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Abstract— Environmental monitoring and surveying opera-
tions on rivers currently are performed primarily with man-
ually-operated boats. In this domain, autonomous coverage of
areas is of vital importance, for improving both the quality and
the efficiency of coverage. This paper leverages human expertise
in river exploration and data collection strategies to automate
and optimize these processes using autonomous surface vehicles
(ASVs). In particular, three deterministic algorithms for both
partial and complete coverage of a river segment are proposed,
providing varying path length, coverage density, and turning
patterns. These strategies resulted in increases in accuracy and
efficiency compared to human performance. The proposed
methods were extensively tested in simulation using maps of
real rivers of different shapes and sizes. In addition, to verify
their performance in real world operations, the algorithms were
deployed successfully on several parts of the Congaree River
in South Carolina, USA, resulting in total of more than 35km
of coverage trajectories in the field.

I. INTRODUCTION

Bathymetric surveys - surveys of the depth of a body
of water, are an important tool for understanding hydro-
geologic processes, water resource management, and in-
frastructure maintenance. Since the sensor footprint of a
bathymetric sensor is significantly smaller than the width
of many rivers, a complete bathymetric survey of a river
requires multiple boats or multiple passes. The usual method
for performing coverage of a known two-dimensional area,
the boustrophedon coverage [1], [2], performs poorly in
tight and uneven spaces such as rivers. Fortunately, river
surveyors have developed and practiced a variety of coverage
techniques that are suitable for rivers. The development
of these surveying/coverage strategies was guided by the
property to be measured and the available resources. For
example, studying sediment transfer in a fast flowing river
requires sampling locally across the river. Otherwise, by the
time the surveyor returns to the same spot, the sediment
will have moved significantly.1 On the other hand, sampling
trajectories across the river results in an excessive number
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1As Heraclitus said “Everything changes and nothing remains still
. . . and . . . you cannot step twice into the same river.” [3].

Fig. 1. An autonomous surface vehicle during a coverage experiment on
the Congaree River near Columbia, SC, USA.

of turns, which is detrimental to the performance of certain
sensors. In this paper, we address the question of how to
conduct such coverage/sampling surveys using autonomous
robots in order to increase the efficiency and accuracy, reduce
cost, and eliminate the risks to human operators. Three
methods, each suited to a different scenario, are presented:

1) Complete coverage, reducing rotations. The ASV per-
forms longitudinal passes, traveling roughly parallel to
the river shores. This approach is particularly apt when
the survey is being conducted using sensors, such as a
side-scan sonar, that are sensitive to turning motions.
The method, termed L-Cover, adapts the number of
passes depending on the width of the river.

2) Limited resources surveying. This approach is appro-
priate when there is a limited budget of time or energy
and the length of the river segment to be surveyed
needs to be maximized. In this method, termed Z-
Cover, the ASV travels along the river in a zigzag
pattern, turning away from the shore each time it
reaches it. This allows bathymetric data reflecting the
full width of the river to be sampled in a single pass.

3) Localized complete coverage. In rivers with high flow,
measurements are required across the river in a short
time interval in order to monitor the bottom structure.
The ASV is guided in a a lawn-mowing pattern in
the transverse direction, a pattern similar to one in
the Boustrophedon Cellular Decomposition [1]. This
strategy, termed T-Cover, results in frequent rotations
of the ASV.

The proposed complete coverage strategies (L-Cover and
T-Cover) move along and across the river respectively,
ensuring that for a fixed sensor footprint no area remains
uncovered. The efficient sampling strategy ensures that the
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amount of information is maximized, sampling across the
river multiple times, while minimizing the distance travelled.
We present experiments in which all three planners were
deployed on custom ASV [4] designed and fabricated in
the authors’ lab2. Both quantitative assessments of the above
algorithms in terms of the properties of the generated paths
along with the percentage of the region of interest covered,
and qualitative results acquired from field experiments are
presented. More than 35km of coverage trajectories were
tested to verify the feasibility of the proposed strategies.

In the following section we present a survey of related
work. Next, Section III formally defines the problem of
riverine coverage with discussions of the proposed methods.
Section IV presents both extensive simulated results and field
experiments with both quantitative and qualitative analysis.
Finally Section V, gives an overview of the proposed meth-
ods and remarks on future work.

II. RELATED WORK

Substantial work has been done on the design and opera-
tion of autonomous surface vehicles (ASVs) in rivers. One
team of researchers has shown that it is both possible and
desirable to design and operate autonomous surface vehicles
for the purpose of performing bathymetric surveys [5].
Significant progress has also been made on the problem of
navigating a river with an ASV [6]. Additionally, another
team has determined a technique for exploring and mapping
a river using an unmanned aerial vehicle [7]. Though, to
the best of our knowledge, there is no existing research
on automated vehicles zig-zagging their way through rivers,
the basic principle has been applied using an underwater
autonomous vehicle [8]. The vehicle used repeated 135
degree turns to map an upwelling front underwater, covering
200 square kilometers over the course of five days without
human intervention. Estimating the meanders of a river has
also been studied by Qin and Shell [9], and the proposed
estimator can be used for online path selection.

The problem approached in this paper is essentially a
variant of the well-studied coverage problem [10]. Of par-
ticular relevance are two works dealing with the coverage
of rivers using drifters: vehicles that do not have sufficient
power to travel against the current [11], [12] and another
work dealing with coverage path planning for a group of
energy-constrained robots [13]. One notable work breaks
from the tendency to emphasize complete coverage, instead
attempting to conserve time and fuel by focusing coverage on
regions of interest [14]. This allowed them to create a map of
a coral reef area with half the distance travelled and power
used than a lawnmower-style complete coverage algorithm
would have required. Another paper, in which lawnmover-
style coverage is applied to a Dubins vehicle, reformulates
the problem as a variant of the Traveling Salesman Problem
in order to obtain an optimal solution [15].

2The design of the ASV is publicly available on https://afrl.cse.
sc.edu/afrl/resources/JetyakWiki/

Though the above selective coverage work phrases the
problem in terms of coverage, it bears kinship with the liter-
ature for informative motion planning, that is, the problem of
planning a path using limited resources in order to maximize
the amount of information gained. Unfortunately informative
motion planning problems are usually NP-hard optimization
problems. The formulation of these problems require the def-
inition of an information metric that can be associated with
the locations or path. Since the information metric cannot
be known a priori for a real-world scenario, approximations
are done using methods such as Gaussian Processes. This
means that informative motion planning can be applied to
practical problems, such as mapping wireless signal strength
on a lake [16], understanding salinity at a river confluence,
or investigating algal blooms [17] and sampling areas with
high chlorophyll [18]. Despite the success of these projects,
qualitative considerations involved in the formulation of our
problem mean that reformulating it as an informative motion
planning problem would not necessarily produce data with
the desired qualities, and it would be difficult to devise an
information metric that obtains the desired result.

In this work, we address the autonomous coverage prob-
lem for river surveying to automate common surveying
techniques used by surveyors, thus increasing the efficiency
of the coverage. We formulate the riverine coverage problem
as a geometric problem and use the resulting patterns to
justify the use of each approach in different real world
scenarios. In the following section, the problem is formally
defined and the different approaches are described.

III. PROPOSED METHODS

Our objective in this paper is to automate different ap-
proaches used by river surveyors and develop more efficient
planning for each of them. We consider an ASV that was
deployed with a variety of depth sensors to survey the
riverbed. The ASV moves within a known environment,
described by an occupancy grid map M : R2 → {0, 1},
derived from Google satellite imagery. Values of 0 indicate
the portion of the river we intend to cover, while 1 indicates
locations outside that region of interest, which we treat as
obstacles. From a given starting point vs, we can implicitly
infer the general direction of coverage.

In this section, we describe algorithms executing three
types of coverage patterns in such contexts:

• Section III-A presents a pattern, termed L-cover, which
moves in passes parallel to the shore. This pattern is
particularly suitable for use with a side-scanning sonar.

• Section III-B describes a pattern, termed Z-cover, which
‘bounces’ between the river shores. This approach is
used for performing river surveying with a single pass
which is suitable for long term deployments.

• Section III-C proposes a T-cover pattern, where passes
made across the river, perpendicular to the shore.

These three methods differ in the length of the paths they
generate, in the density of the coverage pattern, and in the
number of turns needed to execute those patterns.

https://afrl.cse.sc.edu/afrl/resources/JetyakWiki/
https://afrl.cse.sc.edu/afrl/resources/JetyakWiki/


A. Longitudinal Coverage (L-Cover)

Our first approach L-Cover performs coverage in a bous-
trophedon pattern, with passes parallel to the edges of the
river. The goal of the algorithm is to split the river into
subregions that can be covered with the same number of
passes. The algorithm takes as input the map of the river M ,
the starting point vs and a parameter s describing the desired
spacing between the passes; see Algorithm 1. First, we
identify the downriver direction (the red line in Figure 3(a))
and compute an ordered list, denoted Cvec, of contour points
of the shore (Line 2-3). Next, the algorithm sequentially
traverses the contour Cvec with a step size ∆w connecting
opposite edges with straight line segments, denoted l. ∆w
is the distance between each pair of segments li and li+1.
Then, the river is split into clusters of subregions based on
the width of the river, denoted by len(), and the desired
spacing s (Lines 4-11). Any small clusters are merged with
the nearest neighbor cluster that has similar width (Lines 13-
15). Finally, parallel passes are generated for each resulting
cluster Cl (Line 17). The resulting path π is a list of all
sequential passes from each cluster (Line 19). Examples of
the results of the algorithm, with different values of s, are
presented in Figure Figure 2.

Algorithm 1 L-Cover
Input: binary map of river M , starting point vs

spacing parameter s
Output: a π path

1: ∆w← initialize()
2: Cvec ← getDirectionalContours(M)
3: θ ← getDownRiverDirection(Cvec, vs)
4: while the end of the river is not reached do
5: l← getNextSegment(∆w,Cvec, lprev, θ)
6: if len(l)− len(lprev) ≤ s then
7: insert l in to Clcurr
8: else
9: save cluster Clcurr in Clvec

10: Clcurr ← createNewCluster(l)
11: end if
12: end while
13: for each Cl ∈ Clvec do
14: Merge Cl with closest neighbor within tolerance
15: end for
16: for each Cl ∈ Clvec do
17: p← generatePasses(Cl, s)
18: append p to π
19: end for
20: return π

B. Zig-Zag Coverage (Z-Cover)

Z-Cover partial coverage approach, is based on a zig-
zag pattern which aims to cover a substantial portion of
the environment in a single pass along the river. The
core idea of the proposed algorithm is to build a coverage
path that gathers information along and across the river

(a) (b)

Fig. 2. An example of trajectories and clusters generated by L-Cover
approach on a small section of Congaree river with different coverage
density values (alternating colors mark different clusters).
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Fig. 3. (a) A sketch of triangle selection procedure. (b) A section from
the result of the Equal Triangle algorithm applied on Congaree river.

simultaneously. By ensuring that consecutive triangles have
approximately equal areas, we ensure that the ratio of the
covered areas across the river area approximately same.

Algorithm 2 outlines the approach. It takes as input the
map M of the river and the starting point vs. Just as in the L-
Cover algorithm, the Cvec vectors of directional contours are
acquired (Line 2-3). Then, each time the algorithm searches
for a next point, it does so by drawing lines from the current
location towards the opposite shore. An acceptable next point
is searched for among the intersections of the opposite shore
with d possible lines l1, l2, ...ld (blue lines in Figure 3(a))
that form θ0 + iα, i = 1, 2, . . . , d degree angle relative to the
direction downriver. If one of these points forms a triangle
with the previous two points on the path, with area within
tolerance of the area of the previously selected triangle (the
triangle with green edges in Figure 3(a)), it will be selected.
If no such point exists within d intersections, the tolerance
∆ε will be increased and the algorithm will do the same
search again (Lines 13-15). The tolerance ∆ε is predefined
and can be tuned if necessary.

C. Transversal Coverage (T-Cover)

Finally, we consider T-Cover, which performs a continuous
lawn-mower motion pattern perpendicular to the shores of
the river. The algorithm uses the same information as L-
Cover, namely the map M , the start location vs, and the
coverage spacing s. After acquiring directional contours,
it generates passes, perpendicular to the shores, spaced by
distance s from each other. This is similar to covering a



Algorithm 2 Z-Cover
Input: binary map of river M , starting point vs
Output: a π path

1: θ0, d, α, ∆ε← initialize()
2: Cvec ← getDirectionalContours(M)
3: θ ← getDownRiverDirection(Cvec, vs)
4: while the end of the river is not reached do
5: for each i ∈ 1,. . . , d do
6: vcurr ← getIntersectionPoint(li, Cvec, α)
7: p1, p2 ← getPreviousTwoPoints(π)
8: Scurr ← computeAreaOfTriangle(vcurr, p1, p2)
9: if |Scurr − Sprev| ≤ ∆ε then

10: append vcurr to π
11: end if
12: break
13: if i == d and π is empty then
14: ∆ε++
15: i← 1
16: end if
17: end for
18: vcurr ← getNextPoint(Cvec)
19: end while
20: return π

single cell of the Boustrophedon Cellular Decomposition,
albeit the direction of the coverage varies with the river’s
meanders. This approach is utilized when the quantities
measured change rapidly over time and the transverse profile
of the river bed is required.

IV. EXPERIMENTS

The performance of the proposed coverage strategies was
first tested extensively on different size and shape river
maps. Then, some of the generated paths were deployed
both in simulation using the Stage simulator [19] and in
the field to perform large scale river surveying that covered
in total 35.82km distance. In the latter case, the developed
algorithms were deployed on the AFRL Jetyaks [4]. The
ASVs are equipped with a PixHawk controller that performs
GPS-based waypoint navigation, a Raspberry Pi computer
that runs the Robot Operating System (ROS) framework [20]
recording sensor data and GPS coordinates. In addition,
different types of acoustic range finding sensors were used
during deployments.

A. Performance Analysis

The proposed methods were tested on a set of real maps
with up to 33km long segments of river. Because Z-cover is a
partial coverage method it has been compared against a fixed-
angle approach used for manual surveying operations [8].
With the latter, boat always navigates to the opposite shore
by making a fixed-angle turn relative to the near shore. The
qualitative results in Figure 4 demonstrate the motivation
behind the Equal Triangle Heuristic approach for improving
this operation. When automated, the fixed degree method
resulted in severe overshooting and thus loss of coverage

Fig. 4. Contrasting two Z-Cover methods: 45 degree heuristic zig zag
method (left) with the equal triangles coverage (right) described in this
paper. [Note: this excerpt is 5% of the original map]

area. Meanwhile, the Equal Triangle approach ensures more
even coverage.

The primary metrics considered to evaluate performance
of the coverage tasks are:

• Covered Area (%), expressed as a percentage of the
total area of the region of interest. For all algorithms we
assume that the travel path π has a width proportional
to the spacing value s.

• Return Path (%), defined as the percentage of the
distance traveled to return back to the starting location
vs after coverage was completed over the total travel
distance. This metric is especially important for large
scale operations, as returning to the initial location
might be time and energy consuming.

The coverage will be efficient if it will maximize covered
area while minimizing the return path length. It is worth
noting that in the classical coverage path planning problem,
the robot has to return to the starting position and there are
areas (dead-ends) where the robot enters covering and then
has to traverse back resulting into double coverage. Earlier
work [21] address this problem utilizing the Chinese Postman
Problem formulation. During riverine coverage, there is only
a single segment which is covered and at the end the ASV
has a single return trip to the starting point, as such we do not
use the total distance travelled metric as it is not informative.

In summary:
1) Even though T-Cover and L-Cover approaches show

similar performance on completeness, when account-
ing for the need for a return trip, the T-Cover method is
clearly outperformed by the L-Cover methods in terms
of efficiency of the coverage path.

2) The quantitative results validate the qualitative obser-
vation for differences between the Z-Cover algorithm
and fixed-angle approach discussed above; see Table I.
The Equal Triangles Method produces paths with
slightly higher coverage rate.

3) T-Cover method introduces more turns in the path
compared to the L-Cover. When using a side scan sonar
for bathymetric mapping this can cause loss of data.

B. Field trials

The main objective of the field trials is to ensure that
the ASVs are able to collect adequate data when following
the trajectories generated by the proposed algorithms. We



TABLE I
THE AVERAGE RESULTS OF Z-COVER, L-COVER AND T-COVER APPROACHES FROM SIMULATION.

Z-Cover (Fixed-angle Heuristic) Z-Cover (Equal Triangles) L-Cover T-cover
Return Path (%) 43.3 % 41.4% 8.9% 16.17%

Area Covered 29.39% 31.05% 92.65% 91.42%

deployed an ASV to execute both the L-Cover and the Z-
Cover algorithms on a 0.25km2 area of the Congaree River,
that had an average width of 91m. For these experiments
the ASV was equipped with three different Sonar sensors
(see Section IV-C). Note that in this work we are assuming
that the footprint of the bathymetric sensor (when side-scan
sonars are used) is constant and can be calculated based on
the average depth of the area/river.

The depth measurements gathered from both experiments
were used to produce a bathymetric map of the covered area
utilizing a Gaussian Process (GP) mapping technique [22].
To evaluate the performance of both algorithms for depth
map generation the uncertainty map was produced based on
the root-mean-square error (RMSE). The results showed that
even the operation time is longer for the L-Cover algorithm
but the data collected ultrasonic range sensor is resulting in
more accurate depth map. The depth map produced by data
collected using L-Cover, T-Cover and Z-Cover patterns are
presented in Figure 5.

The boat’s trajectories in Figures 6(a)-6(d) are closely
aligned to the ideal mission plan in Figures 6(e)-6(h), with
small deviations caused by GPS error and environmental
forces (wind, current). The effect of those forces have been
studied in our previous work [23] and are not the subject
of this work. In addition the execution of L-Cover on
the smaller region from different region of Congaree river
with 0.1km2 area is presented in Figures 6(d), 6(h). The
resulting time and distance traveled during each experiment
with actual coverage distance are presented in Table II.
And finally a qualitative difference was observed when
backscatter images of the riverbed were produced for both
autonomous and manual coverage Figure 7. It is worth
noting that the manual operation trajectory is not complete
compared to the path of L-Cover; see Figure 7(d). The time
of operation in both cases was similar (close to 2hr) during
which the autonomous operation covered a region twice the
area of the manual coverage; compare Figure 7(a,c) and
Figure 7(b,d). Moreover, the mosaicing is both complete
and cleaner because of fewer overlapping tracks and odd
orientations to the lines.

C. Riverbed Mapping

Different acoustic sensors have been deployed over the
course of the field trials in order to evaluate their per-
formance and to consider the effect of different coverage
motions to the quality of the collected data. More specif-
ically, a CruzPro DSP Active Depth, Temperature single
ping SONAR Transducer was used for the majority of the
experiments; see Figure 8(a). As only a single data point is
collected at the time, the coverage is sparse and an integration
strategy needs to be utilized as discussed above. The second
sensor used was the Humminbird helix 5 chirp SI GPS G2

imaging sonar. Being a low cost, proprietary sensor, all the
collected data has to be post-processed. Finally, a long range
3DSS-DX-450 side scan transducer from Ping DSP [24] was
deployed a limited number of times. As can be seen in
Figure 8(b), rotations and repeated scans do not match very
well due to the sensitivity to orientation error. Acoustic data
processing is beyond the scope of this paper.

TABLE II
COVERAGE TIME AND DISTANCE RESULTS FROM FIELD DEPLOYMENTS.

Algorithm Z-Cover T-Cover L-Cover
Time traveled 42m 1hr 09m 1hr 45m
Total Distance 5.2km 10km 13.02km
Coverage Distance 3km 7.3km 11.02km

V. CONCLUSIONS

This paper presented three strategies that perform partial
and complete coverage used in different surveying scenarios.
The Z-Cover algorithm shows improvements over the fixed-
angle based approach used in practice by scientists for man-
ual surveying. Both complete coverage algorithms perform
boustrophedon coverage. L-Cover performs coverage parallel
to the shores of the river and takes into account the width of
the river for generating the passes, while T-Cover performs
coverage perpendicular to the shores of the river.

The performance of the algorithms is validated on a large
number of river maps with different size and shape of con-
tours. In addition, the algorithms were tested in simulation
and in the real world. The field trials were performed on
0.25km2 and 0.1km2 regions of the Congaree River.

Taking into account the challenges encountered during
field deployments, obstacle avoidance strategies must be
implemented for both underwater and above water obstacles.
A practical consideration is to deploy upstream, thus, in case
of a failure the ASV will drift back towards the deployment
site. The natural extension of this work is distributing the
coverage task between multiple robots [25], [26]. Another
aspect that we are interested in is planning the coverage path
taking into account general knowledge about river flow based
on the meanders [9]. With this the river flow speed will be
utilized to improve coverage time and energy consumption.
In particular, after modeling the current in the river [23],
path planning will associate different cost values depending
on the direction of travel with respect to the direction and
strength of the current.
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