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Abstract— We investigate a classification problem using
multiple mobile agents capable of collecting (partial) pose-
dependent observations of an unknown environment. The ob-
jective is to classify an image over a finite time horizon. We
propose a network architecture on how agents should form a
local belief, take local actions, and extract relevant features from
their raw partial observations. Agents are allowed to exchange
information with their neighboring agents to update their own
beliefs. It is shown how reinforcement learning techniques
can be utilized to achieve decentralized implementation of the
classification problem by running a decentralized consensus
protocol. Our experimental results on the MNIST handwritten
digit dataset demonstrates the effectiveness of our proposed
framework.

I. INTRODUCTION

With the rising interest in the Internet of Things (IoT),
the demand for design of autonomous agents that are capable
of cooperation is increasing. The interconnected robots will
be major players in the future, accomplishing many duties
in industrial automation [1], military support [2], and health-
care [3]. In many of these applications, a major issue is that
every agent has limited sensing capabilities, and therefore,
may not have sufficient information for accomplishing a
complex task. One way to mitigate this shortcoming is to
let the task to be solved collectively by multiple agents. In
the context of machine learning, this means that the agents
need not only to learn through individual interaction with
their environment but also they can learn from each others’
experiences using communication.

In several machine learning applications, the problem
suffers from the high-dimension of the feature space, which
may render the learning process inefficient. One may list
facial element recognition, genome disorder identification,
or fault detection as instances of problems facing these
issues. In these examples, the main challenge is that a large
portion of the input data might be irrelevant to the task. One
possibility is to pre-process the data to filter the irrelevant
pieces of information. However, this might be challenging or
cause data inaccuracy. In this paper, we propose an approach
that may provide an alternative mechanism for complexity
reduction: we translate the classification task into a multi-
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Fig. 1: This example illustrates why classification through local
observations of an agent is challenging. The observations made
by 3 agents at two consecutive time instants have been magnified,
where the spatial variables dictate the observations. This highlights
the need for a communication and memory mechanisms.

agent reinforcement learning setting, where the space of
observations per agent has a comparatively lower dimension.

In this work, we study the multi-agent image classification
problem within an unknown environment. The setup consists
of an environment, in which multiple homogeneous agent,s
each with a partial observation of the environment, are
collaborating to do a classification task. To explore the
environment efficiently, the agents need to learn how to
optimally traverse the environment and receive new obser-
vations through re-positioning. Moreover, they are capable
of establishing autonomous communication to update their
beliefs. This is motivated by the idea that a more expe-
rienced teammate could provide or explain hints, which
can be used to facilitate the perception. We are interested
in maximizing a long-term collective reward that pushes
the agents to effectively coordinate and cooperate in order
to correctly classify the image. Our goal in this work is
to approach this classification task through an end-to-end
co-design of decentralized data-processing, communication,
action planning, and prediction modules on each agent (see
Fig. 1 for an example).

For solving this problem, we formulate it within a multi-
agent reinforcement learning framework and propose a policy
gradient, which can effectively optimize the agents’ behavior.
In contrast to the vanilla policy gradient settings, our frame-
work introduces a differentiable reward rather instead of a
reward that is independent of the network parameters. The
proposed mechanism enables the policy gradient algorithm
to not only maximize the probability of generating desirable
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outcomes, but also to explicitly increase the rewards. The
mathematical derivation of the latter argument is given in
Section IV, which generalizes the policy gradient approach
for the case of differentiable rewards.

We have demonstrated a descent performance of the
proposed framework in the MNIST classification task. We
can correctly classify 88% of the testing dataset by using two
agents, each only with 2×2 pixels observations. We observe
that with larger observations or longer communications, the
prediction quality further increases up to 97.75%.

II. PROBLEM STATEMENT

Suppose that N identical agents are in a static unknown
environment. Let the agents start from a pre-determined
spatial configuration. At each time step, each agent is capable
of collecting a partial observation from the environment,
performing some local data processing, and communicating
the result with neighboring agents. The agents are allowed
to communicate over a directed graph, where neighbors
of an agent are those whose messages can be received
by that agent. We assume that each agent knows its own
pose with respect to the environment and can take certain
actions to move and update its pose at each time step. The
collective objective of these agents is to classify the instance
of the environment from a finite number of possibilities
{1, 2, . . . ,M} over a finite time horizon.

In order to decentralize the process throughout the execu-
tion, the actions by each agent should be decided solely based
on the local information available to them. As a result, agents
need to learn how to communicate, extract relevant features
and specifications from partial observations, navigate in the
environment, and reliably solve the classification problem.

In Section IV, we propose a modular architecture for the
network of multiple agents and discuss the details of different
modules of an agent to achieve decentralized classification.
In Section VI, we demonstrate the required steps for learning
the design parameters using reinforcement learning.

III. CONNECTIONS TO THE LITERATURE

In most of the multi-agent reinforcement learning litera-
ture, it is typical to assume that the agents are non-identical
since their respective policies might be very distinct [4], [5].
Even though this assumption might be non-avoidable in some
applications, assuming the existence of a common shared
policy for all agents can be helpful, especially when their
policies can be distinguished via some visible characteristics
e.g., their location. Among the literature, [6] has considered
a similar setup for the homogeneity of the agents. This
assumption provides an advantage: the agents can learn
from each others’ experience. A similar idea is followed
in [7], where an agent interacts with multiple instances of
an environment, allowing her to learn from a concurrent
stream of experiences. Even though they study a single-agent
scenario, the homogeneity assumption allows approaching
this multi-agent problem as a single-learner problem.

In series of works on multi-agent reinforcement learning,
the focus is on cases where the data is spread over a number

of agents and the goal is to conduct the training in a dis-
tributed or decentralized manner. For instance, a promising
framework for this purpose is the Federated Learning, where
the goal is to conduct the stochastic gradient descent by
combining partially computed gradients over different agents
[8]–[10]. Contrary to this line of research, we consider
settings in which the agents need to communicate throughout
the execution as well.

In a more related paper, the authors of [5] consider
a value function approximation approach for decentralized
learning with interconnected agents and bring operational
guarantees in the case of linear value functions. A similar
multi-agent learning problem is addressed in [11], where
deep neural networks are used as function approximators. A
generalization of this problem within an actor-critic scenario
appears in [12]. Contrary to these works, we address the case
where each data point is observed by a number of agents
that are collaborating to fulfill a task (e.g., see Fig. 1), while
the next set of observations are affected by (locally) decided
actions of the agents. Moreover, in our settings, the reward
for reinforcement learning becomes differentiable. This ne-
cessitates revisiting the derivation of the policy gradients.

Another related line of research concerns the end-to-end
design of distributed or decentralized control architectures,
where the goal is to learn optimal control laws in a setting
with multiple dynamic agents [13]–[15].

A. Notations and Preliminaries

The set of real numbers, nonnegative real numbers, and
nonnegative integer numbers are denoted by R, R+ and Z+,
respectively. Other sets are denoted by script letters; e.g.,
A while their cardinality is denoted by |A|. We use bold
letters to denote maps; e.g., g(x). The trainable parameter of
a map is denoted by θi appearing as a subscript; e.g., fθ1 . The
map SoftMax(x) : RM → RM+ is standard softmax with
k’th element given by exp(xk)/

∑M
i=1 exp(xi). A directed

graph G is characterized by a set of nodes (or vertices) V :=
{1, 2, . . . , N} and a set of directed edges (or arcs) denoted
as E ⊂ {(i, j) : i, j ∈ V, i 6= j}. We say node j ∈ V is an
in-neighbor of node i ∈ V if (j, i) ∈ E , and denote the set
of all of its in-neighbors by Ni := {j ∈ V : (j, i) ∈ E}.

IV. ARCHITECTURE OF THE MULTI-AGENT NETWORK

We discuss details of a modular design to solve the image
classification problem using multiple autonomous agents.

A. Temporal Evolution of Agents’ Beliefs

In order to enable learning long-term dependencies during
the classification task, we equipped each agent by a dynamic
module using a Long Short-Term Memory (LSTM) cell [16].
The role of this module is to encapsulate the aggregate
belief of an agent throughout the task. Following the widely
accepted terminology [17], let us denote the hidden state and
cell state of the LSTM module on agent i ∈ V at time t ≥ 0
by hi(t) ∈ Rn and ci(t) ∈ Rn, respectively. Each agent
updates its own belief upon receiving new observations,



communicating with its neighbors, and forming an infor-
mation input ui(t) ∈ R3n that contains three components:
features of local observations, the average of the decoded
messages received from its neighbors, and information about
its location. The time evolution of the belief LSTM module
is governed by[

hi(t+ 1)
ci(t+ 1)

]
= fθ1

([
hi(t)
ci(t)

]
, ui(t)

)
, (1)

where nonlinear map fθ1 : R2n×R3n → R2n is parametrized
by a trainable vector θ1 ∈ Rnf . In the following subsections,
we discuss each component of the information input to the
LSTM module.

B. Agent Motion and Stochastic Action Policy
Let us represent the spatial state (or pose) of agent i ∈

V by pi(t) ∈ Rd and the finite set of all possible actions,
which agents can take, by A. Each agent moves in the spatial
domain according to dynamics

pi(t+ 1) = g
(
pi(t), ai(t+ 1)

)
, (2)

where g : Rd × A → Rd is a known transition map
and action ai(t + 1) is sampled from set A according to
a probability mass function π : A → R that is computed as
follows. We use a state-dependent stochastic action policy
by updating the action probabilities according to

π(a) = πθ3(a, ĥi(t+ 1)), (3)

where a is an action in A and ĥi(t+ 1) is the hidden state
of the decision LSTM unit whose dynamics are governed by[

ĥi(t+ 1)
ĉi(t+ 1)

]
= fθ2

([
ĥi(t)
ĉi(t)

]
, ui(t)

)
. (4)

This LSTM unit is fed with exactly the same information
input ui(t) as the belief LSTM module (1).

We consider one fully connected layer with a ReLU
activation followed by another fully connected linear layer
to represent the map π, where we denote by θ3 ∈ Rnπ the
corresponding trainable parameters.

Example 1: For a flying robot that can translate and rotate
in the 3D space, a natural choice for spatial state pi(t) is a
vector in R6 created by stacking three position components
of the robot and three Euler angles describing its orientation
(relative to the environment frame).

C. Inter-Agent Communication Architecture
The agents are allowed to communicate over a directed

graph G with node set V and arc set E . For distinct agents
i, j ∈ V , (i, j) ∈ E implies that agent j receives messages
from agent i. Each agent generates a message1 using its belief
hidden state according to

mi(t) = mθ4(hi(t)), (5)

where map mθ4 : Rn → Rnm is parameterized by a trainable
vector θ4 ∈ Rne . A sequence of two layers is considered

1It is assumed that when agent i broadcasts its message mi(t) ∈ Rnm

at time t, all neighboring agents receive identical copies of that message.

for this map: a fully-connected layer with ReLU activation
followed by a fully connected linear layer for the output.

D. Observation Model and Feature Extraction
Suppose that agent i at time t collects (partial) observation

oi(t) ∈ Rf×f . It is assumed that agents’ observations can be
completely characterized by its pose pi(t). Thus,

oi(t) = o(I, pi(t)), (6)

where I ∈ RnI×nI is the entire image. This identity can be
interpreted as the repeatability property of the observations:
two agents with different past history will observe the same
image provided that they both have identical poses at the
observation time. The relevant features of an observation can
be extracted by a parameterized map

bi(t) = bθ5(oi(t)), (7)

where θ5 ∈ Rnc is a trainable vector. The nonlinear map
bθ5 : Rf×f → Rn results from the following three layers:
two single layer convolutional neural networks followed by
vectorization and a fully connected layer.

Example 2: Fig. 1, illustrates a case in which the spatial
state is simply the location of the agent (relative to the image)
and observation map (6) crops a subset of the image based
on its position. Moreover, the map describing the motion of
the robots, according to (2), has resulted in horizontal and
vertical translations of the agents across the image.

Example 3: Let us consider the settings of Example 1,
where a camera is mounted on the robot. Then, map o(.) in
(6) for this case is the projection map of the camera. For a
camera, this map is completely characterized by the position
and orientation of the robot with respect to the environment
(i.e., camera extrinsics).

E. Structure of Information Inputs
In the previous subsections, we explained the details of

the belief dynamics, agent motion and actuation, observation
processing, communication, and decision-making modules
on each agent. The same information input is fed to both
LSTM modules in (1) and (4). We design the information
input as a vector in R3n with components

ui(t) =
[
bi(t)

T d̄i(t)
T λi(t)

T
]T
. (8)

All these three components can be calculated using locally
accessible data as we elaborate below. In Subsection IV-D,
it was shown that bi(t) contains the features of the (partial)
observation.

After communicating with neighbors, each agent decodes
the received messages using a map dθ6 : Rnm → Rn to get

di(t) = dθ6(mi(t)), (9)

where θ6 is a trainable vector. We consider a fully connected
layer with a ReLU activation for this map. Then, each agent
takes the average of the received messages to find

d̄i(t) =
1

∆i

∑
(j,i)∈E

dj(t), (10)
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Fig. 2: The diagram illustrating the essence of our framework.

in which ∆i is the in-degree of node i in graph G. This,
d̄i(t) is the aggregate message received by agent i at time t.

It is useful for agents to tag their beliefs and information
by their spatial state. This can be done by the following map

λi(t) = λθ7(pi(t)), (11)

where λθ7 : Rd → Rn is a parametrized map with a trainable
vector θ7.

In the final step, we close the loop by applying information
input (8) to (1) and (4).

V. DECENTRALIZED PREDICTION AND CLASSIFICATION

Recall that the image should be classified from M cat-
egories, while we have T rounds of observation and com-
munication. To do this, first the raw prediction vector by
agent i is evaluated using the final cell state and a map
qθ8 : Rn → RM as

qi = qθ8(ci(T )). (12)

We use a fully-connected linear layer with ReLU activation
followed by a fully connected linear layer in place of this
map. Then, we run a distributed average consensus algorithm
over a strongly connected directed graph. Upon this averag-
ing, on each agent, we will have a shared prediction vector
q̄ ∈ RM , which is given by

q̄ =
1

N

N∑
i=1

qi. (13)

It has been shown that if the communication graph is strongly
connected, this task can be conducted in a completely
decentralized manner [18]. Finally, each agent evaluates the
system-wide prediction category using

qc = argmax
j∈{1,...,M}

SoftMax(q̄). (14)

One should note that in the current approach, we do
not force the agents to reach a consensus on the predicted
category, but rather we combine the beliefs due to sequences
of partial observations to produce a single prediction.

In Fig. 2 we have illustrated the information flow of
the framework that has been described throughout the sec-

Algorithm 1 Multi-Agent Classification (Execution)

input: Input image I ∈ RnI×nI
initial spatial states p1(0), . . . , pN (0)

output: prediction category qc
initialize:

for i ∈ V do
initialize the states hi(t)← 0, ci(t)← 0
for j ∈ Ni do

initialize the messages mj(0)← 0
end for

end for
for t = 0 to T − 1 do . communication & observation

for i ∈ V do
conduct the observation oi(t)← o(I, pi(t))
map the observation bi(t)← bθ5(oi(t))
for j ∈ Ni do

decode message dj(t)← dθ6(mj(t)).
end for
find average message d̄i(t)←

1

∆i

∑
(j,i)∈E

dj(t)

map the spatial state λi(t)← λθ7(pi(t))

form input ui(t)←
[
bi(t)

T d̄i(t)
T λi(t)

T
]T
.

run the belief LSTM unit (1)
evaluate message mi(t+ 1)←mθ4(hi(t+ 1))
run the decision LSTM unit (4)
update policy distribution πθ3(. |ĥi(t+ 1))
samples action ai(t+ 1) based on π
update spatial state pi(t+ 1)← g(pi(t), ai(t+ 1))

end for
end for
for i ∈ V do . local raw predictions

find raw prediction vector qi ← qθ8(ci(T ))
end for

conduct the distributed average consensus q̄ ← 1

N

N∑
i=1

qi

find the prediction category

qc ← SoftMax
(

argmax
i∈{1,...,M}

q̄
)

tion. These settings and steps can be summarized to build
Algorithm 1, whose output is prediction category qc ∈
{1, . . . ,M} (shared by all agents).

VI. REINFORCEMENT LEARNING

We derive a generalization of the vanilla policy gradient
algorithm, which utilizes the intrinsic differentibilty of the
rewards for simultaneous training of both prediction and
motion planning parameters. First, let us stack our parameters
as a single design parameter according to

Θ :=
[
θT1 , θ

T
2 , . . . , θ

T
8

]T
. (15)

Next, let us denote all trajectories with positive probability
of occurrence by T . Suppose that in a sample execution



τ ∈ T , image I corresponds to category j ∈ {1, . . . ,M}
(i.e., its actual category is j). Then, we define the reward
corresponding to the outcome of this sample trajectory

rτ := −fl(q̄τ − ej), (16)

where fl is a differentiable nonnegative loss function (e.g.L2

Norm), q̄τ is the prediction at the end of this sampled
trajectory, and ej ∈ RM is the unit coordinate vector in
direction j. Based on the goal of this problem, we define
our objective function as

J(Θ) = E{rτ} =
∑
τ∈T

Pτ rτ . (17)

Here Pτ is the probability of sampling trajectory τ for a given
Θ. Therefore, we need to solve the optimization problem

maximize
Θ

J(Θ). (18)

The gradient of J with respect to Θ can be written as

∇ΘJ =
∑
τ∈T

rτ∇ΘPτ + Pτ∇Θrτ . (19)

Let us drop index Θ for simplicity. Using the well-known
gradient derivation technique similar to that of the REIN-
FORCE algorithm [19], we can write

∇J =
∑
τ∈T

Pτ∇(logPτ )rτ + Pτ∇rτ (20)

= E{∇(logPτ )rτ +∇rτ}.

Let us execute Algorithm 1 for Nr independent experiments.
Then, for each sample k = 1, . . . , Nr, we use p(k) to denote
the probability that this particular trajectory is selected. Now,
inspired by (20), we define the proxy sampler for J to be

Ĵ :=
1

Nr

( Nr∑
k=1

log p(k)r
(k)
d + r(k)

)
, (21)

where quantity r(k)
d has a value equal to r(k), but has been

detached from the gradients. This means that a machine
learning framework should treat r(k)

d as a non-differentiable
scalar during training. Then, we inspect that

E
{
∇Ĵ
}

= ∇J, (22)

i.e., ∇Ĵ is an unbiased estimator of ∇(logPτ )rτ + ∇rτ
that appears in (20). Therefore, it is justified to follow the
approximation for the gradient given by

∇J ≈ ∇Ĵ . (23)

Note that the first term in summation (21) is identical to the
quantity that is derived in the policy gradient method with a
reward that is independent of the parameters (i.e., identical
to REINFORCE algorithm). The second term accounts for
the fact that the reward in our settings directly depends
on parameter Θ: for two different set of parameters, if the
agents receive exactly the same sequences of observations
and take exactly the same actions, still the reward explicitly

0 10 20 30 40 50
Training Epoch

20

40

60

80

Te
st

in
g 

Er
ro

r %

f=2
T=1
T=3
T=5
T=7
T=9

25 30 35 40 45 50
Training Epoch

10

20

30

40

50

60

Te
st

in
g 

Er
ro

r %

T=1
T=3
T=5
T=7
T=9

0 10 20 30 40 50
Training Epoch

0

20

40

60

80

Te
st

in
g 

Er
ro

r %

f=4
T=1
T=3
T=5
T=7
T=9

25 30 35 40 45 50
Training Epoch

10

20

30

Te
st

in
g 

Er
ro

r %

T=1
T=3
T=5
T=7
T=9

0 10 20 30 40 50
Training Epoch

0

20

40

60

80

Te
st

in
g 

Er
ro

r %

f=6
T=1
T=3
T=5
T=7
T=9

25 30 35 40 45 50
Training Epoch

5

10

15

Te
st

in
g 

Er
ro

r %

T=1
T=3
T=5
T=7
T=9

0 10 20 30 40 50
Training Epoch

0

20

40

60

80

Te
st

in
g 

Er
ro

r %

f=8
T=1
T=3
T=5
T=7
T=9

25 30 35 40 45 50
Training Epoch

2

4

6

8

Te
st

in
g 

Er
ro

r %

T=1
T=3
T=5
T=7
T=9

Fig. 3: The testing accuracy for different frame sizes f and time
horizons T versus the number of training epochs.

depends on the parameters of the network (e.g., weights of
the convolution layers or fully connected layers).

VII. NUMERICAL EXPERIMENTS

We use the MNIST dataset of handwritten digits [20] to
test the proposed learning algorithm. The dataset consists
of 60,000 training images and 10,000 testing images, where
each image has 28× 28 pixels. We suppose that each agent
may observe a portion of the image that has f × f pixels.
The spatial variable pi is the pixel coordinate of the top left
corner of the observation window. The possible movements
by each agent can be characterized by

A = {up, down, left, right}. (24)

By each movement, the agent is translated in the desired
direction by fm pixels. If the sampled action is infeasible,
then the agent remains at its location at that time instant. In
Fig. 1, as an example, we have illustrated an image from
these data and the observations that three agents receive
during the horizon. In all experiments of this section, we
choose a mini-batches to have 64 images during the training.
We also choose the variable size of LSTM unit to be n = 64,
the number of neurons of all fully connected layers to be
64, and the dimension of the broadcasted messages to be
nm = 12. We have implemented this approach using the
machine learning framework PyTorch [21].
Testing Accuracy Results: We consider N = 2 agents
that are communicating over the only option for a strongly
connected graph; i.e., graph with arc set E = {(1, 2), (2, 1)}.
We choose Nr = 30 and conduct a parametric study
by varying observation frame size f and time horizon T
according to f ∈ {2, 4, . . . , 8} and T ∈ {1, 3, . . . , 9},
respectively. For each pair of f and T , we train the model
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Fig. 4: Average maximum testing accuracy versus frame size f and
time horizon T after 30 epochs with random walks (top figure). In
the middle one, we trained extra 20 training epochs for the motion
planning policy. The last figure illustrates the error reduction as a
result of the design of coordination policy instead of random walks.

for 50 epochs. However, we break down the training into two
stages: first, we consider random walks for 30 epochs. Then,
we fix all of the parameters except for the decision-making
module and train the model for another 20 epochs. In Fig.
3, we demonstrate the progress of the testing error versus
the number of training epochs. Also, in Fig. 4, we show the
average maximum testing accuracy for each pair of frame
size f and time horizon T in the case of random walks (i.e.,
at the end of 30 epochs) and also with the designed law for
the movements of the agents (i.e., after additional 20 epochs
of training for motion planning). The results suggest that
following a policy that governs the actions of the agents may
significantly decrease the testing error; for instance, Fig. 5
implies that for f = 4 (i.e., 16 observation pixels) and T = 7
communication and observation steps, the testing error has
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Fig. 5: A sample of masked images created by putting together the
observations by 3 different agents for a time horizon of T = 3 with
f = 8. This image is the input to the centralized image classifier as
an alternative classification approach (method (i)). The (random)
uncovered parts have been reached due to random walks.
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corresponds to the case for random walks, while in the next 20
epochs we optimize the movements of the agents.

decreased by more than 70%.
Remark 1: The intuition behind our two-stage method of

training is that we initially train the perception, communi-
cation, and prediction modules while agents are learning to
explore the environment. Once these modules are sufficiently
trained, we let the agents learn how to traverse the image.
The numerical experiments suggest that this training strategy
generally results in smaller testing errors, compared to the
case in which we simultaneously optimize the parameters of
all modules. One possible justification for this observation
is that the two-stage training is less prone to getting stuck
in local non-stationary solutions due to higher exploration in
the first phase.
Alternative Classification Schemes: We consider two al-
ternative methods to classify the images based on similar
observations, which will be compared against our approach.
In both cases, each agent independently conducts a random
walk. (i) Centralized Classification with Random Walks: we
collect all the images from all agents based on random move-
ments that have equal probability in each of four directions
(i.e. 1/4). Then, we feed the resulting unmasked image to
a single CNN which is embedded into a prediction vector
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Fig. 8: The training results for different number of agents.

q ∈ RM (similar to q̄ in (13)). In Fig. 5, we demonstrate a
typical input of this simple centralized classification, which
has the same dimensions as the images in MNIST (i.e.,
f = 28). (ii) Distributed Classification with Random Walks:
We also consider a variant of Algorithm 1 in which instead of
learning the optimal distributions for the policy, all possible
actions in (24) have an equal probability of 1/4. We set
the parameters to f = 2, N = 2 agents, Nr = 10
samples, time horizon T = 4, and a complete communication
graph. We conduct the training with random walks for 20
epochs, which is followed by training of the decision-making
motion planning module for another 20 epochs. We train the
centralized classification for 40 epochs as well. In Fig. 6, we
illustrate the results, which show that the quality of prediction
using the proposed method is superior to both cases.

Remark 2: The main reason for which the performance
of the centralized method is not better than our approach is
that the masks created by random motion of the agents are
not optimal.
Effect of Communication: We compare the result of train-
ing for an alternative structure in which the agents do not
communicate during the horizon (although, they finally do so

conduct the prediction). We set the parameters to be N = 2,
f = 4, Nr = 40, and T = 6. As shown in Fig. 7, it turns
out that smaller testing errors compared to the case that the
agents do not communicate.
Effect of Number of Agents: We consider the set of
parameters f = 4, Nr = 25, and T = 4 and conduct the
training for a different number of agents communicating over
a complete directed graph. In Fig. 8, we illustrate the result
of training for 30 epochs with random walks followed by
learning the moving policies for 20 epochs. As expected, we
observe that increasing the number of agents significantly
reduces the testing error.
Visualization of Communicated Messages: We explore the
patterns in the messages that are broadcasted by the agents
using the learned communication medium. The goal is to
visualize how the agents express the shared memory within
an episode for solving the task. After training, we simulated
500 sample trajectories with T = 9 and recorded the
messages of all agents at every t = 0, . . . , 8. Then, we used
the dimensionality reduction technique called t-SNE [22] to
produce meaningful visualizations of the messages. In Fig.
??, we illustrate two t-SNE plots for the messages at t = 0
and t = 6, which correspond to the messages before any
communication and after a few rounds of communication and
observation, respectively. In these figures, every message,
which is initially in R12, is reduced to a vector in R2 and
is illustrated with a color corresponding to the true label of
the image. The result of clustering at t = 0 implies that
initially, there is no meaningful pattern in the distribution of
the labels. However, as the agents move across the image
and communicate, they construct an internal belief about the
true category. The second figure shows a t-SNE plot after 6
time-steps, which suggests that agents’ beliefs are reflected
in the communicated messages. In fact, we observe that the
digits are now clearly clustered in their own groups; i.e., they
have learned to broadcast their beliefs about the true labels
to their neighboring agents.
Video: We have created a video describing our framework
as well as the results of our experiments:
https://youtu.be/j67sy8RK_A4

VIII. CONCLUDING REMARKS

We introduce and analyze a multi-agent image classifica-
tion framework using a generalized policy gradient as the
core reinforcement learning technique. The underlying ideas
that are discussed in this paper are applicable to the other
value-based, policy-based, or while using novel variance
reduction techniques [23]. The problem studied in this paper
has a discrete action space within a typically short time
horizon. Depending on the problem structure (e.g., in aerial
robotic applications), one may prefer a continuous action
space. Then, it is straightforward to generalize our method-
ology to deal with these policies within this framework; for
instance, using Gaussian policies [24].

Our extensive simulations suggest that the current models
are temporally robust: if we train a model for time horizon
T = T1 and execute the model for T = T2 > T1, the

https://youtu.be/j67sy8RK_A4
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Fig. 9: Visualization of the learned communications strategies and
how they share their beliefs with each other using t-SNE plots.

prediction quality using the second model will remain high.
Also, changing the number of agents will not result in
dramatic performance degradation. For example, a model
trained with 3 agents will still produce acceptable outcomes
for problems with 2 or 4 agents. Due to space limitations,
we have not included the related numerical experiments.

Our numerical experiments have been limited to 2-D im-
age classification. However, this framework can be applied,
with minor adjustments, to more realistic scenarios. For
instance, as explained in Example 3, the current framework
allows the classification of 3-D objects using a sequence of
intelligently chosen 2-D observations conducted by moving
agents. The optimal (stochastic) movement of the agents
around the object could be potentially related to the next
best view problem [25]. Moreover, we expect that the sample
efficiency of our methodology can be potentially enhanced
by incorporating the developed optimal movement theories
(e.g., see [26]). It is also an interesting line of research to
study the cases where the graph structure dynamically (e.g.
randomly) evolves over time.
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