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Abstract— Endowing continuum robots with compliance
while it interacts with the internal environment of the human
body is essential to prevent damage to the robot and the
surrounding tissues. Compared with passive compliance, active
compliance has the advantages in terms of increasing the
force transmission ability and improving safety with monitored
force output. Previous studies have demonstrated that active
compliance can be achieved based on a complex model of the
mechanics combined with a traditional machine learning tech-
nique such as a support vector machine. This paper proposes
a recurrent neural network (RNN) based approach that avoids
the complexity of modeling while capturing nonlinear factors
such as hysteresis, friction and delay of the electronics that are
not easy to model. The approach is tested on a 3-tendon single-
segment continuum robot with force sensors on each cable.
Experiments are conducted to demonstrate that the continuum
robot with an RNN based feed-forward controller is capable of
responding to external forces quickly and entering an unknown
environment compliantly.

I. INTRODUCTION

Continuum robots have been identified as a class of robots
that are ideal for minimally invasive surgery [1]. Applications
of these robots span from neurosurgeries [2], trans-oral and
trans-nasal procedures [3]-[5], intracardiac procedures [6],
to orthopaedic surgeries [7]. Compared to their discrete rigid
counterparts, the continuum robots can be made very slim
due to the novel actuation methods used that leverage the
deformation of the material that constructs the body of
the robot. When used in surgical applications, this means
the robot can be inserted into the human body through a
small incision/orifice and a narrow passage, being minimally
invasive to the patient.

Safety is one of the key issues to address in surgeries
using continuum robots. Endowing a robot with compliance
while it interacts with the environment is essential to prevent
damage to the robot and the surrounding tissues. Passive
compliance can be realized by the nature of many mecha-
nisms for the construction of continuum robots like the cable-
driven mechanism [8]. However, this approach limits the
force transmission ability for tasks that are force demanding,
such as tissue dissection and retraction, and increases the
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Fig. 1. A 3-tendon single-segment continuum robot with force sensors
on each cable. Active compliance allows the robot to move compliantly by
adjusting the actuating cables when experiencing external forces along the
segment.

uncertainty of control due to the unmonitored flexibility
while the robot is operating in the human body.

Recently, active compliant motion control for continuum
robots has been studied [9], [10]. By measuring joint level
actuation forces and relating them to the generalized forces
in the configuration space that are mapped from the external
wrenches, it was demonstrated that the active compliance
can be achieved without expensive sensors deployed along
the distal part of the robot. However, this was done based on
a complex nonlinear model of the kinematics and mechanics
of the structure. In addition to the complexity in analysis and
implementation, there are also many factors that cannot be
easily modeled, such as the hysteresis of cables, backlash
in transmission, friction, characteristics of the electronic
components, etc.

Machine learning techniques could be used to bypass
complex modeling and tackle those nonlinear factors. In
[10], a support vector machine (SVM) was used to capture
the friction and correct the uncertainties in the complex
modeling. However, the method still relied on elaborated
analysis and modeling of the mechanics of the continuum
robot. We argue that a model-less compliant motion control
strategy could be achieved in the machine learning frame-
work by directly relating the actuation with the force mea-
surement. In addition, instead of using an SVM, the neural
network (NN) based techniques, representing the-state-of-
the-art, could produce better results in terms of capturing the
nonlinear characteristics in the compliant motion control. In
particular, the recurrent neural network (RNN) [11], [12] is
a good tool to deal with the process-dependent factors such
as hysteresis of cables and delay of electronic components.
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This paper proposes a new method for compliant motion
control of continuum robots by using an RNN. Using a 3-
tendon single-segment continuum robot with force sensors on
each cable (Fig. 1), an RNN is trained to predict the cable
forces produced by backbone stiffness, friction and other
factors from the actuator control signals during unloaded
motion. Actuator positions are supplied to the RNN produc-
ing a feed-forward prediction to a simple motion controller
which achieves compliance by directly controlling actuators
to minimize the difference between predicted and measured
tension. Comparison between RNN and other architectures
is performed to show the superiority of RNN for this task.
We validate the proposed approach on an experimental
platform, demonstrating the effectiveness of a feed-forward
RNN compliance controller which can bypass the complexity
of nonlinear modeling and capture the effect of physical and
electrical factors that are not modelable in continuum robots.

The rest of the paper is organized as follows. Sec. II
describes the problem of active compliance and introduces
the role of RNN in the framework. Sec. Il gives a more
detailed introduction to the RNN architecture used in this
paper. Based on the above, a compliant motion control
algorithm is presented in Sec. IV. Experimental validation of
the method is elaborated in Sec. V to show the effectiveness.
The paper is discussed and concluded in Sec. VI and VII,
respectively.

II. PROBLEM DESCRIPTION

The design of continuum robots featuring an elastic back-
bone driven by three or more evenly-spaced tendons routed
along the periphery of the tube is both prominent and well-
validated [13]. A key control requirement is that tendon
tension remains within safe ranges as excessive tension may
cause tendons to snap, while slack can invalidate modeling
assumptions and sensor measurements causing backlash and
potential structural damage. The analysis in this section is
performed on a single-segment robot with three tendons.
Force sensors are located at the connection point between
tendons and actuators to measure individual tendon tension.

Active compliance control requires the movement of ac-
tuators g in a way that minimizes and therefore complies
with measured external forces F.y. Assuming backbone
incompressibility, external forces applied to the tip of the
robot are balanced by increased tension in the tendons
providing the robot configuration holding force. Ref [9],
[10] have demonstrated that interaction forces at the tip and
along the length of the backbone can be reconstructed from
measurements of tendon forces.

In addition to external forces, sensor measurements F .45
also include internal forces F;,; caused by the robot’s natural
elastic deformation, gravity, friction and dynamics while in
motion, i.e.,

Fieas = Fing + Fex- (1)

F;,; has a fixed but unknown relationship to the actuator
state space,

Fint :f(qvqaqv) (2)
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Fig. 2. Cable tension throughout linear motion. The first, second, and
third waveform corresponds to cable motion speed at 1mm/s, 2.5mm/s, and
10mm/s, respectively.

In continuum robots, these governing equations are complex
and highly nonlinear incurring significant modeling and
computational effort.

The most prevalent model for static forces in continuum
robots is the Cosserat rod theory [14] using an elastic energy
formulation to derive forces and curvature from backbone
stiffness and cable lengths. However, this model is purely
static physics based and does not take effects accompanying
dynamic motions into account.

Actuating the cables for change in configuration involves
acceleration, backbone momentum and the conversion of
elastic to kinetic energy, producing forces which are trans-
lated across the tendons. Typically, these forces are ignored
under small velocities with the assumption that small mass
and velocity produces negligible momentum and the elastic
restoration rate is sufficiently fast.

Directional hysteresis, where transient forces depend on
the direction of motion due to the microstructure of the
elastic backbone, has been addressed using piece-wise curves
selected based on the sign of the velocity [9].

These deviations from the static model can be observed
in Fig. 2. At slow speeds, the cable tension is dominated by
static elastic stiffness with a small directional hysteresis com-
ponent adding an offset when increasing versus decreasing
tension. As movement speed increases, the deviation from
the static model increases and an overshoot-with-restitution
curve is observed accompanying sudden changes in velocity.
This is mainly due to effects such as friction, slip, and
other uncertainties that are difficult to capture with traditional
modeling.

In the past, machine learning has been used to aug-
ment kinematic models, achieving desired control stabil-
ity/accuracy using feed-forward compensation for friction
and other model uncertainties [10]. Given the complexity
of kinematic modeling and partial application of machine
learning techniques already in use, there is motivation for re-
placing the combination of techniques with a single machine
learning algorithm producing feed-forward force estimates.

In this paper, we propose to use an RNN for the formu-
lation of (2). The input matrix is formed by concatenating
the actuator control vector g over a period of recent discrete
timesteps,

Q = [qt q:— A qtanl] ) (3)
and the network learns the function,
Fiyy = rmn(Q). )
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Fig. 3. An RNN based tension predictor is supplied with n =200 discrete
time points of control signal for each actuator, and predicts the tension in
each cable at the next timestep 7+ 1. Recorded tension training data (black)
is shown with prediction tension (red).

The concept of using RNN here is to use the continuous
control input signal to predict the measured tension resulting
from electrical and physical statics and dynamics. Fig. 3
shows how RNN is employed in this work for tension
prediction. A detailed description of RNN is presented in
the next section.

III. RECURRENT NEURAL NETWORK

Since our aim is to characterize the high-order correlation
between sensor measurements and actuator state space, we
implement RNN with especially long short term memory
(LSTM) neurons as recurrent neurons that can effectively
model the long-term temporal dependency in a continuous
signal space. RNN is a neural network that uses internal
hidden states to model the dynamic behaviour of sequences
with arbitrary nonlinear functions. In this task, the hidden
states may store relevant long-term temporal dependencies
of velocity, acceleration, and other short-term memory prop-
erties such as hysteresis, delays and restitution. The full
formulation of a typical LSTM is defined as follows,

o (Wy.iq, +Whihi—1) (5)
fi = oWurq,+Wpyrhi 1)
(W,

it =
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In addition to RNN that has the hidden state /2 with N hidden
units, LSTM has five extra gates compared to an RNN: an
input gate i and input modulation gate g to indicate the input
information ratio; a forget gate f and memory gate c¢ to
control the memory of the current state; an output gate o
to control the level of output to the state. ¢ is the sigmoid
nonlinearity which takes the input and output real-valued
inputs to a [0,1] range while ¢ is denoted as hyperbolic
tangent nonlinearity function similar to sigmoid but with
range of [—1,1]. These components make LSTM easier to
optimize during training progress by back-propagating gra-
dients further and thus enable the model to learn extremely
long-term and complex dependency.

In this paper, we build the LSTM model by feeding input
to the n LSTM cells (n = 32,64) followed by a 32 neurons
fully connected linear layer. One important issue of training

PID Controller

Fig. 4. Diagram of the RNN-based compliant motion controller in the
actuator space.

an RNN model is to determine the input sequential length.
We set the sequence length of 100 and 200 to validate the
effectiveness of the model with respect to the time factor. By
combining all input signals from three motors into a single
hidden state, the network learns a holistic representation of
the model, allowing common features to be combined with
different weights to produce each of the three outputs. Train-
ing data is generated by recording tension measurements
during unloaded motion using a rudimentary non-compliant
control algorithm which traverses the available actuator space
across a range of motion styles. More details about sample
collection are described in Sec. V-C.

Training LSTM model can be achieved by using the
mean squared error (MSE) loss on the three output of fully
connected layer and employing a back-propagation algorithm
with stochastic gradient descent (SGD). We employ a mo-
mentum rate of 0.9 and a learning rate of 0.005 for all
experiments.

IV. COMPLIANT MOTION CONTROL

Using the feed-forward tension estimator provided by
RNN, an external force component can be extracted from
sensor measurements and a compliant motion controller can
be constructed to minimize this value, as shown in Fig. 4.
Unlike typical controllers, which transform forces into the
pose space, and determine the actuator space motion required
to travel towards the desired conforming pose, we neglect to
model the robot kinematics, and present an algorithm oper-
ating entirely in the actuator space. The cables have a very
simple actuator-force relationship, namely pulling a cable
increases tension, and releasing a cable decreases tension.
Thus we take the unloaded tension prediction from the neural
network and subtract it from the sensor measurements to
obtain the external force,

Fext = Fmeas - Fint- (6)

A deadband threshold A is required to prevent erroneous
motion due to prediction and sensor inaccuracy, and forces
exceeding the deadband produce a control velocity ¢ with a
hand-tuned proportionality constant 3.

_A‘SFBXISl

otherwise

0
9= . (N
{B(Fext - ASIgn(Fext))
The threshold A is selected based on the performance of
the neural network on the validation set at approximately
1.25x mean error. The responsiveness constant f is tuned



to a suitable balance of sensitivity and stability. The perfor-
mance of the controller will be evaluated in the next section.

V. EXPERIMENTAL VALIDATION
A. Experimental setup

Experiments were performed on a single segment platform
with three braided steel wire tendons and a flexible backbone
of reinforced plastic hose. Four tendon guide disks of radius
10 mm were spaced evenly along the length of the segment at
33 mm intervals. Cables were driven by standard metal gear
servos with 13 kg-cm of holding torque on a drive wheel of
radius 20 mm providing 63 mm of actuation distance, and a
maximum safe operating force of 65 N. Tension sensing was
provided by strain gauges glued to small tabs of aluminium
inserted between two segments of cable, routed through a
custom amplification board to the analog-digital converters of
a microcontroller unit. Measurements were taken at 20 kHz
and provided to the control loop at 100 Hz after passing
through a first-order low pass filter defined as

il = 2oyl 1]+ el ®
where x is the unfiltered tension reading and y is the filtered
value feeding the control loop.

Typically, the use of low-cost components, filtering and
external PID controllers would incur significant additional
modeling cost for control loop design. However, the holistic
neural network approach enables learning the combined
system transfer function provided sufficient training data and
input history.

B. Tip force estimation

As the incompressible backbone presents a curvy shape in
the natural state, the majority of cable tension is balanced
by the backbone and elastic energy, but differing cable
tensions create a torque about the center of the tip segment
producing a force in the plane of the tip segment. The ratio
between cable tension, tip torque, and force in the tip plane
is encapsulated in a couple constant . Projecting into the
tip plane using the orientation of cable connections produces

the form
T
a _ V3 V3 1
[5 ] 2 S A ©
y L =3 —2]|n

where the constant ¢ represents the ratio between the force
in a cable and magnitude of force in the tip acting in the
corresponding direction.

With the experimental setup shown in Fig. 5, the robot
was moved to several different positions, and known weights
were added to the tip in the form of 9 g dollar coins. The
measured external tension in each cable was transformed into
the tip plane using (9) producing Fig. 6, from which we
conclude that the constant ¢ equals approximately 1/3 in
this system.

Note this step is just for interpretation of the experimental
results in the following sections. It is not mandatory for
the compliant motion control since the control is performed
directly in the actuator space.

Fig. 5. Experimental setup for tip-cable force calibration. Known weights
(coins) were applied to the tip at various orientations and positions.
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Fig. 6. Calibration of the relationship between tip force and cable tension.
The horizontal axis is the measured tip force and the vertical axis is the
force calculated by the sensed external tension in each cable. Six trials
of measurement were performed at each interval. The results show that
o =1/3.04 can be taken for the system.

C. Data collection for offline training

Collection of training data for offline training requires
moving the robot in such a way as to explore the input space
with sufficient variation to accurately capture the underlying
relationships. We used an elementary model to allow smooth
traversal of the task space, transforming the position of the
three cables ¢1,¢2,¢3 to a 2D position (x,y) and combined
tension ¢ using the vectors from the tip center to the cable
attachment points in the tip plane,

0 -2 37 [q
(10)
1 1] |43

Moving a cable by one unit moves the position vector (x,y)
by one unit in the corresponding direction. The constraint
that all cables must remain within a given tension range,
to prevent damage to cables, or tension falling to O and
invalidating sensor relationships was enforced by learning
a surface

c=f(x,y) (11

such that the tension in each cable was within the desired
range. The surface f was explored by moving to new
positions, and varying c¢ to achieve optimal sensing tension
in each cable, and recording the point (x,y,c) in a lookup
table. Future movements sampled the surface using LOESS
smoothing [15] and the exploration was continued until the
suitable region of the x,y plane was filled to sufficient fidelity.



We note that the control model used for data collection does
not need to be physically accurate, or complex, only topo-
logically smooth, to allow reasoning about training motions.

In operation, we expect the robot to exhibit a range of
motion styles, smooth curves, sudden changes in direction,
and arbitrary starts and stops across a range of velocities. To
collect representative training data, we created three parame-
ters: velocity, jerkiness, and sleepiness. Velocity controls the
rate at which we traverse the (x,y) surface, jerkiness controls
the maximum angular rate of change in (x,y), and sleepiness
causes the sudden cessation of movement for small lengths
of time. Target positions were randomly selected from (x,y)
and changed whenever the robot entered a small radius of
the current target. Every 20 seconds, a new set of velocity,
jerkiness and sleepiness parameters were chosen. The motor
control signals and corresponding recorded cable tensions
were recorded at 100 Hz for six hours producing 2 million
points of training data for the RNN. We then used eighty per
cent of the generated data for training, with the remaining
20% kept for validation.

D. Comparison of NN architectures

In this section, we show the empirical performance of our
deep sequential model LSTM with various hyper-parameter
settings on the tension force prediction task. Furthermore,
we also compared our RNN based LSTM model to a non-
recurrent architecture convolutional neural network (CNN),
which has outperformed LSTMs in neural machine transla-
tion [16]. CNN network is able to connect distant signals
via shorter network paths than LSTMs. Although our task is
very different from machine translation, it is worthwhile to
test this theoretical argument empirically on another signal
processing task and compare their differences.

CNNs are hierarchical based networks, and it captures
local correlations in the signal. Unlike RNNs, CNN is easier
and faster to train due to its architectural design. The main
difference between RNNs based models and CNNs is the
ability to capture the long-range dependencies. The receptive
range of a CNN is computed with respect to the number
of layers L and kernel size k. The longest context size is
L(k—1). In this experiment we built a CNN with L =3
and kernel size k = 32,64. ReLU was attached to each
convolution layer. Max-pool was employed on the feature
map before connecting it to a fully-connected layer with 32
neurons.

Recurrent and non-recurrent architectures are hard to com-
pare fairly because many factors may affect the performance.
We trained both models with similar hyper-parameters (e.g.
input sequence length, batch size, number of hidden states
in the fully-connected layer) and techniques in PyTorch [17]
except for those parameters specific with each architecture
(e.g. number of epochs to converge).'

Table I gives the performance of all the architectures,
including experiments with different input sequential length

'The RNN based network was trained for 2000 epochs in 16 hours on a
GTX 1070 with batches of 20 k points, While CNN based network could
converge within 100 epochs in less than 3 hours training time.

TABLE I
THE RESULTS OF DIFFERENT LSTM AND CNN MODELS ON
FORCE PREDICTION TASK.

Model Sequential length | Mean err (kg)
LSTM-32 1007200 0.304/0.282
LSTM-64 100/200 0.300/0.258
CNN-32 100/200 0.287/0.295
CNN-64 100/200 0.304/0.270

and number of neurons or filters in the hidden layer. The
evaluation metric being used here is mean error. Recurrent
models LSTM distinctly outperform CNN models, showing
the importance of capturing long-term dependency in force
prediction. Moreover, the majority of LSTM and CNNs
achieve lower validation error when given more hidden
states. We attribute this observation to the model capacity,
which makes the model fit better to the training dataset. For
both models, sequential length plays an important role in
capturing long-term dependency. This becomes more obvious
when comparing the performance gain between LSTM-64 (-
0.42) and CNN-64 (-0.34). This affirms our assumption that
recurrent models are better long-term features extractors than
CNNs, and thus are more suitable for the task discussed in
this paper.

E. Responsiveness evaluation

With the RNN-based tension estimator validated in the last
section, a compliant motion controller was implemented in
the actuator space. All elements of the control loop, sensor
measurements and the neural network were discretised at
100 Hz. Control was implemented in C# on the windows
platform with accompanying UIl, communicating with a slave
microcontroller which supplied sensor readings and motor
control input over low-latency (3 ms) serial.

The responsiveness of the controller was first evaluated
by manually applying a force to the tip, as shown in Fig.
7. The RNN was able to predict the internal tension in each
cable and thus the external tension was separated to drive
the actuators. Fig. 8 shows the control system performance
compliantly in response to forces applied to the tip of the
robot. When the measured external force on a cable exceeded
the deadband threshold, the cable moved rapidly to reduce
the input force at a rate proportional to the magnitude of the
input.

In order to further evaluate the response time and sensitiv-
ity of the controller, a wooden block was used to push the tip
backwards and forwards (Fig. 9), stopping at a marked line
and waiting for the controller to reduce the interaction force.
Fig. 10 shows the mean tip force in response to 20 impulses
of varying intensity. Individual responses were correlated
using the moment the force on one cable exceeded the dead-
band threshold. The controller rapidly moved to reduce the
impulse in the first 0.2 s, and then approached the dead-band
asymptotically.
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Fig. 7. Responsiveness evaluation. a) A force was applied to the tip of the robot. b) Estimation of the RNN. Yellow and brown parts represent the current
state and estimated deformation based on cable tension measurement, respectively. ¢) Control panel. d) Cable tension measurement.
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Fig. 8. Compliant response to measured external forces throughout various
motions with deadband (gray).

Fig. 9. Experimental setup for impulse response. The block is moved to
the black line, applying a deflection to the robot tip.

F. Compliant insertion

To evaluate the controller performance when exploring
unknown environments, the robot was repeatedly inserted
into and retracted from a curved tube of radius 13 mm.
Mlustrated in Fig. 11, the robot successfully conformed to the
tube shape, achieving a 90 degree bend with insertion, and
returning to a straight shape during retraction. The controller
had no knowledge of tube shape and conforms solely in
response to contact between the robot and tube surface.

1 std.dev
mean
10 ———— deadband

Tip Force (N)

Fig. 10.

Fig. 11.
stration.

Individual frames of compliant insertion and retraction demon-

Ten insertions were performed over a 90 s period, with
reaction data shown in Fig. 12. During the insertion, contact
force was maintained at 5-7 N with larger forces reduced
more quickly providing a faster insertion. Fig. 13 shows a cu-
mulative histogram indicating the duration for which forces
exceeding a given threshold were experienced, averaged over
insertion trials. Tip forces exceeding 6 N, 7 N and 8§ N
were experienced for an average duration of 0.54 s, 0.23 s
and 0.07 s respectively. The average insertion/retraction
was completed in 3.5 s at a speed of 29 mm/s and cable
movement speed of 5 mm/s. These results show that the
developed controller based on RNN was capable of endowing
the continuum robot with active compliance while exploring
unknown environments.

VI. DISCUSSION

The experiments show that a complex model of the me-
chanics of the continuum robot is not necessary for active
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Fig. 12. Reaction to external forces during repeated insertion trials with
deadband (grey).
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Fig. 13. Duration for which tip forces exceeding a given threshold are
experienced in the average insertion.

compliant motion control. However, this does not mean
having a model of the robot is useless. A model, even if
being inaccurate, can direct the motion of the robot in the
data collection procedure for offline training. Moreover, the
complex model is avoided by implementing the controller in
the actuator space directly for the compliant motion control
task. For tasks where the tip of the robot needs to apply a
certain force, an accurate model relating the external force
output and the measurements of the actuating cables may be
needed. This could also be achieved using machine learning
techniques given a considerable amount of calibration data.
However, the performance of such an approach is yet to be
evaluated.

VII. CONCLUSION

Compliance is one of the key capabilities of continuum
robots to enhance safety while used in minimally invasive
surgery. Active compliant motion control has been developed
based on complex derivation of the mechanics model of
continuum robots. This paper proposed a model-less ap-
proach leveraging an RNN to capture the highly nonlinear
factors of the system such as hysteresis of the cables, friction,
and delays of electronics, that are usually difficult to model
accurately.

Using a 3-tendon single-segment continuum robot with
force sensors on each cable, an RNN was trained to predict
the internal cable forces produced by backbone stiffness, fric-
tion and other factors from the actuator control signals during
unloaded motion. Then, a feed-forward motion controller
was developed directly in the actuator space to minimize
the difference between the predicted cable tension provided
by the RNN and the measured tension. The superiority of the
RNN over the other architectures was validated by compar-
ison. A set of experiments were conducted to demonstrate

that the continuum robot with an RNN based feed-forward
controller was capable of responding to external forces
quickly and entering an unknown environment compliantly.

While the positive results on the simple platform show
promising feasibility of the machine learning based approach
for constructing compliance controller, more experiments
need to be carried out on continuum robots that are better
designed for real applications. In addition, an extension of
the method to multiple-segment continuum robots is worth
further study.
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