity
bit p:

v(a, x; g) = LST M (MLP3(ResNet50(z), p, MLP;(g)))
2)

The recurrent net is a single layer LSTM [28], which
maintains a state over the execution of a navigation run.
This state serves to capture recent actions, which has shown
cricual in avoiding oscillations (revisiting the same state over
and over again).

Before being fed into the LSTM, the observation is em-
bedded using an ImageNet pre-trained ResNet50 [29]. The
target embedding is obtained using a single layer perceptron
from the location label or image-based target specification.
The dimensions of the above perceptrons and LSTM are set
to 2048.

[ | High Level Planning [ Low Level Control ]

Policy Properties
RGB images
discrete / high level
navigation directions

inputs 1D depth

continuous / twist
for diff. drive

Training Environment Simulation Quality

actions

sensor readings | high medium
robot physics none high
building layout | yes no

TABLE I: Comparison of the two policies and their training
environments. See Sec. [Tl and

B. Low-Level Policy

While the high level commands can be executed on the
robot using position control, their verbatim execution leads
to inaccuracies, drifts, non-smooth behavior and eventually
collisions. With the above definition of Ap;gn, we can safely
execute rotations, but for ’forward’” we use a short range
policy. This policy is trained to rectify inaccuracies of the
high level plan, keep a straight path and avoid collisions.

The input to the policy is a 1-dimensional LiDAR reading.
It captures the geometry of nearby objects, which is sufficient
for short term safe control. The low level action space Ajqy
is continuous, defined by the kinematics of the robot. In our
case, we work with a differential drive mobile base. Thus,
the action space is a 2 dimensional real valued vector of the
twist values for the two wheels (angular velocities for each
wheel).

The policy is formulated as a ConvNet over both space and
time. Since it is a ConvNet, it maintains no state. However,
having as an input several recent observations allows for
the policy to reason over robot motion, which we believe
is important for low-level control.

In more details, the low level policy receives the last
3 LiDAR readings z, x_; and x_o. Since these are 1-
dimensional, they can be concatenated into an image, where
the second dimension is time:

ajow = ConvNet(concat(x_z,x_1,)) 3)

where ajow € Ajow-

The network ConvNet has following 4 layers:
conv([7,3,16],5) — conv([5,1,20],3) — fc(20) —
fe(10), where conv(k, s) denotes convolution with kernel k
and stride s and fc¢(d) is fully connected layer with output
dimension d.

IV. TRAINING ENVIRONMENTS AND ALGORITHMS
A. High Level Planning Policy

WorldViewEnv The training uses an environment consist-
ing of real images X obtained via traversals. These images
represent states of the robot in the world and are organized
in a graph, whose edges represent actions moving the robot
from one state to another.

To create WorldViewEnv, we use a rig of 6 cameras
organized in a hexagonal shape. This rig captures a set of
images every 0.5m as it moves through the building.

We perform two operations with the raw captured data.
First, the images are stitched into a 360 degree panorama,
which can be cropped in any direction to obtain images of
the desired field of view (fov). We use fov of 108 deg (width)
and 90 deg (height). We crop each panorama into 24 views
each 15 degrees apart. We define two rotational actions: ‘turn
left’ and ‘turn right’, which shifts the robot’s view while
remaining at the same location.

Second, we use the Cartographer API [30] to estimate
the poses of the images. We define the ‘forward’ action as
moving the robot to a nearby location in the direction of
the current view. We attempt to move forward by 1m, but
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Fig. 3: An example 2 step traversal of WorldViewEnv. Top:
views at three different states. Bottom: Top down view of
all traversed locations in the vicinity of the views (as blue
dots). The enlarged circles correspond to the three views, the
arrow represents the robot orientation.

there is no guarantee that an image was captured exactly
1m away. We consider this action possible if an image is
captured within 0.7m from the new location, which we set
as the result of this action. The final action space is Ajgh =
{“forward’, ‘turn left’, ‘turn right’} (see Fig. .

Discussion WorldViewEnv exhibits high visual fidelity
and the traversals cover most of the designated building
spaces. However, the high level actions capture rough mo-
tions and can be used to express a navigation path, but
cannot be executed robustly on a robot. Hence, we use this
environment to train a high level policy only.

As the actions connecting views are high level, we need
only locally correct SLAM and loop closure. Hence, we do
not need the high precision necessary for global geometric
maps. Moreover, no mapping of the surroundings is needed.

Training The training is a form of imitation learning,
where we can imitate paths from traditional planners and
human navigations. Furthermore, imitation learning provides
supervision at every step of the policy execution, which leads
to more stable optimization contrary to many of the RL
setups suffering from sparse rewards.

These paths can be used as supervision at every step of
the policy execution, when present. Supervised learning is
more efficient than RL due to the lower sample complexity.

To define the training loss, consider a set of navigation
paths P = {p1, ..., pn } leading to one of several pre-defined
targets. These paths are defined over the graph underlying
WorldViewEnv. In our experiments P is either a set of all
shortest paths to targets produced by a shortest path planner
or a set of human navigation paths.

For a target g, start z and a path p € P, we can denote by
d(z, g;p) the distance from x to g along p if both start and
target are on the path in this order. If one of or both of them
are not on the path, then the above distance is inf. Using the
full P, we can consider the shortest path in P which leads
from x to g:

d(x,g;P) = min d(z, g;p)

Using d, we can define the progress toward g if we apply
a at state x:

y(a,x;9) = d(z,g;P) — d(2', g; P)

where 2’ is the image at which one arrives after taking action
x. This transition is defined by the WorldViewEnv.

The loss trains the high level policy to output values as
close a possible to y. As we use a recurrent net to define the
policy (see Eq. (2)), we define the loss over whole navigation
paths. Denote by x = (z1,...,z7) a navigation path, then
the loss reads

Loss(x,g) = Z Z (v(a,ze;9) — y(a, x4 9))?

TtEX aE.Amgh

where the model v is defined in Eq. ). We use Adam
Optimizer [31], where at each training step we unroll the
current policy with random starts and formulate the above
loss for states which are covered by P. At the beginning of
the training, the policy performs random actions, resulting in
random paths. As the training progresses, the paths become
more meaningful and the above loss emphasizes on situations
which will be encountered at test time. This approach is very
similar to DAGGER [32].

We utilize a scalable distributed training setup [33] in
which the unrolling is done in separate processes for perfor-
mance reasons. More precisely, we run 200 collector jobs,
which refresh their policy every 10K steps. The unrolled
episodes are written into a replay buffer. 5 training jobs
utilize the data in the buffer to perform the actual training.
We use standard data augmentation techniques for images,
learning rate of 0.0001, batch size of 8, and unrolls of length
of 40.

B. Low Level Policy

Simple Synthetic Environment The low level policy is
trained in a synthetic environment, consisting of several
hallways and rooms (see Fig. [ left). It is generated using a
2D layout, which is converted to 3D by extending the walls
up. The observations are 1D depth images (see Fig. ] right).
Due to their simplicity, these can be simulated with high
fidelity and the trained models transfer to the real robot.
Visually, this environment is a maze of hallways of varying
sizes.

In addition, we simulate the kinematics of the robot,
a differential drive. It consists of two wheels which are
controlled by their velocities. We do not simulate the robot’s
dynamics.

Thus, we simulate the robot motion with simple depth
perception. The experiments show that this is sufficient to
learn a low level policy.

Training Our policy is to execute the ‘forward’ action
while being efficient and safe. For training we use continuous
Deep Q-Learning (DDPG) [34]. The above requirements are
encoded by the reward R(z, a) needed by DDPG for a given
action a at a state x. The reward should be the highest if
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Fig. 4: Left: top down view of the environment. Brown areas
are traversable. Right: visualization of the 1D depth image,
which is returned as an observation at the given location and
orientation. The blue lines show the field of view.

the robot is moving straight as quickly as possible without
colliding:

no collision

R(iC CL) _ Rlinvlin(a) + Rang|vang (a)|
’ collision

Rcollision

where vy, (a) and vg,4(a) denote the linear and angular
velocity of the differential drive after applying the current
action a (in the current state which is omitted for brevity).
If this action results in no collision, the reward is a function
of how fast (R;;, = 1.0) and how straight (R4ng = —0.8)
the robot moves. If there is a collision, then the robot incurs
a large negative reward R:oiiision = —1.0.

The above setup results in policies which are smooth and
maintain a large distance from their surroundings. Empiri-
cally, they tend to follow the medial axis of hallways and
rooms.

Implementation We borrow the implementation details
and the training setup of [21], where we replace their reward
with the one above. To outline, we use Adam optimizer [31]
with learning rate of 0.0001 and batch size of 256. The
employed DDPG algorithm uses a ‘critic network’, which
approximates the Q value for given state  and action a.
It has a very similar architecture to the low level policy,
defined in Eq. 3] it uses the same type of ConvNet to embed
the observation, which is subsequently concatenated with the
action. This vector is embedded to a single value using a two
layer perceptron (layers of dimensions 10 and 8) .

V. EXPERIMENTS

To assess performance, we measure success rate as the
portion of the runs which end within 3m of the specified
target.

For training, we scan a large 200m x 100m office building.
In this scan, a panorama is captured every 0.5m during a
traversal. Note that these scans were acquired months apart
in time, and have differences in the height of the camera. For
testing we have two setups: (i) a second scan of the same
building (5835 distinct locations; see Fig. [5). (ii) a real robot
which runs the policy in the building.

A. High Level Planning Policy

We evaluate how well the high level policy performs in
isolation of the low level policy. For this we use World-
ViewEnv, where we train on data from 3 traversals and
test using data from a holdout traversal. This simulates

whiteboard

{4 northdoor

Fig. 5: WorldViewEnv of the scanned building. Target, with
3m radius around them, marked in light green. Some parts
of the building were scanned at different step size, as a
way to demonstrate that such type of data can vary over
space and time. The red dot is an example robot location
and orientation.

the scenario where we navigate the same environment but
see different images from different poses. At test time, the
policy traverses the test WorldViewEnv scan and evaluates
navigating to 10 locations (see Fig. [5). For each location, we
randomly pick 20 starting positions with each target location
at least 30m away, resulting in 200 runs.

The high level policy achieves near perfect success rate of
0.96 on the test traversal. This performance is consistently
high across all targets (at least 0.90 success rate). The aver-
age run length is 78 steps which corresponds to approx. 70m,
resulting in 2.8km total.

Generalization over Time It is to be noted that 2/3
of the training traversal was taken 4 months apart from
the testing one. Being an office building, some areas of
the environment have undergone changes (moved furniture,
different furniture). This creates a realistic setup, but also a
challenging one.

Most of the failures were due to such changes. Also, some
of the test traversal was missing areas present in the train
one, which was causing additional failures, as the robot was
seeking to go through these areas. Despite these challenges,
our approach resulted in navigation performance close to
perfect.

The results also indicate that the policy generalizes to
novel views and changes in the environment. The test
traversal does not follow the train one and was recorded
a month later at a different camera height. The policy does
not perfectly follow the supervision (Fig. [7] right) and can
recover from missed turns (Fig. [7} left). In aggregate, the
trained policy learns to get to the target efficiently with an
average run length 1.24 times the shortest possible one.

Generalization over Space The training data traverses
every area three times. Although the operator didn’t intend
to make the traversals different, they might cover the areas
slightly differently. We train NavNet with 1, 2, and 3 traver-
sals. The success rate for training with 2 and 3 traversals is
0.96, while with only 1 traversal, the success rate drops to
0.75. Some of the performance drop can also be attributed
to the single traversal experiment using a scan captured at
a higher viewpoint. This shows that more data from the
scanned environment helps, but the optimal performance is
reached without the need to re-scan the environment many
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Fig. 6: Visualization of three randomly picked runs on the real robot, one run per row; each row showing representative
frames for a decision the policy takes at junctions in the environment.
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Fig. 7: Two runs in which the policy (in red) chose a different
path than the optimal one (in orange)

times.

Image-based Target Specification Furthermore, our
method allows more flexibility in specifying targets for the
policy. While traditional navigation systems take a global
target pose as an input, our training setup can allow arbitrary
target images. To verify this, we run an experiment where
instead of specifying the target as a one-hot vector, we
provide an image from a target area. We input to the policy
a target image sampled randomly from a target area. Due to
the 24 rotations at each location, there are usually several
hundred views at each target location at each of the 77
locations. At test time, we sample a target image in the same
way.

Using this setup, we achieve 0.85 success rate. Our
analysis shows that the decrease in performance is mostly
from receiving ambiguous target images. For example, an
image of a wall or window provides very little information
for the policy to determine where to go, or an image of
a cubicle area may be hard to differentiate since there are
a large number of cubicles in the environment (Fig. [§). To

Fig. 8: Two different locations in the environment, showing
the visual similarity of different possible targets.

verify this, we also run an experiment where we also provide
an additional target image at the same location but facing in
the opposite direction to cover a larger field of view. With
this additional input, we achieve 0.89 success rate, showing
that more views helps the policy disambiguate the target.
These experiments also show that we can generalize to a
large number of targets.

Shortest Path Planner vs Human Demonstration In
Sec. [[V-A] we define the loss using a set of navigation
paths. In the experiments above, these are generated by a
shortest path planner. In addition, we can use demonstrations
of human navigation, which allows us to learn behaviors
otherwise hard or impossible to encode in a traditional
planner.

For one of the targets, we ask an inhabitant of the office
space to label plausible navigation trajectories leading to
this target starting from various points in the building. We
label 70 demonstrations. A qualitative comparison between
the shortest path supervision and demonstration supervision
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Fig. 9: We overlay in red a set of 50 test paths taken by the
trained policy. The size of the red points demonstrates the
visitation frequency across these paths.

paths in the test WorldViewEnv is presented in Fig.[9] We see
that the demonstration-based navigation largely avoids the
middle vertical sections. These correspond to paths through
cubicle spaces, which are naturally avoided by humans as
they are socially disturbing. This shows that a learning-based
policy can learn socially aware behavior without manually
encoding rules in the planner.

B. Real Robot Experiment

We use the Fetch robot mobile base [35] to run real world
experiments. For each of the 10 targets we perform 4 runs.
We run the robot without any manual intervention. 1/3 of the
training scan was collected 7 months before the experiment,
the rest 2/3 was collected 3 months before.

NavNet achieves success rate of 0.80 over these 40 runs.
This shows that the policy is capable of learning long range
planning while avoiding obstacles. As shown in Fig. [6] these
runs are long, over highly repetitive areas. The failed runs fall
into roughly three categories: leaving the area it is trained
for (4 runs); lost localization leading to spinning (1 run);
collisions with objects due to low-level policy failures (2
runs).

To put these results into perspective, we evaluate an
established off-the shelf SLAM-based model — the ROS
Navigation Stack [36]. This system requires scanning the
environment to build a 2D occupancy map. NavNet only
expects a collection of images with their relationship, without
needing precise pose and mapping of surroundings. Further-
more, the ROS system requires manual localization at the
beginning of every run, which we do not need. Finally,
it utilizes more sensors — 1D LiDAR and an RGBD head
camera. NavNet requires a monocular RGB camera for
the high-level policy, and 1D LiDAR for the low level.
The ROS Navigation Stack also requires careful tuning —
manual cleaning of the occupancy map, manual tuning of
hyperparameters for obstacle detection, etc.

With this setup, it achieves 0.75 success rate in reaching
the 10 targets. This shows that a learned system can out-
perform an established navigation system, even at a lower
setup cost and manual work. The ROS system exhibits two
major failures — localization failure and collisions. NavNet,
on the contrary, learns to extract from the RGB sensor
the relevant information for best localization in the cur-
rent environment, while ROS relies on non-adapted feature
matching. Furthermore, the occupancy map used by ROS

Real Robot

Simulation

Fig. 10: Four runs in simulation (left) and in the real (right).
The target is in green.

leads either to collisions or being stuck, depending on how
the hyperparameters governing the safety margins are set.
The learned policy seems to learn a better behavior.

WorldViewEnv vs Real Robot Runs Another indication
that the learned policy generalizes to unseen views and
thus is robust in real settings is a comparison of runs in
WorldViewEnv with runs on the real robot. In Fig. we
show 4 runs with same start and target executed in simulation
and in real. In 3 out of 4 cases the robot took identical paths.
In one run (in red) it made a different but meaningful turn at
the first intersection and then successfully reached the target
in similar distance.

C. Low Level Policy

Learned vs ROS To investigate the importance of our
learned low level policy, we experiment using the ROS local
planner to execute high level commands from NavNet. This
requires a pre-generated occupancy map, which our low
level policy doesn’t need. To determine whether we can step
forward at any location, we use the local costmap, which
fuses sensor data from a LiDAR scan with a pre-computed
SLAM map, to determine if the area in front of the robot
contains traversable space. We provide the planner with one
of three relative poses according to which action the high
level planner chose. We tune the local planner to allow a
0.5m radius tolerance for forward action and 0.1 radians
for rotate actions. These parameters and several others were
chosen after 1 day of manual tuning and testing.

We compare the two systems on 10 random runs. NavNet
succeeds in 9, while NavNet with ROS succeeds in 6.
Visualization of some of the successful trajectories are shown
in Fig. [T1] Failures roughly fall into the global policy taking
the robot into areas where the local planner is not confident
and gets stuck, unable to execute a forward command at
any of the 24 rotations. More subjectively, the ROS local
planner seems to result in more “zig-zag* paths while our
policy maintains smoother and more central paths.

Qualitative Evaluation We perform 4 runs on the robot
with same start and target. For each of them, we place
obstacles (2 bins and a chair) in the middle of the hallway
for the robot to navigate through. In unobstructed settings,
the robot goes through the middle of the hallway. With
obstacles, the robot (i) still executes a correct high level plan
and (ii) successfully changes the path execution to avoid the
obstacles. As shown in Fig. the area it has to go through



Fig. 11: Top-down view of runs. The end point is marked by
a circle. Left: NavNet. Right: NavNet with low-level policy
replaced by ROS Navigation stack.

Run 1: obstacle avoidance Run2
and narrow area

- &8 !
q “p — run 1
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o:

Fig. 12: Two runs with obstacles. Left: second person view
while navigating around obstacles. Right: trajectories of the
two runs.

Top-down views of runs

is only approx. 50% wider than the robot base. The low level
policy manages to get the robot safely around.

VI. CONCLUSION

In this paper we present a novel two level neural policy
for navigation. We train it in a novel way using two different
environments, which allows for easy deployment on a real
robot. The system has high performance compared to SLAM-
based methods and demonstrates that neural policies can be
trained and deployed in the real world.
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