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Quickly Inserting Pegs into Uncertain Holes using Multi-view Images
and Deep Network Trained on Synthetic Data

Joshua C. Triyonoputro!, Weiwei Wan'!>*, Kensuke Harada

Abstract— This paper uses robots to assemble pegs into holes
on surfaces with different colors and textures. It especially
targets at the problem of peg-in-hole assembly with initial
position uncertainty. Two in-hand cameras and a force-torque
sensor are used to account for the position uncertainty. A
program sequence comprising learning-based visual servoing,
spiral search, and impedance control is implemented to perform
the peg-in-hole task with feedback from the above sensors.
Contributions are mainly made in the learning-based visual
servoing of the sequence, where a deep neural network is
trained with various sets of synthetic data generated using
the concept of domain randomization to predict where a hole
is. In the experiments and analysis section, the network is
analyzed and compared, and a real-world robotic system to
insert pegs to holes using the proposed method is implemented.
The results show that the implemented peg-in-hole assembly
system can perform successful peg-in-hole insertions on surfaces
with various colors and textures. It can generally speed up the
entire peg-in-hole process.

Index Terms— Peg-in-hole, deep learning, domain random-
ization, multi-view images

1. INTRODUCTION

One goal in robotics is to automate product assembly.
At present, most robotic assembly systems, such as the
ones implemented in the production of cars, still follow
the basic principle of teaching and playback. The teaching
and playback concept is useful when the target objects
are fixed. When variations exist, the usefulness of teaching
and playback principle is limited. This leads people to use
automatic motion planning to assemble a diverse range of
products with variations.

An important issue of automatic motion planning is the
accumulated position errors. The goal pose after execution
could be very different from the goal pose in the simulation
after motion planning. People usually use visual detection
or scanning search using force sensors to locate the hole
and avoid the position errors. However, both methods have
shortages: Visual detection requires mild color, texture, and
reflection, etc.; Scanning search using force sensors is slow.

This leads us to study how to quickly assemble pegs
into uncertain holes on surfaces with different colors and
textures. We develop a peg-in-hole assembly system that
uses learning-based visual servoing to quickly move the
peg closer to the hole, uses spiral search to precisely align
the peg and the hole, and uses impedance control to fully
insert the peg into the hole. Fig[l] shows the outline of the
developed peg-in-hole program. The search phase comprises
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Fig. 1: The workflow of the proposed peg-in-hole assembly
system. The system uses learning-based visual servoing to
quickly move the peg closer to the hole, uses spiral search
to precisely align the peg and the hole, and uses impedance
control to fully insert the peg into the hole. The learning-
based visual servoing is our main contribution.

the learning-based servoing and spiral search. The insertion
phase comprises the impedance control.

Specifically, our main contribution is the learning-based
visual servoing. We use synthesized data to train a deep
neural network to predict the position of a hole, and use
iterative visual servoing to iteratively moves a peg towards
the hole.

Various experiments and analysis using both simulation
and real-world experiments are performed to (1) analyze the
performance of the learning-based visual servoing against
uncertain holes on surfaces with different colors and textures,
and (2) compare the efficiency of executions under different
initial hole positions. The results show that the proposed
method is robust to various surface backgrounds and can
generally speed up the entire peg-in-hole process.

II. RELATED WORK

This paper focuses on the problem of peg-in-hole assembly
using deep learning. Thus, this section reviews the related
work in peg-in-hole assembly and the applications of deep
learning in industrial robots.



A. Peg-in-hole assembly

Peg-in-hole assembly refers to the task of inserting a peg
to a hole. The task generally has two phases — the search
phase and the insertion phase. The insertion phase refers to
the phase when the peg is being inserted, and it has been
studied extensively. The search phase is the stage of finding
a hole when position uncertainty exceeds the clearance of a
hole. It is less studied.

1) Insertion phase: One of the earliest studies about the
insertion phase is Shirai and Inoue [1], where they used
visual feedback to perform insertion. About a decade later,
researchers shifted from the use of visual feedback to the use
of compliance to accommodate the motion of the end-effector
during insertion [2] [3] [4] [5]. In the 1990s, the quasi-
static contact analysis was used to guide the insertion [6] [7]
[8]. The state-of-the-art method for insertion is impedance
control [9] [10]. It is widely used in many practical systems.

2) Search phase: The search phase is before the insertion
and is used to align the peg and the hole. Below, related work
about the search phase, sometimes followed by insertion, is
reviewed. The studies can generally be categorized by the
types of sensors used: vision sensors, force sensors, or both.

The first category uses vision sensors. Yoshimi and Allen
[11] dealt with visual uncertainty for peg-in-hole by attaching
a camera to the end-effector and rotating the camera around
the last axis of the robot. Morel et al. [12] employed 2D
visual servoing (search phase) followed by force control
(insertion phase) to successfully performed peg-in-hole as-
sembly with large initial offsets. Huang et al. [13] used high-
speed cameras to align a peg to a hole. More recently, the
visual coaxial system was used to perform precise alignment
in peg-in-hole assembly [14] [15].

The second category uses force-torque sensors. Newman
et al. [16] proposed the use of force/torque maps to guide
the robot to the hole. Sharma et al. [17] generalized the work
of Newman et al. [16] to tilted pegs. Chhatpar and Branicky
[18] explored various blind search methods such as tilting
and covering the search space using paths like spiral path
(a.k.a. spiral search). Spiral search and its variants were also
discussed in [19] [20]. The problem of spiral search is that it
is time consuming, given that the robot just blindly searches
for the hole. Tilting, often considered as a method intuitive
to human, was also explored in several studies [20] [21] [22]
[23]. The limitation of tilting is that it assumes that the initial
offset is small.

More recently, studies such as [24] used a combination
of visual sensors and force-torque sensors to track the
uncertainties of object poses and sped up the search process.
This paper similarly employs both visual sensors and a
force-torque sensor. Specifically, we explore the use of a
combination of visual servoing using two in-hand RGB
cameras, followed by the spiral search using force sensors,
to perform a peg-in-hole assembly.

B. Deep learning in industrial robotics

Deep learning has in the recent years gained prominence
in robotics. Some studies used real-world data to train deep

neural networks. For example, Pinto and Gupta [25] collected
700 robot hours of data and used them to train a robot
to grasp objects. Levine et al. [26] similarly made robots
perform bin-picking randomly for days, before finally using
the data obtained to train a deep network for bin-picking.
Inoue et al. [27] proposed deep reinforcement networks for
precise assembly tasks. Lee et al. [28] trained multimodal
representations of contact-rich tasks and trained a robot to
perform peg-in-hole. Thomas et al. [29] used CAD data to
help improve the performance of end-to-end learning for
robotic assembly. Yang et al. [30] and Ochi et al. [31] took
data by performing teleoperations and used them to make the
robot learn specific motions. De Magistris et al. [32] took
labeled force-torque sensor data to train a robot to perform
multi-shape insertion. Although the aforementioned studies
showed the possibilities of using real-world data, developing
such systems are difficult. Collecting and labeling the real-
world data is time-consuming and labor intensive.

For this reason, robotic searchers began to study training
deep neural networks using synthesized data. Dwibedi et al.
[33] cut and pasted pictures of objects on random back-
grounds to train deep neural networks for object recognition.
Mabhler et al. [34] used synthetic data of depth images to train
robots for bin-picking. Unfortunately, the use of synthetic
data is limited due to reality gap [35].

To overcome the reality gap, one method is transfer
learning [36]. Domain adaptation is an example of transfer
learning, where synthetic data and real-world data are both
used [37] [38] [39] [40]. Domain randomization highly
promotes the use of synthesized data [41] [42]. It suggests
that synthetic data with randomization can be helpful to allow
transfer without the need for real-world data. Using domain
randomization in data synthesis were widely studied [43]
[44] [45] [46].

The learning-based visual servoing of this work is based
on domain randomization. It is used to synthesize the training
data for a deep neural network. It is also used to synthesize
various testing data sets to analyze the performance of the
neural network.

III. METHODS

This section gives a general explanation of the proposed
peg-in-hole assembly method, with a special focus on the
learning-based visual servoing, and the synthetic data gener-
ation.

A. Overview of the proposed peg-in-Hole assembly

The work flow of the proposed method is shown in Fig[2]
It includes a search phase (Fig[2|(a, b)) and an insertion phase
(Fig[2[c)). The search phase has two steps: Learning-based
visual servoing (Fig[J(a)) and spiral search (Fig[2[b)). The
learning-based visual servoing quickly moves a peg closer to
the hole, while the spiral search can precisely align the peg
and the hole.

The details of the learning-based visual servoing will be
discussed in Section [[II-Bl It is the main contribution of the
work.
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Fig. 2: The proposed peg-in-hole assembly includes two
phases: A search phase and an insertion phase. The search
phase has two steps: (a) Learning-based visual servoing and
(b) Spiral search. They move and align the peg to the hole.
The insertion phase uses (c¢) impedance control to insert the
peg into the hole.
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Fig. 3: Definition of the coordinate systems Z..r, Xy, and
Zspirai- (The definition is for the image captured by Camera
1. For the other camera discussed later, the coordinate system
reverses.)

The spiral search is conducted along the xy-plane of
the end-effector coordinate system X, f(Xeef,Yeer), shown
in Fig[3] The reference coordinate system for spiral search
Zspiral(Xspiral» Yspira) 18 of the same orientation as Xy with
the origin » away from the initial peg position. The path for
spiral search is given in Eqn.(T).

Xspiral = T COS 0, Yspiral = rsinf (D

where 6 and r start from 0. 6 increases by 66 every timestep,
while r increases for or for every 1 full rotation. The robot
will move following the discrete spiral path described above,
and continue until the force at the -z direction of Xy is less
than F,, or r reaches a predefined threshold.

The assembly switches to the insertion phase when the
condition for the -z direction force is fulfilled. Impedance
control is used to perform insertion in the insertion phase.

B. Learning-based visual servoing

The learning-based visual servoing uses (1) a deep neural
network and multi-view images to predict the position of
the hole and (2) continuous visual servoing to move the peg
towards the hole.

1) Predicting the position of the hole: We train a neural
network that can map an image / to an output of (x,y), where
(x,y) indicates the distance between the center of the peg and
the hole as seen in the image in pixels on coordinate system
Zimg shown in FigEl

VGG-16 network is used following the suggestion of [42].
The VGG-16 network is adjusted for regression instead of
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Fig. 4: VGG-16 network architecture [47] used in the pro-
posed method.

classification. The input of the network is adjusted to a
grayscale image of size 160x160. The output is a predicted
hole position (x,y). Figld] shows the diagram of the VGG-
16 network. Following [42], the dropout components of the
network are removed to avoid local minima. The network
is trained using Adam, with settings following [48]. Mean
squared error (MSE) is selected as the loss function.

The input image is a concatenation of two images from
two in-hand cameras installed on two sides of a robot hand.
Fig[3] shows the concatenation. To define the size of the
cropped image, a bounding box of size 160x80 around the
center of the peg is predefined, such that the concatenated
image reaches 160x160.
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Fig. 5: Concatenating two multi-view images into the input
image to the VGG-16 network. (a) Configurations of the two
in-hand cameras. (b) An area around the center of the peg of
each image is cropped. (c-d) Concatenate the cropped area
into a 160x160 image.

2) Iterative visual servoing: While the network outputs
(x,y) in pixels, the image is not exactly a 2D image parallel
to the surface of where the hole is. Thus, instead of directly
moving the peg to the predicted position, we use the sgn
function to classify the outputted values into 4 quadrants, as



shown in Fig[f] and iteratively moves the peg towards the
quadrants.

Fig. 6: Definition of the quadrants. Top images show how
the gripper and the hole are relatively positioned from a
front view. The bottom images are the concatenated image
from the two cameras. (a) Quadrant “Topleft”. (b) Quad-
rant “Bottomleft”. (c) Quadrant "Bottomright”. (d) Quadrant
“Topright”.

Consider the coordinate system X, which shares the same
orientation as X, and has an origin at the center of the hole.
Assuming at discrete timestep f#, where ¢ is a non-negative
integer that starts from 0, the peg is located at (x;[t],yx[?]) and
the values outputted by the trained network is (x[f],y[f]). We
can move the peg closer with only the quadrant information

using Eqn.(2).

xplt + 11| _ | xal]| - sgn(x[t])
wle+ 11|~ [yhm] Al] [— sgn(y[t])} @
where A (unit=mm/px) is a time dependent coefficient with

decreasing values and converges to O along with time. A is
defined as:

Al = Aln-1)

3

where A is the maximum allowable relative moving distance.
A[t] converges to O at time n. By repeating this for n,,, times,
where n,,, < n, the peg will get closer to the center of the
hole as long as the quadrant the hole is at relative to the peg
can be correctly predicted by the deep neural network. The
method is robust to the prediction errors of the deep neural
network since it is not directly using the predicted numbers.

C. Synthetic Data Generation Method

Synthetic data generation is used to get a large amount
of training. The basic idea is to change the background of
the cameras with various images. First, we get a gripper
template mask following Fig[7l The purpose of having a
gripper template mask is to simulate the view of the gripper
in the cameras. Then, the gripper template mask is attached
to some random images with a circle (the hole) to make a
synthesized assembly data. Fig[8] shows attaching process.
There are four kinds of randomization in the attaching. (1)
The background of the image is randomized. (2) The size of
the circle (the hole) is randomized. (3) The darkness of the
circle (the hole) is randomized. (4) Gaussian noises are added
to randomize the gripper template mask. By using random

background images captured from the Internet and likening
the hole to a dark-colored circle, a large number of synthetic
images with known labels (x,y) can be quickly synthesized.
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Fig. 7: Obtaining the gripper template mask for generating
synthetic data. (a) The images from the in-hand cameras. (b)
Rotate the image from camera 2, mark the gripper mask,
locate the center of the peg, and define the bounding box on
each image. (c) Crop the image according to the bounding
box and concatenate.
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Fig. 8: Attaching the gripper template mask to some random
images with a circle (the hole) to make a synthesized
assembly data. The hole is added to the background image
in (d). The gripper template mask is added in (e). Gaussian
noises are added in (f).

IV. EXPERIMENTS

The experiments section is divided into two parts. In the
first part, we compare and analyze the performance of the
neural network under different training data. In the second
part, we analyze the real-world visual servoing and insertions
using the best performing network.

A. Performance of the neural network

The specification of the computer used for the neural
network is Intel(R) Core(TM) 15-6500 @3.20 GHz, 16GB
RAM, with an Nvidia Geforce GTX 1080 card.

1) Training data: The synthetic training data was gen-
erated using the method described in Section [II-C] Six
categories of random images were prepared, as shown in
Fig[0l 776 positions (194 positions per quadrant) are evenly
sampled in each image to define the position of a hole. These
positions have a maximum of 4 cm uncertainty (the range is
[-66 px, 66 px]). The darkness of a hole was randomized
in range [10, 70] (O is fully black, 255 is fully white). The



diameter of a hole (in pixels) was randomized in range [10 px
, 35 px] (around [3 c¢m, 1 cm]). In total, we generated 69,840
synthetic images using each category of random images.
It took an average time of 22 minutes without using the
Graphics Processing Unit (GPU).

| Plain I Image
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Fig. 9: Six categories of randomly collected images are used
for synthesizing the training data. Images of category “Plain”
is generated manually. The rest are downloaded from the
Internet using category names as the search keywords.

The details of the synthesis are as follows. Using the six
categories of images, we synthesized 9 sets of training data.
They are “Plain”, “Image”, “Textures+Scenery(18)”,
“Textures+Scenery(30)”, “Textures+Scenery(45)”,
“Textures+Scenery(90)”, “Textures(45)”, “Metallic(45)”,
“Scenery(45)”. For the “Plain” training set, the background
images were randomly selected from the “Plain” category,
resulting into 69,840 synthetic images with background
color ranges [0,255]. For the “Image” training set, the
background images were randomly selected from the
“Image” category where 776 random images searched
using the keyword “Image” were downloaded. For the
“Textures(45)”, “Scenery(45)”, and “Metallic(45)” training
set, 45 images randomly selected from their corresponding
categories. For the “Textures+Scenery(45)” training set, 22
images from the “Textures” category and 23 images from the
“Scenery” category were randomly selected and combined.
The “Textures+Scenery(18)”, “Textures+Scenery(30)”, and
“Textures+Scenery(90)” training data sets were prepared
similarly to “Textures+Scenery(45)”, except that different
number of images (9-9, 15-15, and 45-45 respectively) were
selected from the corresponding categories. Images from the
“Food” category were not used in the training data. They
were prepared for testing.

2) Testing data: Generation of testing data was done
similarly, except with 584 random positions instead of 776.
In total, 6 sets of testing data were prepared. They are
“Plain”, “Light plain”, “Textures”, “Metallic”, “Scenery”,
and “Food”. The background images of these testing data set
were randomly selected from their corresponding categories.
Especially, for the “Light plain” testing set, 35 different
colors of range [125,255] were selected instead of [0,255],
making it different from the “Plain” testing set.

3) Training: Several different VGG-16 networks were
trained and compared using the various training data sets.
The names of the networks are the same as the training
data sets to clearly show the correspondence. The parameter
settings of the VGG-16 neural network was shown in FigH]
The initial weights were random. The learning rate was set to

le-5. The training data set used for each network was divided
by a ratio of 8:2 for training and validation. The epoch was
set to 40. Convergence was faster for less random images
(“Plain”, “Textures”, “Metallic surface”). The loss at the
end of epoch 40 for these less varied image categories was
also smaller, albeit overfitting existed in all trained networks,
similar to [42]. Each training time was on average 11 hours.
4) Results: Table [[| shows the results of the trained net-
works and their performance on the 6 sets of testing data.

TABLE I: Performance of the VGG-16 networks

Training data set Testing data set ~ MSEa  MS Enogutiier  Routlier  Rquadrant
Plain Plain 95.0 5.0 0.054 0.951
Plain Light plain 0.4 0.4 0.000 0.999
Plain Textures 620.1 17.2 0.368 0.721
Plain Metallic 609.0 29.2 0.383 0.715
Plain Scenery 1396.9 72.3 0.791 0.405
Plain Food 11335 71.5 0.744 0.479
Image Plain 396.3 12.3 0.216 0.819
Image Light plain 42 3.8 0.001 0.992
Image Textures 185.9 13.0 0.114 0.911
Image Metallic 134.4 1.7 0.072 0.935
Image Scenery 119.1 13.6 0.070 0.940
Image Food 101.0 13.2 0.065 0.934
Textures+Scenery(18)  Plain 511.9 13.6 0.282 0.755
Textures+Scenery(18)  Light plain 23 2.0 0.0004 0.995
Textures+Scenery(18)  Textures 3529 15.9 0.199 0.829
Textures+Scenery(18)  Metallic 329.6 16.2 0.158 0.854
Textures+Scenery(18)  Scenery 288.5 19.8 0.158 0.862
Textures+Scenery(18)  Food 3229 259 0.221 0.824
Textures+Scenery(30)  Plain 414.0 9.7 0.244 0.791
Textures+Scenery(30)  Light plain 0.99 0.99 0.000 0.998
Textures+Scenery(30)  Textures 241.1 10.2 0.140 0.884
Textures+Scenery(30)  Metallic 225.3 11.0 0.112 0.903
Textures+Scenery(30)  Scenery 196.4 13.1 0.107 0.909
Textures+Scenery(30)  Food 298.2 17.5 0.191 0.845
Textures+Scenery(45)  Plain 399.2 13.4 0.259 0.804
Textures+Scenery(45)  Light plain 29 2.3 0.001 0.994
Textures+Scenery(45)  Textures 378.9 14.4 0.210 0.826
Textures+Scenery(45)  Metallic 359.8 14.5 0.173 0.855
Textures+Scenery(45)  Scenery 332.1 18.9 0.176 0.849
Textures+Scenery(45)  Food 511.0 23.0 0.285 0.772
Textures+Scenery(90)  Plain 447.2 12.1 0.280 0.780
Textures+Scenery(90)  Light plain 9.3 39 0.006 0.984
Textures+Scenery(90)  Textures 389.2 13.1 0.213 0.835
Textures+Scenery(90)  Metallic 341.0 13.8 0.166 0.863
Textures+Scenery(90)  Scenery 345.6 16.7 0.185 0.857
Textures+Scenery(90)  Food 380.2 17.6 0.210 0.828
Textures(45) Plain 3834 11.0 0.234 0.807
Textures(45) Light plain 1.9 1.9 0.000 0.992
Textures(45) Textures 315.7 12.3 0.167 0.860
Textures(45) Metallic 310.1 14.2 0.151 0.863
Textures(45) Scenery 369.0 18.6 0.185 0.837
Textures(45) Food 457.3 26.9 0.287 0.781
Metallic(45) Plain 495.8 12,5 0.299 0.766
Metallic(45) Light plain 74 32 0.006 0.991
Metallic(45) Textures 409.5 12.8 0.241 0.814
Metallic(45) Metallic 350.9 15.0 0.192 0.858
Metallic(45) Scenery 450.7 19.0 0.244 0.808
Metallic(45) Food 514.0 22.0 0.282 0.775
Scenery(45) Plain 500.0 14.4 0.282 0.769
Scenery(45) Light plain 11.7 4.6 0.007 0.992
Scenery(45) Textures 318.7 153 0.203 0.862
Scenery(45) Metallic 3104 16.0 0.174 0.877
Scenery(45) Scenery 285.2 18.9 0.172 0.890
Scenery(45) Food 395.4 21.0 0.236 0.836

Meanings of abbreviations prg 7 ;. Mean squared error on all images of the testing dataset;
MS E o, uttier: Mean squared error of images of the testing dataset, excluding the outliers; Rouier:
Ratio of image classified as outliers (images with a mean squared error of more than 200);
Rguadrant: Ratio of images correctly classified into its corresponding quadrants.

The results show that the MS E,; on most testing data sets
are quite large. The reason is because of the existence of
outliers (the images which predicted outputs are completely
off from the true outputs). Without counting the outliers, the
MSE (MS E,p_ouiier) drops significantly. Thus, to minimize
the effect of the outliers, the quadrants and iterative visual
servoing method explained in section was adopted.

Fig[T0] shows how the use of images instead of plain
backgrounds improves the network’s robustness. There is an



increase in average performance (Rguagrans Of Table m) on
all testing data sets. The network trained with the “Plain”
data set performs better on the “Plain” testing data set due
to overfitting, especially in cases where backgrounds have
similar darkness to the hole.

mmPlain
mmLight plam
mm Textures
60 Metallic
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Plain Image
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mFood
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Fig. 10: Performance of the networks trained with the “Plain”
and “Image” data set. The vertical axis is the Rguagrans Of
Table [[] in %.

Fig@ shows the Ryugran of the “Metallic(45)”,
“Textures+Scenery(45)”, “Textures(45)”, and “Scenery(45)”
training sets. The comparison indicates that: (1) With ex-
ception on the “Light plain”, the networks trained with a
certain data set generally perform better on similar test sets.
(2) Networks trained on certain data sets cannot perform
as well on a background with high randomness like the
“Food” test set. Thus, training with images of a certain data
set can improve the network’s performance on similar test
sets. On the other hand, for categories with less variety like
“Metallic” or “Textures” (less than “Food”), improvements
on the network performance can be obtained by training
on data of higher variety, like “Scenery”. This is from the
observation that the network trained with “Scenery” performs
similarly to the one trained with “Textures” on the “Textures”
test set, and performs better compared to the networks trained
with “Metallic” on the “Metallic” test set.

mmljghtplain  =smTextures =mMetallic Scenery m=mFood -—Average
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Metallic(45) Textures+Scenery(45) Textures(45) Scenery(45)
Fig. 11: Performance the networks trained with

“Metallic(45)”, “Textures+Scenery(45)”, “Textures(45)”,
and “Scenery(45)” training sets. The vertical axis is the
R juadran: Of Table El in %.

Fig[T2) compares the performance of networks trained data
sets synthesized with different numbers of similar back-
ground images. The results imply that the number is not
the only crucial parameter. Other forms of randomization
including hole sizes and hole darkness also play important
roles in the synthesis of the training data.

mmlight plain smTextures mmMetallic Scenery mmFood -=—Average

120

100
80
60
40
20

0
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Fig. 12: Performance of the networks trained with “Tex-
tures+Scenery” data sets synthesized with different numbers
of similar background image. The vertical axis is the Ryyadrant
of Table EI in %.

B. Real-world Experiments

We performed real-world experiments using the networks
trained with the “Image” data set and the “Plain” data set,
for they have the best and worst performance. Four different
surfaces, as is shown in Fig[T3] were used in the experiments.
A success execution is judged to be when the peg is inserted
within 90 sec.

Fig. 13: The four surfaces used in real-world experiments.
(a) White. (b) Brown. (c) Pink. (d) Sky.

The robot we used to do real-world experiments is a
UR3 robot with a FT300 force sensor and a Roboti-85
gripper. Two in-hand cameras were used to collect multi-
view images. Fig[T4] shows the experimental setup. The robot
was made to insert a 75x10 mm peg into a hole. The
taskboard in the left of Fig[I4] is the base with the hole to
be inserted. The lenience of the hole for the experiment is
0.4mm. The specification of the computer used was the same
as the one used to train the deep neural network.

UR3 robot arm

FT300 force
sensor
Robotiq-85
gripper with
two cameras
End-effector
coordinate
system

@ Taskboard

Robotig-85 Two in-hand

gripper RGB cameras

Fig. 14: The experimental setup. (a) The overall view on the

experimental setup. (b) A close-up view of the Robotig-85
gripper with the two in-hand RGB cameras.

The parameters for the spiral search were r;,;=0.3mm,
Fmax=1.0mm, 60=12.5°, 6r=0.3mm, and F,,,,=20N. The pa-
rameters for the iterative visual servoing were A=10mm,



n=10, n,,=5. The parameters of the impedance con-
trol were ¢ = [50,50,50,1,1,1] for the damper and k =
[100,100,100,100,100,100] for the spring.

Table [T shows the success rates of the real-world experi-
ments. Ten times of trial are performed for each training set
and testing surface combination. The network trained with
the “Image” data set can successfully ignore the variations
of the “White”, “Brown”, and “Pink” surfaces and correctly
predict the correct quadrants. Fig[T5(a) shows an example
of the success sequence on the “Pink” surface. The network
trained with “Plain” can also correctly predict the quadrant
and successfully performs insertion on the “White” and
“Brown” surfaces. Although a few overshoots were spotted,
the quadrant-based visual servoing compensated them after
several iterations. An example is shown in Fig[I5]b).

TABLE II: Performance of the real-world experiments

Network name Ryvhite Rprown Rpink Rky
Image 10/10 (&) 10/10 (&) 10/10 (&) 3/10 (»)
Plain 10/10 @)  10/10 (©) 410 (&)  0/10 (x)

: Ratio of successful insertions on the “White”
surface; Ry, Ratio of successful insertions on the “Brown” surface; R,z :
Ratio of successful insertions on the “Pink™ surface; Rsky: Ratio of successful
insertions on the “Sky” surface; @: The deep network gives output of the correct
quadrant; ©: The deep network successfully predicts the correct quadrant; A: The
deep network sometimes successfully predicts the correct quadrant; x: The deep
network rarely successfully predicts the correct quadrant.

Meanings of abbreviations Ryspi
white

TABLE III: Time cost under different initial position errors

D

euclidean Lwith—visual Ywithout—visual

23.8 30.4 >90.0
15.0 334 >90.0
12.0 41.3 >90.0
11.7 47.2 >90.0
10.0 70.1 >90.0
12.5 39.0 >90.0
11.0 63.4 >90.0
14.1 22.8 >90.0
4.0 56.1 25.5

13.6 43.4 >90.0

Initial distance
from the center of the peg o the center of the hole in mm;
Lyith—visual® Time taken from the start of the search phase
until the end of the insertion using the proposed method in
sec. (network trained using “Image”); #,,i1h—yisuql: Time
taken from the start of the search phase until the end of
insertion with a simple spiral search in sec.

Meanings of abbreviations Dy, lidean:
Leuclidean’

The failure appears with the “Sky” surface for both
networks and the “Pink” surface for the network trained
with the “Plain” data set. For the network trained with the
“Image” data set and examined using the “Sky” surface and
the network trained with the “Plain” data set and examined
using the “Pink” surface, errors sometimes occur, resulting
into 3/10 and 4/10 success rates in Table [[I] respectively.
Fig[T3]c) shows an example of the failure sequence. For the
network trained with the “Plain” data set and examined using

(a) Network name: Image, Test surface: Pink

True: Bottomright ~ True: Bottomright ~ True: Bottomleft  True: Bottomright  True: Topright  Move to insertion
Pred.: Bottomright Pred.: Bottomright ~ Pred.: Bottomleft  Pred.: Bottomright  Pred.: Topright phase
(b) Network name: Plain, Test surface: White

‘True: Bottomright  True: Bottomright  True: Topleft
Pred.: Bottomright ~ Pred.: Bottonright  Pred.: Topleft

(c) Network name: Image, Test surface: Sky

True: Bottomright ~ True: Bottomleft  Move to insertion
Pred.: Topright  Pred.: Bottomleft phase

True: Bottomleft
Pred.: Bottomright

True: Topleft ~ True: Bottomleft True: Topleft
Pred.: Topleft  Pred.: Bottomright  Pred.: Topleft
(d) Network name: Plain, Test surface: Sky

True: Topleft  Move to insertion
Pred.: Topleft phase

‘True: Bottomright

“True: Topleft
Pred.: Bottomright ~ Pred.: Bottomleft

‘True: Topright
Pred.: Bottomleft

‘True: Topright
Pred.: Bottomleft

‘True: Topright
Pred.: Topright

Failure during
insertion phase

Fig. 15: Some snapshots of the real-world executions from
the results shown in Table [ll (a) A successful execution
using the network trained with “Image” and tested on the
“Pink” surface (@ category). (b) A successful execution (with
overshoots) using the network trained with “Plain” and tested
on the “White” surface (& category). (c) A failure case using
the network trained with “Image” and tested on the “Sky”
surface (A category). (d) A failure case using the network
trained with “Plain” and tested on the “Sky” surface (X
category).

the “Sky” surface, the success rate is 0/10. Fig[ljkd) is an
example of the failure.

Table [[T] compares the time cost of 10 executions on
the “White” surface with and without the learning-based
visual servoing. The initial positions errors were randomly
set (as is shown in the first column of Table [[I). When
the initial position error is large, the robot system could
finish an insertion in less than 70 sec. with the learning-
based visual servoing. In contrast, the execution costs larger
than 90 sec. or fails. An exception is D,,cjigean=4.0mm. In
this case, the initial position error is small. A simple spiral



search could quickly find the hole. The result demonstrates
that the proposed method improves search efficiency when
the position of the hole has large uncertainty.

V. CONCLUSIONS

In conclusion, we developed a learning-based visual ser-
voing method to quickly insert pegs into uncertain holes.
The method used a deep neural network trained on synthetic
data to predict the quadrant of a hole, and used iterative
visual servoing to move the peg towards the hole step by
step. The synthetic data was generated by cutting and pasting
gripper template masks on random images, which allowed
extremely fast synthetic data generation. Performance of
different training data sets was compared. Training with
images from categories of higher variety can lead to better
performance, even for testing with images from categories
of less variety. Real-world experiments showed that the
proposed method is robust to various surface backgrounds.
The system is generally faster compared to a peg-in-hole
assembly using only a spiral search, unless the initial error
is very small.
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