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Robust Hand-Eye Calibration via Iteratively Re-weighted
Rank-Constrained Semi-Definite Programming

Chinmay Samant1,2,3, Adlane Habed1, Michel de Mathelin1, Laurent Goffin1

Abstract— This paper addresses the problem of estimating
the Euclidean transformation relating two rigidly attached
reference frames from motion measurements: a problem that
is commonly referred to as the Hand-Eye calibration. The
motion measurements are often affected by synchronization
issues and hardware malfunctions. When using pose sensors,
such as Electromagnetic or Inertial Measurement Units, the
measurements are often less reliable than those obtained by
a traditional robot-link and camera pair. Corrupt measure-
ments, whether due to disturbances, large synchronization
mismatches or malfunctions, are considered outliers that
ought to be filtered out of the estimation process. While
this may be achieved non-deterministically by using Random
Sample Consensus, we propose a deterministic, robust and
accurate method for solving the Hand-Eye calibration problem
despite the presence of large amounts of outliers and high
levels of measurement noise. The proposed method is based
on a reformulation of this estimation problem as a rank-
constrained semi-definite programming problem allowing for
robustness to be enforced via an iteratively re-weighted opti-
mization approach.

I. INTRODUCTION

Hand-Eye calibration consists in estimating a fixed
Euclidean transformation relating the reference frames
of two rigidly attached sensors providing motion measure-
ments. Many robotic and medical imaging devices rely
on the presence of a camera (the Eye) that is paired with
other pose sensors such as the traditional robotic link
(the Hand), Inertial Measurement Units (IMU), odometry,
Electromagnetic (EM) or a combination of these. In Fig. 1,

Fig. 1: Traditional Hand-Eye setup in robotics with a camera mounted on
a robot gripper attached to the robot base. Transformations are obtained
via the kinematic link and camera pose estimation.

A′
1 and A′

2 are the camera transformations obtained from
camera pose estimation techniques while B ′

1 and B ′
2 are

those obtained from the robotic link. One motion of
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the robot hand results into the relative transformations
A = A′

2 A′−1
1 and B = B ′

2B ′−1
1 . These transformations, along

with the rigid transformation X relating the camera and
the robot gripper, satisfy AX = X B : a relationship originally
proposed in [1, 2]. Matrices A, B and X are homogeneous
transformations in SE (3). In particular the unknown matrix

X is of the form

[
R t
0T 1

]
where R ∈ SO(3). Note that at

least two relative motions (3 absolute poses) with non-
parallel rotational axes are needed to estimate X [1]. In
practice several relative motions are used to create multiple
sets of matrices Ai and Bi , i = 1, . . . ,n, leading to an over-
determined system (with possibly noisy data). Hence, X is
estimated by solving the problem

min
X

n∑
i
‖(Ai X −X Bi )‖

s.t . X ∈ SE(3)

(1)

where ‖.‖ denotes the Frobenius norm.
Early Hand-Eye calibration methods [1, 2, 3, 4, 5]

were based on estimating the rotation and translation
of the sought transformation X independently. However,
as noted in [6], in doing so, estimation errors in one
would naturally propagate to the estimation of the other.
As a result, subsequent methods [7, 8, 9] solve for the
rotation and translation simultaneously. For instance, this
was carried out through the use of dual-quaternions in
[8], by employing a new metric on SE(3) and its Lie
group algebra [7], and also by exploiting properties of
the Kronecker product [9]. The method proposed in [10]
solves the Hand-Eye calibration problem using Second
Order Cone Programming. This method, however, fails to
maintain the orthogonality of the rotation matrix leading
to large estimation errors in the case of noisy data.

The Hand-Eye calibration problem is inherently non-
linear because of X ’s rotational component membership
to SO(3): enforcing this membership is paramount. The
various SO(3) parameterizations employed to solve this
estimation problem all led to formulations that require
solving nonlinear programming problems. While these are
generally solved using local optimization methods [11, 4],
the globally optimal method in [12] solves the problem
using Lassere’s hierarchy of convex semi-definite program-
ming (SDP) relaxations [13]. Globally optimal methods
have also been investigated in [14, 15, 16] when using
information from the image instead of relying upon the
camera transformations.

The bulk of the literature on Hand-Eye calibration con-



siders a robot-link and a camera, both generally providing
satisfactorily accurate measurements. As a consequence,
the problem of outlier infested data has known very
little attention. Many applications involving a camera
coupled with either EM sensors or IMUs are particularly
prone to spurious measurement readings and/or large
amounts of noise. This may be due to disturbances caused
by various physical phenomena such as electromagnetic
disturbances, edging or exiting the generated EM field,
error accumulation, sensor synchronization issues, etc.
Such problems affect predominantly medical instruments
mounted with EM sensor where the EM transmitter field
is constantly disturbed by EM noise. The excessive use of
these instruments may also displace the sensors rendering
the need for on-the-fly calibration. To account for outliers,
the authors of [17] use a Random Sample Consensus
(RANSAC) framework with the dual quaternion formulation
(from [8]) of the transformations. However, RANSAC is non-
deterministic and depends on the number of iterations
and thresholds chosen within.

In this paper, we propose a deterministic, robust and
accurate method for solving the Hand-Eye calibration prob-
lem even in the presence of large amounts of outliers and
high levels of measurement noise. The proposed method
is based on a rank-constrained SDP formulation of the
Hand-Eye calibration. This SDP formulation is obtained by
considering the membership of the rotational component
of X to the convex hull of SO(3). This membership is
described by a convex Linear Matrix Inequality (LMI).
The full membership to SO(3) is then enforced via a
single matrix rank constraint that, alone, encapsulates the
nonlinearity of the problem. To enforce this rank constraint,
we employ an efficient method alternating between solving
two SDP problems: one for enforcing the rank while the
other for recovering the calibration matrix. We exploit
this formulation of the Hand-Eye calibration problem to
robustify the estimation process through an iteratively re-
weighted optimization scheme that allows to reduce the
influence of outlier motions in the estimation problem.

The paper is organized as follows. Section II provides
some background on SDP and LMIs, the convex hull of
SO(3) as well as rank-constrained estimation. Section III is
dedicated to our formulation of the Hand-Eye calibration
problem and the presentation of our robust algorithm. In
Section IV, we give comprehensive comparative results of
our experiments against state-of-art methods using both
synthetic and real data. Section V concludes our work.

II. BACKGROUND AND NOTATIONS

In this section, we present the adopted notations as well
as a brief background on Semi-Definite Programming, the
notion of convex-hull of rotations in 3-space and the rank-
constrained LMI feasibility problem. These are the main
ingredients in our rank-constrained SDP reformulation of
the Hand-Eye calibration problem (1).

A. Semi-Definite Programming

Semi-Definite Programming (SDP) problems are convex
optimization problems with a linear objective function and
Linear Matrix Inequality (LMI) constraints, that is,

min
m∑

i=1
bi yi

s.t. C +
m∑

i=1
yi Di Ê 0,

(2)

where yi ∈ R are the unknown variables while bi ∈ R,
matrices C =C T ∈Rn×n and Di = DT

i ∈Rn×n are provided.
The inequality sign means that the matrix L =C+∑m

i=1 yi Di

is positive semi-definite (É would refer to negative semi-
definiteness) and the inequality constraint is called as a
LMI. Matrix L is constrained between its smallest and
the largest eigenvalues, respectively, λmi n and λmax . For
instance, L −λmi n I Ê 0 and L −λmax I É 0 (matrix I is
the identity matrix). There are several methods that can
efficiently solve SDPs, notably interior point methods [18].
This article [18] also provides a generous history and survey
of solving SDPs. Though these formulations appear to be
very specific form of problems, they are rather widely
used in the field of control theory [18, 19] and computer
vision [20].

B. Rank-Constrained LMI Feasibility Problem

Consider a symmetric m ×m matrix M and the rank-
constrained semi-definite feasibility problem on the left
of (3)

find
M

M

s.t. M ∈C

M Ê 0
rank M É n

≡
min

M
trace(M Z?)

s.t. M ∈C

M Ê 0

(3)

where C is a convex set containing positive semi-definite
matrices of rank n É m or less. If M? is a solution to this
problem, then there exists a m ×m symmetric positive
semi-definite matrix Z?, of rank at least m −n, such that
trace M?Z? = 0. With this Z?, the solution to the problem
on the right-hand side of (3) is also M?.

As a consequence, alternatively, one may solve the rank
constrained problem in (3) by alternating the solutions of
the following two SDP problems

min
Z

trace(M?Z)

s.t. 0 É Z É I
trace(Z ) Ê m −n




min
M

trace(M Z?)

s.t. M ∈C

M Ê 0.

(4)

Matrix Z , estimated through solving the problem to the
left in (4), acts as a direction matrix when estimating
M in the problem to the right in (4). This process is
intialized with some Z? and repeated until convergence.
The constraint 0 É Z É I enforces the semi-definiteness of
Z as well as bounds its largest eigenvalue by unity. Along
with trace(Z ) Ê m −n, these two constraints are used as
surrogates to the rank of Z . The interested reader may refer
to [21], chapter 4.4.1 for further details on this approach.



C(R) =


1+R11 +R22 +R33 R32 −R23 R13 −R31 R21 −R12

R32 −R23 1+R11 −R22 −R33 R21 +R12 R13 +R31

R13 −R31 R21 +R12 1−R11 +R22 −R33 R32 +R23

R21 −R12 R13 +R31 R32 +R23 1−R11 −R22 +R33

 . (5)

C. Convex-Hull of Rotations

Consider a 3×3 matrix R and the function C mapping
R3×3 to R4×4, as given in (5), where Ri j denotes R’s entry
at the i th row and j th column. The set

convSO(3) = {R ∈R3×3 : C(R) Ê 0} (6)

represents the tightest convex hull of the set of 3-space
rotation matrices. This result was first reported in [22]
while characterizing orbitopes, then in [23] as part of the
characterization of the convex hull to rotations. Indeed,
should R be a rotation matrix, the conversion between
a unit quaternion z = a + i b + j c +kd (where |z| = 1) and
matrix R is given by

R =
[

a2 +b2 − c2 −d2 2bc −2ad 2bd +2ac
2bc +2ad a2 −b2 + c2 −d2 2cd −2ab
2bd −2ac 2cd +2ab a2 −b2 − c2 +d2

]
. (7)

It can be observed that the entries of R are constructed
from the terms of a rank-1 4×4 symmetric matrix U

U = 1

a2 +b2 + c2 +d 2


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d 2

 , (8)

the entries of which can be obtained by inverting the
relations R11 = a2 + b2 − c2 − d 2, R12 = 2bc − 2ad , . . . etc.
This inverse mapping characterizes matrix C(R) (as given
by (5)). Matrix C(R) being positive semi-definite ensures
R’s membership to convSO(3). If in addition C(R)’s rank
is 1, then R is a guaranteed to be a rotation matrix.

III. METHOD

In this section, we present the main contribution of
the paper, that is: our SDP formulation of the Hand-Eye
calibration problem and the underlying robust algorithm.

A. Semi-Definite Problem Formulation

We first formulate the Hand-Eye calibration problem as
a rank-constrained SDP and show how this can be solved
using alternating optimization of two convex problems. The
formulation herein does not explicitly address the problem
of robustness. This is addressed in the next section which
also provides our full algorithm.

Assuming n Ê 2 motions available, an alternative for-
mulation to the Hand-Eye calibration problem (1) is the
following:

min
X

∑
i
σmax (Ai X −X Bi )

s.t. X ∈ SE(3),
(9)

where σmax (.) denotes the largest singular of its matrix
argument. Note that this problem is not equivalent to
the one stated in (1). The latter minimizes the L2-norm,
which is generally preferred over other norms. However,
relying on the cost function in (9) carries a number of
advantages. Firstly, minimizing the largest singular value of
a matrix is a SDP problem. As a result, such minimization
may be subjected to additional LMI constraints such
as, for the problem at hand, the membership of the
rotational component of X to the convex hull of rotations
convSO(3) (6) rather than SO(3). Then, the largest singular
value alone is an excellent indicator for the relative quality
of motion measurements employed to estimate X . Indeed,
with the correct estimate of X , motions with small largest
singular values of Ai X −X Bi indicate that Ai and Bi are
good measurements and bad otherwise. Such singular
values can hence be trusted to provide weights to the
various motions involved in X ’s estimation.

To see that minimizing the largest singular value of
a matrix is a SDP problem, observe that the singular
values of a matrix, say (AX − X B), are the square root
of the eigenvalues of (AX −X B)T (AX −X B). Therefore, as
discussed in Section II-A, the latter matrix and its largest
eigenvalue σ2

max satisfy (AX − X B)T (AX − X B)−σ2
max É

0. Equivalently, and because singular values are always
nonnegative, we can write

1

σmax
(AX −X B)T (AX −X B)−σmax I É 0. (10)

Note that the matrix on the left-hand side of (10) is the
Schur complement of the matrix on the left-hand side of[

σmax I (AX −X B)
(AX −X B)T σmax I

]
Ê 0. (11)

Furthermore, by Schur’s complement lemma (a proof of
which can be found in [24]), the two inequalities (10)
and (11) are equivalent. As a result, considering X of the

form

[
RX tX

0T 1

]
, problem (9) may be equivalently restated

as:

min
RX ,tX ,σ

n∑
i
σi

s.t.[
σi I (Ai X −X Bi )

(Ai X −X Bi )T σi I

]
Ê 0, (12)

C(RX ) Ê 0,

rankC(RX ) = 1.

Note that C(RX ) ensures RX ’s membership to convSO(3) (6).
Together with the rank condition, these two constraints



ensure the resulting RX to be in SO(3), hence X ∈ SE(3).
Problem (12) carries the advantage of confining the
nonlinearity of the problem to a single rank constraint. A
relaxed convex problem can simply be solved by dropping
this constraint. However, the resulting solution would not
guarantee the estimated RX to be in SO(3). We show, in
the following, that a better solution satisfying C(RX )’s rank
condition in practice can be obtained. The proposed ap-
proach is based on the alternating minimization procedure
described in Section II-B. Given some initial 4×4 matrix
Z? of rank 3, the idea is to alternate between solving

min
RX ,tX ,σ

n∑
i
σi +µ trace(C(RX )Z?)

s.t.[
σi I (Ai X −X Bi )

(Ai X −X Bi )T σi I

]
Ê 0, (13)

C(RX ) Ê 0,

which involves a regularization term controlled by a fixed
nonnegative parameter µ, and the problem

min
Z

trace(C(R?X )Z )

s.t. trace(Z ) Ê 3, 0 É Z É I .
(14)

Here, R?X is obtained by solving (13) while the direction
matrix Z? is the minimizer obtained by solving (14). Note
that both (13) and (14) are SDP, hence convex, problems.
The algorithm iterates until there is no change in X .
Note that the choice and influence of the regularization
parameter µ are discussed in the experiments section. The
choice of the regularization parameter µ and the initial Z?

is delayed to the next section, following the presentation
our full robust algorithm.

B. Robust Hand-Eye Calibration

The convexity of the alternating problems (13) and (14),
along with the estimates of the largest singular values,
provide a very suitable ground for an iteratively reweigthted
procedure. Such procedures are known to handle efficiently
both noise and outliers. To do so, consider a set of singular
values σ(k−1)

i and X (k−1) all estimated at iteration k −1 of
the algorithm, k Ê 1. With X (k−1), one can estimate the
direction matrix Z (k) to be used to estimate X (k) at the next
iteration k by solving (14). In turn, the weights w (k)

i are
necessary to estimate X (k). They are inversely proportional
to σ(k−1)

i and can be first computed as

w (k)
i = 1√

σ(k−1)
i +ε

, (15)

where ε is a very small number, then normalized as
described in Algorithm 1. Given the weights and direction
matrix, X (k) is estimated by solving

min
RX ,tX ,σ

n∑
i

w (k)
i σi +µ trace(C(RX )Z (k))

s.t.

w (k)
i

[
σi I (Ai X −X Bi )

(Ai X −X Bi )T σi I

]
Ê 0, (16)

C(RX ) Ê 0.

Such weighting scheme efficiently reduces the influence
of corrupt measurements. The full algorithm is given by
Algorithm 1. In this algorithm, γ= 1e−7 is a threshold value
to determine that X ’s estimation is unchanged compared
to its estimate at the previous iteration (in the Frobenius
norm sense). This is the stopping criterion. The initial
matrix Z (0) must be rank-3. In practice one may start from
any diagonal matrix with all ones on the diagonal except
for one zero-entry. We suggest to run the algorithm with
all 4 such possible values of matrix Z (0) and retain the one
with the minimum cost of the SDP. Furthermore, we found
that µ= 1e−6 was a good choice in all our experiments. Its
influence on the algorithm is discussed in the experiments
section. All weights can be initialized to 1.

Algorithm 1: Robust Hand-Eye calibration algorithm

Input: Ai=1...n ,Bi=1...n ,γ,Z (0)

Output: X

1 w (0)
i=1...n = 1, ζ=+∞, k = 0

2 Estimate X (0) by solving (16)
3 while ζ> γ do
4 k = k +1
5 Estimate Z (k) by solving (14)

6 w (k)
i=1...n = 1√

σ(k−1)
i

+ε

7 w (k)
i=1...n = w (k)

i=1...n∑n
j=1 w (k)

j

8 Estimate X (k) by solving (16)
9 ζ= ‖X (k−1) −X (k)‖

10 return X = X (k)

IV. EXPERIMENTS AND RESULTS

We have conducted experiments using 3 types of
datasets: synthetic dataset, real motion dataset of hand-
eye robot setup and real motion dataset from an EM
sensor-camera setup. In all the experiments, our robust
Algorithm 1 was used with parameter µ= 1e −6, threshold
γ= 1e −7 (as discussed given in Section III-B). Also, our
initial Z (0) was arbitrarily chosen as the diagonal matrix
with all ones but the first entry.

A. Synthetic Data Experiments

In the synthetic experiments, we simulated a scene of
50 points confined to the surface of a 1 meter radius
sphere. Random views of the scene were generated by
moving the virtual camera around the sphere surface while



constraining all the points to be visible in all the images.
The camera intrinsic parameters were adjusted accordingly.
The camera was placed at a 2.5 meters mean distance from
the center of the sphere and 0.7 meters standard deviation.
We provided a hand-eye transformation X which, along
with the camera pose, was used to create ground truth
absolute hand transformations. These were used to create
relative motions for both camera and hand. For each level
of changing noise or percentage of outliers, we ran 100
independent trials over which the error measurements
were averaged.

To quantify the results, we used the RMS errors in
rotation unit quaternion ‖q − q̂‖ and RMS of the relative
errors in translation ‖t − t̂‖/‖t‖. These are customary
metrics used in [2, 4, 8]. Though the metrics for rotation
and translation are given independently, note that the
success of a method depends upon the performance in
both metrics of rotations and translations combined.

In the synthetic experiment results, methods qhec, uvhec
and dqhec are from [12], tsai refers to [2], Inria is from
[4] and navy refers to [5]. For these methods, we used the
Matlab implementations from [25]. ’traceZ’ refers to the
Matlab implementation of Algorithm 1 using YALMIP [26]
as a parser and SeDuMi [27] as a SDP solver.

1) Experiments with varying noise: In the first experi-
ment, we used 30 motions of the virtual Hand-Eye setup
throughout 100 trials for increasing noise levels. An abso-
lute Gaussian noise was added on the quaternion rotation
of hand transformations with increasing standard deviation
(0 to 0.2 quaternions). Relative Gaussian noise was added
on the translation vector of both hand transformations (0
to 20%). For the camera transformations, a Gaussian pixel
noise was added on the 2D pixels from the camera views
with an increasing intensity (0 to 2 pixels). The results are
illustrated in Fig. 2. Note that the best performing methods
are qhec (as well as uvhec) [12] and ours with a better
translation estimation with our method.

0 0.05 0.1 0.15 0.2

Noise Level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
M

S
 e

rr
o

r:
 q

u
a

te
rn

io
n

 r
o

ta
ti

o
n

 n
o

rm

Rotation Error

traceZ

inria

tsai

navy

qhec

uvhec

dqhec

0 5 10 15 20

Noise Level %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
 e

rr
o

r:
 r

e
la

ti
v

e
 t

ra
n

s
la

ti
o

n
 v

e
c

to
r 

n
o

rm

Translation Error

traceZ

inria

tsai

navy

qhec

uvhec

dqhec

Fig. 2: Gaussian noise on hand and camera motions. RMS of quaternion
rotation errors (left), RMS of relative translation vector errors (right).

In the second experiment, we used the same noise
adding scheme as above except that the Gaussian noise on
the hand transformations is replaced by uniform noise. It is
generally hard to model the noise from IMUs/EM sensors
and it is usually non-Gaussian. Pixel noise remained
Gaussian as in the previous experiment. Our results are

illustrated in Fig. 3 in which we note a similar performance
as the previous experiment.

0 0.05 0.1 0.15 0.2

Noise Level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
 e

rr
o

r:
 q

u
a

te
rn

io
n

 r
o

ta
ti

o
n

 n
o

rm

Rotation Error

traceZ

inria

tsai

navy

qhec

uvhec

dqhec

0 5 10 15 20

Noise Level %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 e

rr
o

r:
 r

e
la

ti
v

e
 t

ra
n

s
la

ti
o

n
 v

e
c

to
r 

n
o

rm

Translation Error

traceZ

inria

tsai

navy

qhec

uvhec

dqhec

Fig. 3: Uniform noise on hand and camera motions. RMS of quaternion
rotation errors (left), RMS of relative translation vector errors (right).

2) Experiments with Outliers: In this experiment, 30
motions with a marginal noise were used throughout the
experiment. We added a constant amount of 0.05 standard
deviation absolute Gaussian noise on quaternion of hand
transformations, 5% relative Gaussian noise on translation
vectors of the hand and 1 pixel Gaussian noise on
cameras. To create the outlier data, we added an increasing
percentage of outliers (totally random data) in the total
number of motions. Only hand transformations (occurring
from IMU, EM sensors, odometry or the combinations of
these sensor measurements) were affected by outliers. The
camera transformations were not affected by outliers since
cameras have a direct view of the target. Also, there are
various robust algorithms already present on the camera
hardware/software platforms allowing one to obtain good
camera pose estimation. The results reported in Fig. 4
show that the outliers are efficiently rejected up to 70%
(only 9 out of 30 good relative motions). After 70%, our
method starts to fail, albeit not by a big margin.
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Fig. 4: Outliers replacing increasing percentage of motions. RMS of
quaternion rotation errors (left), RMS of relative translation vector errors
(right).

3) Time performance of our method: In this experiment,
the noise levels and outliers were used as in the outlier
experiments. Here we present two types of graphs (Fig. 5,
Top). The line graph presents the average time taken by
one iteration of the weighting of the motions (the ’while
loop’ in Algorithm 1). The bar graph presents the number
of iterations taken by the ’while loop’ before termination.



The average of this time was computed for 50 trials for each
outlier (completely random data) percentage. The bar part
of the graph shows that the number of iterations hardly
increases with increasing number of outliers. Similarly, the
line graph also fluctuates only in milliseconds highlighting
the apparent disconnection between the ratio of outliers
and computation time.

0 10 20 30 40 50 60 70

Outlier %

1.16

1.18

1.2

1.22

T
im

e
 i
n

 s
e
c
o

n
d

s

0

1

2

3

4

5

N
u

m
b

e
r
 o

f 
It

e
r
a
ti

o
n

s

Time Performance

Time

Iterations

10
2 1 10

-2
10

-4
10

-5
10

-6
10

-7
10

-8
10

-10

Values of µ

1

1.5

2

2.5

T
im

e
 i
n

 s
e
c
o

n
d

s

0

100

200

300

400

500

N
u

m
b

e
r
 o

f 
It

e
r
a
ti

o
n

s

Time Performance of µ

Time

Iterations

Fig. 5: Top: Average time performance of each iteration. Bottom: Average
time performance while changing the regularization parameter. Left Y-
axis: Average time taken by each iteration in 50 trials. Right Y-axis: Total
number of iterations.

4) Experiments with regularization parameter: We have
used µ as a regularization parameter in our problem
formulation (13). Changing the value of µ affects the
time of convergence of our method. In this experiment,
we imposed a nominal absolute noise of 0.05 standard
deviation (in quaternions) to hand motion rotations and
5% relative Gaussian noise on hand translations. 1 pixel
noise was added to cameras. Fig. 5 (bottom) shows the
time per iteration and number of iterations taken for each
µ. We observe that choosing a correct µ value is critical
for the time. For instance, with µ = 1e −4, the program
takes very long (approx. 16 minutes). With µ = 1e −5, it
only takes a 4 to 5 seconds to terminate.

B. Real Data Experiments with Robot-Camera Setup

The authors of [17] published an open source dataset
for hand-eye calibration recorded on a real robot: a UR-
10 arm equipped with a RealSense SR300 RGB-D sensor
mounted rigidly close to the end effector. They also provide
an algorithm to time-align the motions according to
the time-stamps and also to pre-filter the motions and
reject those with very similar information. Only those
with the maximum information are retained. Using this
algorithm, we could obtain 1686 ’time-aligned’ motion
pairs to test our method. Their ’RANSAC Scalar (RS) based
inlier check’ algorithm uses 30 pre-selected motions out
of 1686 motions to perform Hand-Eye calibration. The RS
method uses RANSAC framework with Dual-Quaternion

parameterization [8] to eliminate the outliers. RS method
is a RANSAC framework and different Hand-Eye calibration
methods can be used within this framework. The goal of
this experiment was not to demonstrate the performance
of the Hand-Eye calibration methods but to compare the
performance of the non-deterministic RANSAC outlier
removal approach against our deterministic method. We
used the following chain to recompute camera motions Â j .
Subscript j = 1. . .n relates to all the motions corresponding
to the Ai where i = 1.

Âi = X Bi B−1
j X −1 A j . (17)

Then, we compared Âi=1 against the camera pose A1

given by camera motions from the dataset. We evaluated
the difference between the two rotations in angle metric
and the relative translation using Euclidean distance. These
are the same metrics used in [17]. The final rotation and
translation error is the RMS error of all Â1s computed with
all corresponding A j s. For this experiment, we randomly
drew 100 sets of 30 motions out of 1686 time-aligned
motions without using the pre-selection algorithm from
[17]. Using each sample of these 30 motions, we computed
X . We compared the results using our kinematic chain (17).
Fig. 6 summarizes the results and shows that the overall
performance is superior at every sample even without using
the pre-selection. Note that, in Fig. 6, ’ransac’ line is entirely
flat because RS method selects the best 30 motions to
produce one Hand-Eye calibration output against which we
compare our results from 100 samples. In this comparison,
especially in Fig. 6 (left), our worst result obtained with
some randomly obtained 30 motions is better than the
result from RS method with pre-selected motions.
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Fig. 6: Real data from robot hand. Comparison against ’ransac’
method [17] using 30 pre-selected motions.

C. Real Data Experiments with EM-Camera Setup

Fig. 7 shows our own setup for Hand-Eye calibra-
tion experiment. In this setup, we used a checkerboard
calibration pattern in the view of a calibrated camera
providing us the camera transformations. We used NDI
Aurora electromagnetic tracking system to generate hand
transformations. This system consists of an EM transmitter,
an EM receiver and a power unit. The EM receiver was
mounted on the calibration pattern. Hence, the origin of
the calibration pattern and the EM sensor (receiver) are
related via a rigid transformation X . The transformation



between the camera and EM transmitter was also fixed. We
recorded a sequence of motions by moving the calibration
pattern in front of the camera with the receiver being in the
EM field of the transmitter at the same time. We avoided
the cases of optical occlusions as well as rapid movements
of checkerboard pattern to acquire time-synchronized
pairs of camera-EM transformations. Our software can
synchronize the image and EM-data acquisition while
recording the data. We added high electromagnetic in-
terference to the electromagnetic receiver for some of
the EM transformations. This can be easily achieved by
holding a varying electromagnetic field device such as a
cell-phone (while calling) close to the EM receiver. The
noise is extreme enough to distort the EM field near the
EM receiver randomly. The Windows-based driver/software
which comes with NDI Aurora system can display the
sensor accuracy values in real-time. We can observe (in
real-time) the high disturbance being caused by cell-phone
EM field, which helps us to record an ’outlier’ value during
data acquisition. As we only needed a randomly caused
high EM disturbance, we can accept this dataset without
accurate specifications of cell-phone EM field.

Fig. 7: Our camera-EM data acquisition setup. The camera and EM
transmitter remains the fixed. With each motion, the checkerboard pattern
moves in front of camera along with the attached EM receiver.

Fig. 8: Schematic of EM sensor - camera setup to demonstrate Hand-
Eye calibration. Contrary to the original Hand-Eye calibration setup,
the camera is fixed and the calibration pattern moves: the chain of
transformation remains equivalent.

Fig. 8 shows the schematic of our EM-camera setup.
There exists a Y fixed transformation between the camera
and EM transmitter. This is equivalent to World-Robot

Base calibration in the robot hand-camera setup. Estima-
tion of this transformation is not necessary to compute
Hand-Eye calibration of the checkerboard as long as the
EM transmitter and camera are not moved during the
experiment. Similar to the experiments in Section IV-B,
we used the chain of transformations given in (17) with a
small modification to compute the camera transformations.
Instead of only using A1, we used all the N motions
Ai s (i = 1. . . N ) for this experiment. Then we re-projected
the computed pixels onto to the reference image using
2D homography equation x̂ = H x, where H is 3×3 non-
singular matrix given by the camera intrinsics and x are
the coordinates of 2D points. Fig. 9 shows the average
pixel error (Euclidean distance) corresponding to all Âi s
computed from all A j s (17). In this experiment, we used
20 (for Easy) and 10 (for Hard) relative motions of the
EM sensor(Hand)-checkerboard(Eye) setup. In Fig. 9, ’Easy’
dataset is without outliers and in ’Hard’ dataset, 3 out of
10 of the motions are affected by EM interference outliers.
We can see that in the ’Easy’ case our method performs
fairly in comparison to the other methods (similarly seen
in the Gaussian noise simulation experiment in Fig. 2) but
excels in eliminating the outliers in the ’Hard’ case. We
compared our results against Inria [4], Tsai [2], Navy[5] and
Heller-dqhec [12]. In comparison to synthetic experiment
section IV-A, we left out a few methods because of their
poor performance with this dataset.

Fig. 9: Dataset from EM-sensor setup. The graphs show the distribution
of the pixel errors. In the box plot, the red central line indicates the
median pixel error. The top and bottom blue lines of the box indicate
75th and 25th percentile respectively. The whiskers extend to the most
extreme data points.

V. CONCLUSION

We have presented a method to solve the Hand-Eye
calibration problem. The data measurements from sensors
such as EM or IMUs can be corrupted due to interference,
time misalignment and/or communication errors. We have
reformulated the problem using a SDP formulation in



which the nonlinearity of the problem is confined to a
single rank constraint. Based on this, we proposed an
alternating procedure to cope with the nonlinearity and
an iterative re-weighting scheme against the outliers. This
is a deterministic and robust method that has provided
excellent results in comparison to the existing ones.
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