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Abstract—In a context of autonomous robots, one of the
most important tasks is to ensure the safety of the robot and
its surrounding. The risk of navigation is usually said to be
the probability of collision. This notion of risk is not well
defined in the literature, especially when dealing with occupancy
grids. The Bayesian occupancy grid is the most used method
to deal with complex environments. However, this is not fitted
to compute the risk along a path by its discrete nature. In this
article, we present a new way to store the occupancy of the
environment that allows the computation of risk along a given
path. We then define the risk as the force of collision that would
occur for a given obstacle. Using this framework, we are able
to generate navigation paths ensuring the safety of the robot.

I. INTRODUCTION

Autonomous vehicles are nowadays more and more visible
in our life. Most of them can be found in warehouses or
on the road. As they evolve in a complex world, they need
to assess the best choices to make regarding the possible
obstacles. These choices are guided by the notion of risk: the
robot must not harm others or itself. Fraichard [1] introduced
this notion for known obstacles: the robot has not to collide
with others to ensure its safety.

The most common way to store and deal with obstacles
is the occupancy grids [2]. The map is discretized into a
finite number of cells, where each cell stores the probability
of occupancy. While navigating, the main concern is to
ensure the safety of the robot and its surroundings. The
most commonly used metric is the probability of collision,
as the impact between the robot and another physical object
is the main hazard [1]. In occupancy grid, we would be
tempted to assess the probability of collision as the joint
probability of colliding each cell. This simplicity hides a
huge drawback that appears when computing this probability
for two discretizations of the same map. Figure 1 shows a
robot wanting to cross an environment where the probability
of occupancy is 0.1. We discretized the environment with two
different cell sizes. For the first one, we need to compute the
probability that at least one cell is occupied, i.e., 0.34. For
the second one, we only need to compute this probability
over two cells, leading to 0.19. We see that probabilities
of collision for crossing the same part of the environment
are completely different and dependent on the discretization
size. Yet the grids store the same information using different
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Fig. 1: The robots (black boxes with their front represented as
a filled triangle) want to cross an environment by following
the dashed red line. The collision probability is uniform for
the whole environment (0.1). The discretization size greatly
influences the probability of collision, with the bottom sce-
nario yielding to a safer path even though the underlying
environment is the same.

discretizations, thus should give the same probability of col-
lision. This problem can also be encountered while dealing
with occupancy grids stored in quad-trees [3]. Indeed, the
robot could decide to cross a large high-probability cell
instead of ten small low-probability cells.

We define the risk as a quantification of the danger
encountered along a path. More precisely, this risk will be
quantified as the force of collision the robot expects from a
path. It is indeed more ‘risky’ to hit a wall at high speed
than at low-speed. We propose in this article a novel method
to compute the risk over a path. Our key contributions are

o A novel type of map, called Lambda-Field, specially
conceived to allow path integrals over it;

o A mathematical formulation of the collision probability
over a path; and

o A definition of the risk encountered over a path, speci-
fied as the expected force of collision along a path.

Section II presents a survey of the different methods to
store the occupancy of the environment and the attempts
to assess collision probabilities in these maps. Section III
describes the theory of the Lambda-Field and shows the
inherent application to risk assessment. Finally, we give a
few examples of Lambda-Field in Section IV.

II. RELATED WORK

In the context of path planning, the first step is to store the
information of occupancy. Two methods have been proposed,
which are the feature-based and metric-based maps. The first
provides a list of all (possibly probabilist) obstacles in the
environment. Although this is a very efficient way to store
the occupancy, it is not easy to create a feature-based map
from sensor data. Hence, feature-based maps are mainly
created by humans and given as a prior to the robot [4].
When the map is not available or the environment is too



complex to be stored in a feature-based map (e.g., a forest
with unstructured obstacles), metric-based maps are used. In
the simplest case, metric-based maps store the probability
of occupancy for each position in the environment. Elfes
[2] proposed the idea of tessellating the sensed environment
and Coué er al. [5] enhanced this idea, adding a bayesian
layer. Many variations of the Bayesian Occupancy Filter
have been developed over the years, mainly adding dynamic
obstacles in the grid. Saval-Calvo et al. [6] wrote a review of
the different Bayesian Occupancy Filter frameworks. Finally,
O’Callaghan et al. [7] proposed a way to store the occupancy
map without discretization, using gaussian process. This
method allows to keep the dependence between cells in the
grid which is not done in standard occupancy grid [2]. Ramos
et al. [8] developed an analog method using Hilbert Maps,
overcoming the computational complexity of the gaussian
process.

Once a representation of the environment is available, the
robot can start planning trajectories. Many of the popular
methods use a binary representation of the environment,
meaning that any point in the environment is either free or
occupied. A review for such algorithms can be found in [9].
However, Bayesian occupancy grids are probabilist and do
not give such binary information. The most common way
to convert the bayesian grid into a binary grid is to apply a
user-defined threshold [10]: if the probability of occupancy
is over this threshold, the cell is considered as occupied,
otherwise it is free. Nevertheless, we loss a lot of information
doing that, and some unstructured obstacles (e.g., bushes)
may become free after the conversion. In the same fashion,
Fulgenzi et al. [11] chose to cluster the obstacles, leaving
the unclustered space as free or occluded. The cost of the
path is then simply the probability to collide with at least one
cluster. It does, however, need to cluster the obstacles, which
is not an easy task especially in unstructured environments.
The above methods chose to consider a free space where
no collision can happen: its computation can be difficult
and noisy, leading to unpredicted collisions. We thus need a
way to evaluate the cost of a path taking into account the
probability of occupancy. Using Rapidly-exploring Random
Tree (RRT), Fulgenzi et al. [12] define the cost of a path
as the joint probability of not having a collision in each
node. It assumes that traveling between nodes is risk-free. If
we do not take this assumption, we fall back on the initial
problem to compute a cost over a path. Gerkey et al. [13]
compute the cost of a path by summing the probability of
occupancy of the cells the path crosses. This sum is then
injected into a global cost function, taking into account other
constraints like the speed or the distance to the objective,
where each constraint has a user-defined coefficient. Francis
et al. [14] use the same idea for path planning in Hilbert
Maps [8]. The drawback of this method is that the cost lacks
physical meaning (as we sum probabilities): since this sum
does not have any physical unit, its associated coefficient
does not have one either, making its tuning non-intuitive
for the user. Finally, Heiden et al. [15] used the concept
of product integral to compute the probability of collision

over a path. It leads to a probability of collision, but this
method has no physical meaning, which can lead to counter-
intuitive probabilities. Therefore, we propose a way to store
the occupancy where the probability of collision over a path
logically arises from the theory.

However, the probability of collision may be not enough
to quantify the safety of a path. The risk is often addressed
in the context of known dynamics obstacles. In this config-
uration, the robot aims to avoid a configuration leading to a
collision [1]. This notion is extended by Althoff er al. [16]
with probabilistic obstacles. In the same fashion, the Time To
Collision (TTC) [17] is a very popular metric of the risk. The
TTC is useful in accident mitigation systems, but is not well
fitted for long-term planning. Laugier et al. [18] demonstrate
its limitations, as, for instance, the TTC lacks context and
sometimes leads to overestimate the risk. Regardless, these
metrics only work for known obstacles and this information
is not usually available in occupancy grids. Rummelhard et
al. [19] define the risk in a Bayesian occupancy grid as the
probability to collide with a specific area, as well as the
maximum probability of collision over the cells. Nonetheless,
these two risks have no physical meaning. In our work, we
thereupon define the risk as the expected force of collision
on a given path.

III. THEORETICAL FRAMEWORK

The key concept of the Lambda-Field is its capability to
assess the probability of collision inside a subset of the
environment. It relies on the mathematical theory of the
Poisson Point Process. This process counts the number of
events which have happened given a certain period or area,
depending on the mathematical space. In our case, we want
to count the number of the event ‘collision’ which could
occur given a path (i.e., a subset of R?).

For a positive scalar field A(z),r € R, the probability to
encounter at least one collision in a path P C R? is

P (coll|P) =1 —exp (— /7: M) dx) : (1)

Nonetheless, it is impossible to both compute and store
the field \(z). Hence, we discretize our field into cells in
a similar fashion to Bayesian occupancy grids. Under the
assumption that the cells are small enough, the probability
of collision can be approximated by

P (co11[P) ~ 1 —exp (-A(C)), AC)=AD_ X\ (2

c; €C

for a path P crossing the cells C = {cp,...,cn}, where
each cell ¢; has an area of A and an associated lambda );,
which is the intensity of the cell. The lambda can be seen as
a measure of the density of the cell: the higher the lambda
is, the most likely a collision will happen in this cell.
Using this representation, we hereby see that the proba-
bility of collision is not dependent on the size of the cells.
It is indeed the same to compute the probability of collision
for crossing two cells of area .A/2 or one cell of area A
for a constant A\. Figure 2 gives an example of a path the



robot might follow, as well as the underlying cells (of area
0.04 m?) it crosses. The robots crosses 58 cells with \; = 0.1
and one cell with \; = 2. Using Equation 2, the probability
of collision is evaluated at 0.27.
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Fig. 2: The robot (black boxes with its front represented as
a filled triangle) wants to go to the position in red. In blue,
the actual path the robot follows. Each cell has an area of
0.04m?2. Using Equation 2, the probability of collision in
this path is 0.27.

A. Computation of the field

As we established a new approach to represent the oc-
cupancy of an environment, we need to develop a way to
compute dynamically the lambdas. We assume that the robot
is equipped with a lidar sensor, which gives us a list of
cells crossed by beams without collision, and another list
of cells where the beams collided. Also, we represent the
uncertainty of the sensor in a fashion that differs from the
standard forward models [2], given three variables:

e &, the region of error of the lidar for the beam by
with its associated area ej. It represents the accuracy
of the sensor, and can be of any shape: it means that
the true position of the obstacle is within the region &y,
centered on the obstacle measurement from the beam
br.. We set the shape and size of &, constant for every
measurements. We have thus e; = e for all beams.
Figure 3 gives an example of such a region.

e D, the probability of rightfully read ‘miss’ for a cell
(i.e., the cell is not in the region of error &). The
quantity 1 — p,, gives the probability to read ‘miss’
for a cell that should be in the region of error &.

e Dy, the probability of rightfully read ‘hit’ for a cell (i.e.,
the cell is in the region of error £). The quantity 1 —py,
gives the probability to read ‘hit’ for a cell that is empty.
The probability p; is for example much lower when
the sensor is in the rain, as many readings comes from
raindrops.

Fig. 3: The robot (black boxes with its front represented as
a filled triangle) measures an obstacle. The obstacle is in the
area &£ centered on the measurement.

Using this sensor model, we construct the Lambda-Field
in the following manner. We want to find the combination

of A = {\;} that maximizes the expectation of the K beams
the lidar has shot since the beginning. For each lidar beam
b, the beam crossed without collision the cells ¢, € M,
and hit an obstacle contained in the cells ¢;, € &. The log-
likelihood of the beam by, is

L(b|)) = In {exp (=A (M) (1 —exp (A(gk)))] .

3)
The log-likelihood of K lidar beams is then
K—1
L({br}o:x—1]|N\) = L(br|N)
k=0 @)

_ Ig [A(Mk) +1n (1 exp (A(Ek)))] .

We want to maximize this quantity, hence nullify its
derivative since the function is concave.

In order to find a closed-form, we approximate the deriva-
tive with the assumption that the variation of lambda inside
the region of error of the lidar is small enough to be
negligible. Thus, for each \; € £, we have

Using this approximation, the derivative is

OL({bk}oic—1|N) A
8)\1 ~ —Mmy; A—’_hlexp(e)\i) _ 17

where h; is the number of times the cell ¢; has been counted
as ‘hit’ (i.e., was in the region of error of the sensor) and
m; is the number of times the cell ¢; has been counted as
‘free’.

We finally find the zero of the derivative, leading to

(6)

1 hi
@)\iln<1+>. @)
& m;
This closed-form allows a very fast computation of the
lambda field. We also see that the formula is independent on
the size of the cells.

B. Confidence intervals

In the same way as Agha-mohammadi [20], we define the
notion of confidence over the values in the Lambda-Field.
Indeed, the robot should not be as confident over a certain
path if the cells have been read one time or one hundred
times. For each cell ¢;, we seek the bounds A, and Ay such
that

P(Ar <\ < Av) > 95%
1 h; 8
SP(AL < -Iln (1+> < Av) > 95%. ®
€ m;
Using the relation h; = M — m; where M is the number of
times the cell has been measured, we can rewrite the above
equation as

P(K;, < h; < Ku) > 95%, ©)



such that

/\Lzlln L—&—l :
e M—KL (10)
A= 11 Kv 4
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The quantity h; can be seen as a sum of two binomial
variables:

—~

}_L ~ B(pha hl)
w ~ B(l _pmami)v

mifﬁl)

hi =
~ (11)

+
_|_

>

g

where h (resp. /) is the number of times the sensor rightfully
read a ‘hit’ out of the h; trials (resp. read a ‘miss’ out of
the m; trials). The quantity (m; — /) is hence the number
of times the sensor wrongfully read ‘hit’ instead of ‘miss’.
The distribution of h; is not binomial but a Poisson
binomial distribution with poor behaviors in terms of com-
putation. Since the Poisson binomial distribution satisfies
the Lyapunov central limit theorem, we can approximate its
distribution with a Gaussian distribution of same mean and

variance:
w=hipp +mi(1 —pm),

(12)
o® = hi(1 = pr)pn + mi(1 = )P
We can then have the bounds at 95%, with
K = max(pu — 1.960,0),
L (M ) (13)

Ky = min(u + 1.960, M).

The bounds Ay, and Ay are then retrieved from Ky, and Ky
using Equation 10.

Figure 4 shows an example of behavior of the confidence
interval for different confidences. The lidar measures an
empty cell ¢;. The confidence interval quickly decreases
as the number of readings ‘miss’ increases. At the fortieth
measurement, the lidar misreads and returns a ‘hit’ for the
cell. The confidence interval grows around the expected
lambda computed with Equation 7 before re-converging.
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Fig. 4: Convergence of the confidence intervals for a free cell
¢;. At the fortieth measurement, the sensor misreads the cell
and returns a ‘hit’. The confidence interval grows around the
expected \; before re-converging.

C. Risk assessment

As said before, the motivation of the Lambda-Fields is its
ability to compute path integral, hence a risk along a path.
For a path P crossing the cells C = {c¢;}o.n in order, the
probability distribution function over the Lambda-Field is

n—1

fla) =exp [ nAN, =AY N

=0

- An exp (—ah,), (14)

where n = |a/A] and |-] is the floor function. The variable
a denotes the area the robot has already crossed. Figure 5
shows an example of the probability density for a given
path on a Lambda-Field: when the robot goes through high-
lambda cells, the cumulative distribution probability quickly
increases to one. This can be easily proved as integrating
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Fig. 5: Example of lambda field the robot crosses (in green),
with the associated probability distribution f(a) (in blue) and
cumulative probability distribution F'(a) (in orange).

f(a) over a certain path P crossing the cells C gives the
probability of encountering at least one collision:

P(coll|73)=/7>f(a)da=1—exp (-AC). (15

We can then define the expectation of a risk function r(-)
over the path:

B ()] = [ fayre)da (16)
The random variable X denotes the position (i.e., area) at
which the first event ‘collision’ occurs. Most of the time,
the cells are small enough to assume that the function r(-) is
constant inside each cell. Using this assumption, we simplify
the above equation to

N i—1
E[r(X)] =Y r(Ai)exp | —AD ;| (1—exp(—AN)),
i=0 j=0
a7
for a path P going through the cells {c;}o:n.
In our case, we are interested in the risk of a certain path.
In other words, the function r(-) will be the risk encountered

at each instant or position.
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Fig. 6: (a) Aerial View of the mapped environment, with the robot path in blue and the roundabout in dashed black (b) Left:
Bayesian occupancy grid Right: Lambda-Field. The Lambda-Field is better suited to store the occupancy of unstructured
obstacles where the Bayesian Occupancy Filter may over-converges, especially for the roundabout (dashed black).
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Fig. 7: Comparison of the probability of collision for a free-
obstacle path in Bayesian occupancy grid and Lambda-Field.
The natural way to compute the probability of collision of the
path (in light blue) in Bayesian occupancy grid is dependent
of the tessellation size, as opposed to the Lambda-Field
which is not.

We chose to model the risk as the force of collision (i.e.,
loss of momentum) if the collision occurred at the area a,
which is

r(a) =mpg - v(a), (18)

where mp is the mass of the robot, and v(a) is its velocity
at the area a. One can note that it is quite easy to convert a
into the curvilinear abscissa, which is far more convenient to
link to the speed. For a robot of width w which has crossed
an area a, its curvilinear abscissa s equals to

19)

5= —.

w

This metric, fast to process, assumes that every obstacle

the robot might encounter has an infinite mass. It means that

if the robot collides with an obstacle, the resulting collision

would lead the robot to stop (i.e., losing a momentum of
mpg - v).

One can note that setting r(a) = 1 leads to the probability

of collision, given by Equation 2. More complicated metrics

can of course be developed. For instance, the angle of

collision can be taken into account to better quantify the
loss of momentum, if this information is available.

IV. EXPERIMENTATIONS

In order to demonstrate the effectiveness of our frame-
work, we implemented our method onto a mobile robot.
The robot navigates through a real-world environment with
structured and unstructured obstacles. Figure 6 (a) shows
an aerial view of the terrain. The robot is equipped with a
lidar Sick LMS-151 which gives range measurements. While
navigating, a Lambda-Field as well as a Bayesian occupancy
grid is created. Figure 6 (b) gives an example of maps.
We discretized the field into cells of size 10 x 10 cm. The
sensor has the probability of p;, = 0.99 and p,, = 0.9999 to
read the right information. The value of p,, is intentionally
really large since it is almost impossible for a lidar beam to
entirely miss an obstacle. However, it is far more possible
that the lidar returns a hit for a free region (when the beam
hits a raindrop, for example). We also choose to model the
region of error of the lidar as a disk of area 0.04 m?. Among
the differences between the two maps, one can see that the
roundabout on the right side of the map is not very well
represented. The roundabout is indeed made of small bushes
where the lidar beams can go through quite easily. The
Bayesian occupancy grid discarded most of the roundabout.
Indeed, the Bayesian Occupancy Filter has to converge either
to ‘occupied’ or ‘free’ and some of the cells misconverge
due to of the sparsity of the obstacle. On the other hand, the
Lambda-Field keeps more information as it stores a measure
of density which does not need to converge to an extremum.

In the meantime, the robot had to follow a pedestrian
while ensuring its safety. We implemented the path-planning
method presented by [13]. Every second, the robot samples
trajectories, parametrized as a velocity v and a rotational
velocity w applied for one second. Then, it chooses the best
trajectory, which is the one that stays the closest to the path
(from a global path planning algorithm between the robot
and the pedestrian). For each trajectory, we first process
its associated upper limit risk using Equation 17 and the
upper bound of the lambdas. All the trajectories that present
an upper limit risk above the maximum risk allowed are



discarded. If none of the trajectories is acceptable, the robot
chooses not to move as it is its only admissible decision.
In our case, we chose that the maximum risk is 1 kgms_l,
meaning that we are sure at 95 percents that the robot will
not encounter collision with a force above this maximum.
Figure 7 presents a very simple comparison of the proba-
bility of collision inferred from a Bayesian occupancy grid
and a Lambda-Field. The robot assesses the probability of
collision for a path going around the roundabout (in light
blue). The most intuitive way to assess the probability of
collision in Bayesian occupancy grids is to compute the
probability of not colliding any cell in the path. It leads
to a probability of collision that highly depends on the
cell size, since a smaller cell size means more cells not
to collide to. In the other hand, the expected probability
of collision in the Lambda-Field does not depend on the
cell size. Indeed, the overall integration of the lambdas does
not depend on the tessellation size. Heiden et al. [15] also
defined a collision probability that does not depend on the
tessellation size. Their formulation lacks physical meaning,
leading a probability that can only be used to compare with
other probabilities and not prove that a path is truly safe.

V. CONCLUSION

In this article, we present a novel representation of oc-
cupancy of the environment, called Lambda-Field. We first
derived a way to fill the map, as well as confidence intervals
over these values. This representation specifically allows the
computation of path integrals, giving a natural way to assess
the probability of collision. Using the Lambda-Field, we are
able to compute the risk of collision over a path, defined as
the force of collision. We finally tested our framework in a
real environment, showing the usefulness of our method to
assess the probability of collision as well as the risk along
a path.

Future work will estimate the mass and the angle of
collision to better estimate the risk. We will also test our
framework in more challenging environments like snowy
forests. Finally, dynamic obstacles will be addressed as most
urban scenarios are not static.
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