
Learning Q-network for Active Information Acquisition

Heejin Jeong1, Brent Schlotfeldt1, Hamed Hassani1, Manfred Morari1, Daniel D. Lee2 and George J. Pappas1

Abstract— In this paper, we propose a novel Reinforcement
Learning approach for solving the Active Information Acquisi-
tion problem, which requires an agent to choose a sequence
of actions in order to acquire information about a process
of interest using on-board sensors. The classic challenges in
the information acquisition problem are the dependence of
a planning algorithm on known models and the difficulty
of computing information-theoretic cost functions over arbi-
trary distributions. In contrast, the proposed framework of
reinforcement learning does not require any knowledge on
models and alleviates the problems during an extended training
stage. It results in policies that are efficient to execute online
and applicable for real-time control of robotic systems. Fur-
thermore, the state-of-the-art planning methods are typically
restricted to short horizons, which may become problematic
with local minima. Reinforcement learning naturally handles
the issue of planning horizon in information problems as it
maximizes a discounted sum of rewards over a long finite or
infinite time horizon. We discuss the potential benefits of the
proposed framework and compare the performance of the novel
algorithm to an existing information acquisition method for
multi-target tracking scenarios.

I. INTRODUCTION

Active information acquisition is a challenging problem
with diverse applications including robotics tasks [14], [15],
[16], [17]. It is a sequential decision making problem where
agents are tasked with acquiring information about a certain
process of interest (target). The objective function for such
problems typically takes on the information-theoretic form
such as mutual information and Shannon entropy. The theory
of optimal experiment design also studies cost functions
based on the trace, determinant, or eigenvalues of the infor-
mation matrix that describes the current information state.
A major challenge in active information acquisition problem
is the computation of cost functions, such as mutual infor-
mation, that are difficult to compute for arbitrary probability
distributions. Therefore, many approaches can evaluate only
short planning horizons, or take greedy actions that are
susceptible to local minima [1].

In this paper, we seek to solve the active information
acquisition problem using Reinforcement Learning (RL)
methods. In RL, a learning agent seeks an optimal or near-
optimal behavior through trial-and-error interaction with a

1These authors are with the department of Electrical and
Systems Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA {heejinj, brentsc, hassani, morari,
pappasg}@seas.upenn.edu

2Daniel D. Lee is with the department of Electrical and
Computer Engineering, Cornell University, Ithaca, NY 14850, USA
dd146@cornell.edu

This research is partially supported by ARL CRA DCIST W911NF-17-
2-0181.

dynamic environment [10]. As it does not require a knowl-
edgeable external supervisor, RL has been applied to many
interesting sequential decision making problems including
numerous applications in robotics [11], [12], [13]. The recent
successes of RL with deep neural networks have enabled a
number of existing RL algorithms to be applied in complex
environments, such as Atari games and robotic manipulation
[3], [4], [29].

There are several advantages of applying RL to active
information acquisition problems. One benefit is that we can
avoid over-dependence on system models and the dynamics
of the target process can be estimated by various state estima-
tion methods such as particle filters [2] and learning-based
approaches for highly non-linear systems [25], [18], [19].
This dramatically extends the available problem domains.
Another benefit is that an RL policy maximizes a discounted
sum of future rewards, and thus, it is able to handle infinite
planning horizons. In contrast, existing planning algorithms
require prior knowledge on target models and often need to
approximate a cost function online, which requires additional
assumptions to make the computation tractable [1]. RL-based
approaches demand an extended training stage, but produce
policies that are efficient to execute online, especially as
compared to long-horizon planning methods. This is neces-
sary particularly for running a robotics system in real-time.

Related Work. A number of methods for solving infor-
mation acquisition problems for dynamic targets have been
studied under various constraints. The solutions vary in the
number of robots, the length of the planning horizon, and the
probability distribution being tracked. Efficient search-based
planning methods have been applied for models assumed
to be linear and Gaussian [1], [24], and sampling-based
algorithms have been used for more complex problems and
longer horizons [28]. Prior work in data-driven information
acquisition uses imitation learning via a clairvoyant oracle
[9], [26]. These are supervised learning methods which train
a policy to mimic the provided expert trajectories, and thus,
require a large and labeled dataset. This method could be
more sample efficient than RL, but it is limited to problems
having an access to labeled datasets.

Active object tracking is one of the common tasks in active
information acquisition. With the substantial achievement of
deep learning in the field of computer vision, many deep
learning methods for computer vision have been studied
in this area [21], [23]. End-to-end solutions for active ob-
ject tracking are introduced using ConvNet-LSTM and RL
algorithms [20], [22]. Their reward function is designed
specifically for the object tracking problem, for example,
in order to reduce a distance between an object and a

ar
X

iv
:1

91
0.

10
75

4v
1

 [
cs

.L
G

]
 2

3
O

ct
 2

01
9

learning agent. However, maximizing information obtained
for a target does not always require the agent to closely
follow the target, especially in the case of multiple targets
or if a target is highly dynamic. Moreover, the end-to-end
approach requires a large number of training samples.

Contributions. We highlight the following contributions
of this paper:
• We propose a general RL framework for the active

information acquisition problem formulating it as a
Markov Decision Process.

• We apply the framework to an active target tracking
application and use existing Q-network-based deep RL
algorithms to learn an optimal policy.

• We compare simulation results in various environments
with a search-based information acquisition approach in
a target tracking scenario. The results demonstrate that
the Q-network-based deep RL algorithms are able to
outperform the existing method, while making far less
assumptions on the underlying problem.

II. BACKGROUND

A. Active Information Acquisition

Suppose that a robot carrying a sensor follows a discrete
time dynamic model:

xt+1 = f (xt ,ut) (1)

where xt is a robot state and ut is a control input at time t.
The goal of the robot is to actively track N targets of interest
using noisy measurements from its sensor governed by some
dynamic models:

yi,t+1 = gi(yi,t ; µi) for i = 1, · · · ,N (2)

where yi,t is a state of the ith target and we composes each
target state as yt = [yT

1,t , · · · ,yT
N,t]

T . Each target can have its
own control policy µi. We denote the sensor measurement
signal about the targets as zt = [zT

1,t , · · · ,zT
N,t]

T and its obser-
vation model as h(·):

zi,t = h(xt ,yi,t) for i = 1, · · · ,N (3)

The available information to the robot at time t is I0 = z0
and It := (z0:t ,u0:(t−1)) for t > 0 where the subscript t1 : t2
represents the set of the corresponding variable from time t1
to time t2 for t1 ≤ t2.

Problem. (Active Information Acquisition) Given an ini-
tial robot pose x0, a prior distribution of the target state
y0, and a planning horizon T , the task of the robot is to
choose a sequence of functions, ut = π(It), which maximize
the mutual information between the target state yt and the
measurement set z1:t :

max
π

T

∑
t=1

I(yt ;z1:t |x1:t) (4)

s.t. xt+1 = f (xt ,π(It)) t = 0, · · · ,T −1
yi,t+1 = g(yi,t ; µi) t = 0, · · · ,T −1
zi,t = h(xt ,yi,t) t = 0, · · · ,T

B. Reinforcement Learning

RL problems can be formulated in terms of an Markov
Decision Processes (MDP) described by the tuple, M =
〈S,A,P,R,γ〉 where S and A are state and action spaces,
respectively, P : S× A× S → [0,1] is the state transition
probability kernel, R : S×A× S→ R is a reward function,
and γ ∈ [0,1) is a discount factor. A policy, π , determines
the behavior of the learning agent at each state, and it
can be stochastic π(s,a) ∈ [0,1] or deterministic π : S →
A Given π , the value function is defined as V π(s) =
Eπ [∑

∞
t=0 γ tR(st ,at ,st+1)|s0 = s] for all s ∈ S, which is the

expected value of cumulative future rewards starting at a
state s and following the policy π thereafter. The state-action
value, Q, function is similarly defined as the value for a state-
action pair, Qπ(s,a) =Eπ [∑

∞
t=0 γ tR(st ,at ,st+1)|s0 = s,a0 = a]

for all s ∈ S,a ∈ A. The objective of a learning agent in
RL is to find an optimal policy π∗ = argmaxπ V π . Finding
the optimal values, V ∗(·) and Q∗(·, ·), requires solving the
Bellman optimality equation:

Q∗(s,a) =Es′∼P(·|s,a)[R(s,a,s
′)+ γ max

a′∈A
Q∗(s′,a′)] (5)

V ∗(s) = max
a∈A(s)

Q∗(s,a) ∀s ∈ S (6)

where s′ is the subsequent state after executing the action a
at the state s.

When an MDP is unknown or too complicated, RL is
used to find an optimal policy. One of the most popular
RL algorithms is Q-learning, which updates Q values from
a temporal difference error using stochastic ascent. When
either or both of the state and action spaces are large
or continuous, it is infeasible to represent Q(·, ·) for all
states and actions in a tabular format. Instead, we can use
a function approximator to approximately estimate the Q
function, Q(s,a;ξ) ≈ Q(s,a). When a neural network is
used for the function approximator, ξ corresponds to the
neural network weights and biases. Deep Q-network (DQN)
is a neural network extension to Q-learning which network
outputs a vector of action values Q(s, ·;ξ) for a given state
s. DQN solves the difficulty of applying neural network to
Q-learning by mainly introducing the use of an additional
target Q network and experience replay [3]. Double DQN is
the extension of Double Q-learning with a neural network
which reduces the overestimation of DQN by using two sets
of neural network weights [5]. Assumed Density Filtering
Q-learning (ADFQ) is a Bayesian counterpart of Q-learning
which updates belief distribution over Q values through
online Bayesian update algorithm [6]. One of the major
advantages of ADFQ is that its update rule for Q values
takes a non-greedy update with its uncertainty measures and
reduces the instability of Q-learning. It has shown that ADFQ
with a neural network outperforms DQN and Double DQN
when the number of actions of a problem is large. This may
be more appropriate for the active information acquisition
problem as it can be highly stochastic and potentially has a
large number of actions.

Fig. 1: RL framework for Active Information Acquisition

III. RL FRAMEWORK FOR ACTIVE INFORMATION
ACQUISITION

In order to solve the active information acquisition prob-
lem using RL, we first formulate the problem as an MDP.
Since the robot does not have access to the ground truth of
target states, we could formulate the problem as a Partially
Observable Markov Decision Processes (POMDP) that main-
tains beliefs over states [7]. However, it is known that solving
a generic discrete POMDP exactly is wildly intractable [8].
Instead, we define a target belief distribution B(ϕi) for
i = 1, · · · ,N where B(·) is a tractable parametric distribution
with parameters ϕi, and vi,t = µi(yi,t) is a control input of the
target if exists. The belief distribution, or ϕi, can be updated
by a Bayes filter using incoming observations. We explicitly
include the belief state as part of the MDP state, and thus, the
problem state is expressed as a function of the robot state
and the target belief states, st = fs(xt ,ϕ1,t , · · · ,ϕN,t). fs(·)
may vary depending on the application. The action in the
MDP is defined as the control input to the robot, at = ut .

The goal of the RL agent in this problem is to find an
optimal policy π∗ that maximizes mutual information (4).
Assuming that yt is independent of the robot path, x1:t , the
optimization problem now seeks to minimize the differential
entropy, H(yt |z1:t ,x1:t) [1]. In order to evaluate the entropy
resulted after taking an action at at the current state st , a
reward is defined by the belief posterior at t +1:

R(st ,at ,st+1)≡−H(yt+1|z1:t+1,x1:t+1) (7)

Then, the optimal policy minimizes the discounted cumula-
tive total entropy :

V π∗(s) =−Eπ∗

[
∞

∑
t=0

γ
tH(yt+1|z1:t+1,x1:t+1)|s0 = s,ϕ0

]
(8)

The RL framework for active information acquisition is
summarized in Fig.1.

IV. LEARNING Q-NETWORK FOR ACTIVE TARGET
TRACKING

In this section, we present a specific RL approach to the
active information acquisition problem by focusing on the
target tracking application in two-dimensional environment
with Gaussian belief distributions. Let the mean and the
covariance of the ith target belief be ŷi and Σi, respectively.

Algorithm 1 Learning Q-network for Active Target Tracking

1: Randomly initialize a train Q-network, Q(s,a|ξ)
2: Initialize a target Q-network, Q(s,a|ξ ′) with weights ξ ′← ξ

3: Initialize replay buffer
4: for trajectory= 1 : M do
5: Randomly initialize x0, y0, ŷ0, Σ0
6: for t = 0 : T −1 do
7: Execute an action at = πaction(st)
8: Receive the next states xt+1 and the measurement zt+1
9: (ŷt+1,Σt+1)← Bayes Filter(ŷt ,Σt ,zt+1)

10: Compute a reward rt+1 = R(st ,at ,st+1)
11: Update the Q-network
12: Update the state, st+1

The RL state, s, is defined by the target belief states and the
information of surroundings. More formally,

si,t ≡ [ŷ(x)i,r,t , ŷ
(x)
i,θ ,t ,

˙̂y(x)i,r,t ,
˙̂y(x)i,θ ,t , logdetΣi,t ,I(yi,t ∈ O(xt))]

T

st ≡ [sT
1,t , · · · ,sT

N,t ,o
(x)
r,t ,o

(x)
θ ,t]

T

where ŷ(x)i,r,t is a radial coordinate of the ith target belief mean

in the robot frame, and ŷ(x)i,θ ,t is a polar coordinate of the
ith target belief mean in the robot frame at time t. O(x)
is an observable space from the robot state x and I(·) is a
boolean function which returns 1 if its given statement is
true and 0 otherwise. o(x)r,t and o(x)

θ ,t are a radial and polar
coordinate of the closest obstacle point to the robot in the
robot frame, respectively. If there is no obstacle detected,
o(x)r,t and o(x)

θ ,t are set to its maximum sensor range and π ,
respectively In a SE(3) environment, we can use ŷ(x) in the
spherical coordinate system instead. We define the action
space with a finite number of motion primitives.

Since p(yt |z1:t ,x1:t) is a belief posterior, p(yt |ϕt), the
differential entropy in (7) is:

H(yt |z1:t ,x1:t) = logdetΣt + c (9)

where c is a constant. Assuming that all target beliefs are
independent to each other, Σ is a block-diagonal matrix of
individual covariances, Σ = diag(Σ1, · · · ,ΣN), and logdetΣ =

∑i logdetΣi. Therefore, we define the reward function in this
target tracking problem as:

R(st ,at ,st+1) =−κm ∑
i

logdetΣi,t+1

−κdSDi[logdetΣi,t+1]−κoo−2
r,t+1 (10)

The first two terms penalizes the overall uncertainty of the
target beliefs and their dispersion (as standard deviation).
The dispersion term prevents the robot from tracking only a
few targets when not all the targets are within its sensing
range at time. The second term discourages the robot to
approach toward obstacles or a wall. κm, κd , and κo are
constant factors, and κo is set to 0 if no obstacle is detected.

We suggest off-policy temporal difference methods such
as DQN, Double DQN, and ADFQ in order to learn an
optimal policy for the problem. Although any RL algorithms
can be used in this framework, such off-policy temporal

difference algorithms are known to be more sample efficient
than policy-based RL methods [27]. Moreover, an action
policy can be different from the update policy in off-policy
methods which allow a safe exploration during learning. The
algorithm is summarized in Table.1. Note that the RL agent
does not require any knowledge on the system models (1),
(2), (3) as long as it can observe its state and a reward.
Additionally, the RL update is independent from the Bayes
filter and it can leverage various state estimation methods.

V. EXPERIMENTS

To demonstrate the proposed framework, we evaluate it
with ADFQ, DQN, and Double DQN in target tracking
problems with different numbers of targets (N = 1,2,3). ε-
greedy action policy is used with ε annealed from 1.0 to
0.01 for all algorithms. For ADFQ, we additionally used its
Thompson sampling (TS) action policy using its uncertainty
estimate for Q-values.

Furthermore, we compare with the Anytime Reduced
Value Iteration (ARVI), an open-source target tracking al-
gorithm, which we use as a baseline. The ARVI uses a
linear system model and the Kalman Filter to predict a target
trajectory, and then evaluates the mutual information over a
search tree with some pruning to ensure finite execution time.
The performance of ARVI has been verified in target tracking
simulations and real robot experiments in [24]. The aim is to
show the reinforcement learning outperforms this approach,
but rather that it achieves a comparable performance while
featuring a much more general problem formulation.

The differential drive dynamics of a robot is:x1,t+1
x2,t+1
xθ ,t+1

=

x1,t
x2,t
xθ ,t

+
ντsinc(ωτ

2)cos(xθ ,t +
ωτ

2)
ντsinc(ωτ

2)sin(xθ ,t +
ωτ

2)
τω

 (11)

where τ is a sampling period, and x1,t ,x2,t ,xθ ,t correspond to
the elements of xt in x-axis, y-axis and polar coordinate at
time t, respectively. We discretized the action space with pre-
defined motion primitives, A = {(ν ,ω)| ν ∈ {0,1,2,3} m/s,
ω ∈ {0,−π/2,π/2} rad/s}. The objective of the robot is to
track the positions and velocities of targets which follows
double integrator dynamics with Gaussian noise:

yi,t+1 = Ayi,t +wi,t , wi,t ∼N (0,W) (12)

A =

[
I2 τI2
0 I2

]
, W = q

[
τ3/3I2 τ2/2I2
τ2/2I2 τI2

]
q is a noise constant factor. When the target is close to
a wall or an obstacle, it reflects its direction with a small
Gaussian noise. We assumed that the target model is known
to the robot and updated the target belief distributions using
the Kalman Filter. Note that the Kalman Filter can be
simply replaced by other Bayes filters or learning-based state
estimation methods within the proposed RL framework.

The observation model of the sensor for each target is:

zi,t = h(xt ,yi,t)+ vt , vt ∼N
(
0,V (xt ,yi,t)

)
(13)

h(x,y) =
[

r(x,y)
α(x,y)

]
:=
[√

(y1− x1)2 +(y2− x2)2

tan−1((y2− x2)(y1− x1))− xθ

] Fig. 2: Cumulative − logdetΣt per trajectory of ADFQ, DQN, and Double
DQN during learning compared with ARVI.

Fig. 3: Demonstrations of learned ADFQ-TS policies in the obstacle environment with a single target (first row) as well as the empty
environment with three target (second row). The time step increases from left to right. Blue triangle: xt , Blue dot: x1:t−1, Red dot (big):
yt , Red dot (small): y1:t , Green circle: ŷt , Green shaded area: Σt .

To be used in the Kalman Filter, this model is linearized by
computing the Jacobian matrix of h(y,x) with respect to y:

∇yh(x,y) =
1

r(x,y)

[
(y1− x1) (y2− x2) 01x2

−sin(xθ +α(x,y)) cos(xθ +α(x,y)) 01x2

]
In the experiments, the sensor has a maximum range of

10 meters and its field of view is 120 degree. We assume
that the sensor is able to distinguish targets or obstacles.
x0 is randomly initialized within the given map and the
position components of y0 is also randomly initialized within
the maximum offset of 8 meter from the initial robot state.
The initial velocity is 0.0. The belief target state follows
Gaussian. In order to design the experiment more realistic,
the mean position is randomly initialized to have the max-
imum offset of 5 meter from the target and the covariance,
Σ, is initialized to 30.0I4. We use τ = 0.5 and a constant
observation noise, V = diag(σr,σb) with σr = 0.2,σb = 0.01.

For the Q-network, we used 3 layers with 128 units and
a learning rate 0.001 for a single target, and 3 layers with
256 units and a learning rate 0.0005 for multiple targets.
The target Q-network is updated every 50 training steps. The
batch size and the replay buffer are 64 and 1000, respectively.

All experiments are obtained with 5 different random
seeds for the learning algorithms and 10 random seeds for
ARVI. The results are plotted in Fig.2. The darker lines show
the mean over seeds and the shaded areas represent standard
deviation. The current learned policies from ξt were semi-
greedily evaluated with ε = 0.05 for 5 times after trained
with a single trajectory (every two trajectories for multi-
target experiments). The curves are smoothed by a moving
average with window 4.

A. Single Target

We tested the single target problem in an empty domain
(100×100[m2]) where there is no obstacle, and therefore, the
behavior of the target is more predictable (as there is far less
reflection behavior of the target with noise). We also tested a
domain with four obstacles as in the first row of Fig.3. The
noise parameter for the target model is set to q = 0.01 for
both cases and the length of a trajectory is T = 100 steps.

The first plot in Fig.2 shows that both ADFQ with TS
and ADFQ with ε-greedy achieved the baseline performance
after learning with 13 trajectories. ADFQ-TS showed a more
stable performance outperforming the baseline toward the
end. Since the belief state mean can quickly diverge from
the true state while its covariance is quite small, exploration
methods based on state-action uncertainty such as Thompson
sampling leads a better performance than ε-greedy. ADFQ
outperformed the baseline in the obstacle environment as
well. An example case of a learned policy by ADFQ-TS is
presented in the first row of Fig.3. As shown, even though it
missed the target at t = 15 and the belief became inaccurate,
it quickly adjusted its direction and followed the target
keeping it in its range.

DQN and Double DQN failed to reach the baseline
performance in both environments. Although their perfor-
mances increased with the number of learning trajectories
in the empty environment, their performances dramatically
dropped in the obstacle environments. This is due to the high
stochasticity of the environment as the target changes its path
abruptly with noise when it faces an obstacle.

B. Multi-Target
We tested the cases of two and three targets in an empty

domain (27× 27[m2]) with q = 0.001. A longer trajectory,
T = 150, is used in order to evaluate cases where targets
diverge and a robot has to keep traveling to minimize the
covariances. In both N = 2 and N = 3, ADFQ algorithms
outperformed or achieved the baseline performance as shown
in Fig.2. Additionally, the baseline showed large variances
in its performance in both cases while ADFQ algorithms
showed fairly lower variances across the trials.

The most challenging part of these experiments is when
not all targets are observable at time. The results indicate
that the RL methods can learn a policy which makes a near-
optimal decision on when to keep traveling to track all the
targets or when to exploit to close targets. The learned policy
of ADFQ-TS is demonstrated in Fig.3. When the targets
are not simultaneously observable but not too far from each
other, the robot must choose to visit each target sequentially
to maintain its belief distribution for every target.

VI. CONCLUSIONS
In this paper, we introduced a novel RL framework for

the active information acquisition problem and developed
a detailed approach for solving the active target tracking
problem with a Q-network-based RL algorithm. The experi-
mental results demonstrated that the RL-based methods can
achieve or sometimes outperform the search-based planning
algorithm. As an initial approach, we used the Kalman filter
with a known linear target model in our experiment. Future
work will leverage various existing techniques in Bayesian
filtering and state estimation within the framework in order
to use nonlinear or unknown target models. Additionally,
since ADFQ maintains belief distributions over Q-values, we
further intend to extend our approach by propagating target
state uncertainty to Q-belief distributions.

REFERENCES

[1] N. Atanasov, J. Le Ny, and G. Pappas, Distributed Algorithms for
Stochastic Source Seeking with Mobile Robot Networks, ASME
Journal.

[2] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, Mutual informa-
tion methods with particle filters for mobile sensor network control,
in Proc. the 45th IEEE Conf. on Decision and Control, 2006

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller. Playing atari with deep reinforcement
learning. In Advances in Neural Information Processing Systems
(NIPS), Deep Learning Workshop, 2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, Human-level control through deep
reinforcement learning, in Science, 518:529-533, 2015.

[5] H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning, the 30th AAAI Conf. on Artificial Intelligence,
2016.

[6] H. Jeong, C. Zhang, G. J. Pappas, and D. D. Lee, Assumed Density
Filtering Q-learning, the 28th Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2019.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, Planning and act-
ing in partially observable stochastic domains, Artificial intelligence,
1998, 101(1-2), pp. 99-134.

[8] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441-
450, 1987.

[9] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey, Learning to gather
information via imitation, In 2017 IEEE Int. Conf. on Robotics and
Automation (ICRA), 2017, pp. 908-915, IEEE.

[10] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1988.

[11] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in robotics:
A survey, Int. J. of Robotics Research, July 2013

[12] J. Peters, S. Vijayakumar, and S. Schaal, Reinforcement learning for
humanoid robotics, in Proc. of the 3rd IEEE-RAS Int. Conf. on
Humanoid Robots (HUMANOIDS), Karlsruhe, Germany, 2003, pp.
1-20

[13] H. Jeong and D. D. Lee, Efficient learning of stand-up motion for
humanoid robots with bilateral symmetry. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016, pp. 1544-1549, IEEE.

[14] V. Kumar, D. Rus, and S. Singh, Robot and Sensor Networks for First
Responders, IEEE Pervasive Computing, vol. 3, no. 4, 2004.

[15] R. Sim and N. Roy, Global A-Optimal Robot Exploration in SLAM,
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2005,
IEEE.

[16] V. Karasev, A. Chiuso, and S. Soatto, Controlled Recognition Bounds
for Visual Learning and Exploration, in Advances in Neural Informa-
tion Processing Systems (NIPS), 2012.

[17] N. Atanasov, B. Sankaran, J. Le Ny, T. Koletschka, G. Pappas, and K.
Daniilidis, Hypothesis Testing Framework for Active Object Detection,
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2013,
IEEE.

[18] P. Ondruska and I. Posner, Deep tracking: Seeing beyond seeing
using recurrent neural networks. In Thirtieth AAAI Conf. on Artificial
Intelligence, 2016.

[19] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, Online
multi-target tracking using recurrent neural networks, In 31st AAAI
Conf. on Artificial Intelligence. 2017.

[20] W. Luo, P. Sun, F. Zhong, W. Liu, and Y. Wang, End-to-end
active object tracking via reinforcement learning, arXiv preprint
arXiv:1705.10561, 2017.

[21] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P.H. Torr,
End-to-end representation learning for correlation filter based tracking,
in Proc. of the IEEE Conf. on Computer Vision and Pattern Recogni-
tion, pp. 2805-2813, 2017.

[22] D. Zhang, H. Maei, X. Wang, and Y.F. Wang, Deep reinforce-
ment learning for visual object tracking in videos, arXiv preprint
arXiv:1701.08936, 2017.

[23] J. Choi, J. Kwon, and K.M. Lee, Real-time visual tracking by deep re-
inforced decision making, Computer Vision and Image Understanding,
171, pp. 10-19, 2018.

[24] B. Schlotfeldt, B., D. Thakur, N. Atanasov, V. Kumar, G. J. Pappas,
Anytime planning for decentralized multirobot active information
gathering, IEEE Robotics and Automation Letters, 3(2), pp.1025-1032,
2018.

[25] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, Backprop kf: Learning
discriminative deterministic state estimators, In Advances in Neural
Information Processing Systems, pp. 4376-4384. 2016.

[26] H. He, P. Mineiro, and N. Karampatziakis, Active information acqui-
sition, arXiv preprint arXiv:1602.0218, 2016.

[27] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, Bridging the gap
between value and policy based reinforcement learning, In Advances
in Neural Information Processing Systems, pp. 2775-2785. 2017.

[28] G. Hollinger and G. Sukhatme, Sampling-based Motion Planning
for Robotic Information Gathering, in Proc. Robotics: Science and
Systems (RSS), 2013

[29] S. Gu, E. Holly, T. Lillicrap, and S. Levine, Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,
IEEE Int. Conf. on robotics and automation (ICRA), pp. 3389-3396,
2017

[30] A. Singh, A. Krause, C. Guestrin, and W. Kaiser. Efficient informative
sensing using multiple robots, J. Artificial Intelligence Research,
34:707755, Apr. 2009.

[31] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias. Efficient
multi-robot search for a moving target, Int. J. Robotics Research,
28(2):201219, Feb. 2009.

http://arxiv.org/abs/1705.10561
http://arxiv.org/abs/1701.08936
http://arxiv.org/abs/1602.0218

	I Introduction
	II Background
	II-A Active Information Acquisition
	II-B Reinforcement Learning

	III RL Framework for Active Information Acquisition
	IV Learning Q-network for Active Target Tracking
	V Experiments
	V-A Single Target
	V-B Multi-Target

	VI CONCLUSIONS
	References

