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Abstract— Caging is a promising tool which allows a robot
to manipulate an object without directly reasoning about the
contact dynamics involved. Furthermore, caging also provides
useful guarantees in terms of robustness to uncertainty, and
often serves as a way-point to a grasp. However, caging is
traditionally difficult to integrate as part of larger manipulation
frameworks, where caging is not the goal but an intermediate
condition. In this paper, we develop a convex-combinatorial
model to characterize caging from an optimization perspective.
More specifically, we derive a set of sufficient constraints to
enclose the configuration of the object in a compact-connected
component of its free-space. The convex-combinatorial nature
of this approach provides guarantees on optimality and con-
vergence, and its optimization nature makes it versatile for
further applications on robot manipulation tasks. To the best
of our knowledge, this is the first optimization-based approach
to formulate the caging condition.

I. INTRODUCTION

A cage is an arrangement of obstacles that bounds the
mobility of an object. The connection of cages to invariant
regions and robustness has attracted the attention of the
manipulation community for a long time. A cage can be used
as a waypoint to a grasp [1], [2], providing a guarantee that
the object will not escape in the process. A cage can also be
used to manipulate without rigid immobilization, alleviating
common issues from jamming, wedging, and general over-
constrained interactions (e.g. turning the handle of a door).

The reality, however, is that the practical applications of
existing caging algorithms have been limited. In this work
we propose to rethink the conventional topologic/geometric
approach to characterize caging—focused on developing
complete algorithms to analyze the configuration space of an
object surrounded by a set of obstacles. Here, we develop an
approach aimed at the synthesis of manipulation strategies
that can incorporate and exploit the caging condition, the
same way that we normally use grasping for immobilization.

Figure 1 describes the motivation and the long-term goal
of this project: How do we synthesize a manipulation plan
to cage an object while exploiting environment constraints
and respecting the kinematic constraints of the robot? The
work in this paper is a first step in that direction. We present
a reformulation of the caging condition as a set of mixed-
integer convex constraints that provide:
• Versatility to incorporate the caging condition in the

context of a larger manipulation planning framework.
• Guarantees of the optimization framework that steams

from the convex-combinatorial nature of the model. If

Fig. 1: Examples of caging in the context of robot manipulation:
trapping against a wall and caging under kinematic constraints.

a cage exists within the set of conditions described by
the mixed-integer problem, the optimization algorithm
will find it. If it does not exist, it will report so.

These come at the expense of exponential bounds on
computation time, and resolution completeness of the algo-
rithm. In particular, this paper focuses on caging polygonal
objects—described as the union of convex polygons—with a
manipulator described by an arbitrary number of point fingers
in the plane. To do this, the proposed approach provides a
set of sufficient conditions to cage such object. The main
contributions of this paper are:
• Cage optimization algorithm based on the proposed

convex-combinatorial caging model. This can be com-
puted efficiently with off-the-shelf mixed-integer solvers
yielding global convergence guarantees.

• Validation of the proposed cage synthesis algorithm on
random planar polygons.

• Application of the caging algorithm to find cages
that either exploit the environment (walls) or take into
account kinematic limits in finger motions.

In Section VII, we discuss the possibility of using the
approach to synthesize cage-reach-grasp motions with formal
guarantees of convergence, and its application to design
gripper kinematics and shapes defined by a set of points.

A. Related Work

Algorithms for caging have been studied since Rimon and
Blake [3] introduced this notion to the robotics commu-
nity. The first caging algorithms proposed were focused on
characterizing the set of point-finger configurations capable
of caging a polygon [3], [4], [5]. Since then, cage-finding
algorithms have continuously improved. Some works have
formulated the problem in contact0space, providing better
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computational complexity [6], [7]. Some other works have
shown how tools from computational topology can be used
to find and verify cages on 2D and 3D objects [8], [9].
Furthermore, the work of Varava and Carvalho et. al. [10]
showed how sampling-based methods could efficiently find
cages of 2D and 3D objects with arbitrary manipulator
geometries. In similar spirit to our work, Pererira et. al. and
Varava et. al. [11], [12] showed the application of caging as
a tool for multi-robot transportation of polygonal objects.

In comparison to prior work, our model is less com-
putationally efficient and more limited, as the conditions
derived are only sufficient to guarantee a cage. However,
this approach offers significantly more flexibility, as it can
be easily included as constraints within trajectory or shape
optimization, while still characterizing a large set of cages.

II. PRELIMINARIES

In this section, we introduce the notation that we will use
through this paper and define the idea of caging.

A. Notation

Given an object O on a workspace W , we will denote
its Configuration Space [13] as C ⊆ SO(2). We refer to a
plane of C with fixed orientation component θs as a C−slice,
denoted C(θs). We refer to an arrangement of point fingers
as the manipulator M. We assume M has N point fingers
with positions M = {p1, . . . ,pN} ∈ WN .

At each C−slice, we refer to the set of configurations
where the object penetrates a finger as C-obstacles. Then, the
free-space of the object Cfree(O) corresponds to the space
C not intersecting any of the C-obstacles, namely the set
of object configurations that does not penetrate any of the
fingers.

B. Caging

The caging problem, based on the original formulation by
Kuperberg [14], can be stated as:

For a planar object O at configuration q = [qx, qy, qθ]
T

and a manipulatorM, find a configuration ofM such that q
lies in a compact connected component of Cfree(O), denoted
as Ccompactfree (O).

This formulation of the problem, based on topology, is
equivalent to the more traditional geometric condition that
there exists no continuous path that will drive the object
arbitrarily far from the manipulator, as illustrated in Fig. 2.

III. APPROACH OVERVIEW

In this section, we provide an overview on the problem
of caging a planar object and describe the conditions to
characterize it.

Fig. 2: Overview of the conditions for caging. Each plane shows
a C−slice during a cage between two limit orientations (blue) with
a compact-connected component of free-space (red). Note that in
the limit orientations the object is constrained to a line segment of
translational motion by the C−obstacles. Also, the object is only
caged if the component remains compact and connected between
slices.

A. Conditions for Caging

The set of compact-connected components in free-space
can be too general to explore. Here, we introduce a set
of conditions that characterize a rich set of cages, where
the component Ccompactfree (O) has a single local maxima and
minima over the orientation axis. For this, let us first define
the idea of limit orientations:

Definition 1 (Limit Orientation): Given a compact-
connected component A ∈ C, its limit orientations θU , θL
can be defined as θU = supθ∈A θ and θL = infθ∈A θ.

Then, the following conditions generate any component
Ccompactfree (O) with at most two global limit orientations:

1) The component is bounded in the orientation axis by
two limit orientations, otherwise it infinitely repeats
along such axis with period 2π.

2) In all C−slices, between two limit orientations when
these exist, there is a loop of C−obstacles enclosing
a segment of free-space. Such loop encloses q at the
slice with θs = qθ (as illustrated in the middle column
of Fig. 2). These loops must be connected, enclosing a
component of free-space in between adjacent slices.

3) At the C−slice of the limit orientations, if these exist,
the free-space component enclosed by the loop has
zero area. Thus, getting reduced to a line segment or
a singleton.

Fig. 2 illustrates some slices between limit orientations
where these conditions hold. While these conditions might
seem restrictive, these can be used to represent a very large
set of cages. We provide a geometric intuition of the different
type of cages we can characterize in Fig. 3. We will derive
a set of convex-combinatorial constraints to impose these
conditions and yield an optimization formulation of the
caging problem.

B. Model Overview

We make the following assumptions:
1) The object O is represented as the union of M convex

polygons, with a boundary that consists of L facets.
2) The manipulator M is represented as a set of N point-

fingers.



To include the conditions above, we discretize C in S C-
slices, similar to [10], and impose that the manipulator
bounds a component of free-space in each slice. Moreover,
we make sure that the cage is not broken between slices by
imposing continuity conditions between slices.

We note that formulating this model requires continuous
variables to represent the position of the manipulator, and
binary variables to represent the discrete connectivity relation
between C-obstacles. Therefore, we introduce two sets of
constraints to our model:

• At each slice: We require that a subset of the
C−obstacles forms a loop around the configuration
of the object [qx, qy]T . This ensures that there is a
compact-connected component at each slice, as illus-
trated in Fig. 4.

• For all orientations: we constrain that either the object
is caged for all 360◦ or that Ccompactfree (O) is bounded
by two limit orientations. Moreover, we require that
the loop at each C−slice maps continuously, without
breaking, into the loop of its adjacent C−slices. Through
this, we can ensure that all components are connected
between C−slices, forming the component Ccompactfree (O)
that encloses q.

In sections IV and V, we will show that these conditions are
sufficient to guarantee that q is caged byM. Furthermore, the
use of convex-combinatorial constraints allows us to provide
guarantees in terms of optimality and convergence.

IV. CONSTRUCTING LOOPS AT EACH SLICE

Here, we describe the set of conditions required to create a
compact-connected component of free-space at one C−slice.
For notation convenience, we will refer to the free-space of
C(θs) as Cfree(O, θs), and its enclosed component, where
q is, as Cc(O, θs). To create Cc(O, θs), we require that all
the C−obstacles in C(θs) form a loop. Since the object
is decomposed into M convex polygons, the problem of
enforcing such a loop reduces to constructing a directed
graph with the edges representing polygons intersection
between C-obstacles. Finally, we must also require that such

(a) (b) (c)

Fig. 3: Different types of compact connected components. The
conditions described in this paper can fully describe components (a)
and (b), as both of these components have a pair of limit orientations
where the component opens and closes (green stars). However, these
conditions are not sufficient to create a cage with component (c),
as there are two local minima in the orientation of the component
(red stars).
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Fig. 4: The caging loop for a slice with three fingers in W (left),
C(θs) (center) and its corresponding connection graph (right)

loop encloses the configuration [qx, qy]T at the slice with
fixed orientation qθ.

1) Existence of a loop: In order to compose an enclosing
piecewise polygonal loop, we must determine which of the
polygons on each C−obstacles are part of the loop and their
direction in the directed graph. To this end, we represent
each polygon as a node, and add an edge between each
pair of polygons that must intersect. Fig. 4 illustrates this
construction. For now, and for simplicity, we assume that all
fingers must be part of this loop.

For each finger, let us introduce a binary matrix Hn ∈
{0, 1}M×M , where Hn(i, j) = 1 if the ith polygon on
C−obstacle n intersects with the jth polygon on C−obstacle
n + 1. Mathematically if we denote the ith polygon in the
nth finger as Pi,n, then we impose the constraint:

Hn(i, j)⇒ ∃ point rn ∈ R2 s.t. rn ∈ Pi,n∩Pj,n+1 (CT1)

where we transcribe the ⇒ (implies) operator as linear
constraints through big-M formulation1 [15]. Furthermore, to
make each finger a part of the loop, we enforce the constraint:∑

i,j

Hn(i, j) = 1, ∀n (CT2)

meaning that there is one and only one directed edge from
C-obstacle n to C-obstacle n + 1. Since these connections
are enforced for n = 1, . . . , N , there is a directed loop of
obstacles in C(θs). In addition to using Hn to represent the
connectivity between two different C-obstacles, we introduce
a matrix Gn ∈ {0, 1}M×M to denote if an edge in the
C−obstacle connection graph is in the loop. In the case that
Gn(i, j) = 1 the graph has an edge going from polygon i to
polygon j on the nth C−obstacle. Then, the fingers create a
closed loop if:

Hn−1(i, j)⇒ ∃k, l s.t. Gn(j, k) +Hn(j, l) = 1 (CT3)

Gn(p, q)⇒ ∃s, r 6= p s.t. Gn(q, r) +Hn(q, s) = 1 (CT4)

(CT3) and (CT4) combined guarantee that for each node with
an inbound edge, there is one and only one outbound edge,
thus we have a loop in C(θs). In the special case of a two-
finger manipulator, since Hn,n+1 and Hn−1,n have the same
value, we need to further constrain that l 6= i in (CT3).

1For a binary B, we have B ⇒ Ax ≤ b is equivalent to Ax ≤ b +
M(1−B) with M being a large positive number. This allows us to represent
conditionals within the optimization model through linear constraints.



2) Configuration enclosing: The previous constraints
ensure the existence of a compact-connected component
Cc(O, θs) in each slice. It is important to note that the
enclosing loop implies the existence of piecewise-polygonal
curve that lives in the C−obstacles. In our case, we define
this curve by connecting points that live in the intersection of
polygons in the loop. However, this does not guarantee that q
is contained in Ccompactfree (O). For this, we note that enclosing
q in Ccompactfree (O) requires enclosing [qx, qy]T in Cc(O, qθ).
In order to incorporate this constraint to the model, we
introduce Remark 1:

Remark 1 [16]: If a linear ray that originates from a
point r has an odd number of intersections with a closed
curve, then the point r falls in the interior of such curve.

This remark is valid except for degenerate cases, when the
ray is parallel to a segment of the curve or the area enclosed
by the curve is a single point. However, such scenarios can
be easily avoided in our analysis, as the enclosing curve
is contained within the C−obstacles. To incorporate this
condition, we constrain the number of intersections between
the ray and the line segments as a convex-combinatorial
constraint. For this, we decompose the area that covers each
possible line segment of the loop into 4 square regions,
parallel to the ray, and introduce a binary decision matrix
F ∈ {0, 1}N×M×5, such that:

1) F (n,m, 1) through F (n,m, 4) assign [qx, qy] to one
of four rectangular regions enclosing the line segment
starting in the mth polygon of the nth finger.

2) F (n,m, 5) is set to 1 if the mth polygon of the nth
finger is not part of the loop.

Here, we assign F (n,m, 1) to the region that is parallel
to the ray and below the line segment. Because of this,
F (n,m, 1) = 1 implies that the ray intersects the segment. A
visualization of this can be seen in Fig. 7. Then, we introduce
the following pair of sufficient constraints:{∑

n,m F (n,m, 1) is an odd number∑5
i=1 F (n,m, i) = 1 ∀n,m

(CT5)

To transform (CT5) into a set of linear constraints, we
introduce the following lemma:

Lemma 1. The summation of binary variables
∑n
i=1 bi is

an odd number if and only if b1 XOR b2 . . . XOR bn = 1.
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Fig. 5: A point lies within a loop if a ray originating from that
point has an odd number of intersections (blue) with the edges of
the loop. Left: the point lies inside the polygon, and the ray has an
odd number of intersections (one). Right: the point lies outside the
polygon, and the ray has an even number of intersections (two).

Fig. 6: Region assignment of q (red dot) depending on the value of
F (n,m) and the direction of the linear ray (red arrow), for a line
segment of the enclosing loop (blue). Note that, since the region is
parallel to the ray, the ray always intersects the segment when q is
assigned with F (n,m, 1).

Where the XOR operator can be transcribed as linear
constraints on the binary variables [17].

3) Non-Penetration Constraints: Additionally, we must
prevent the fingers from penetrating the object. For this, we
partition the 2D collision free workspace W \ O into a set
of Nr convex regions, represented as:

Ri = {x ∈ R2|Aix ≤ bi}

and then constrain that each pn finger lies in one of these
regions. To do this, we introduce a binary decision matrix
R ∈ {0, 1}Nr×N such that:

Rr,n ⇒ Aipn ≤ bi and
Nr∑
r=1

Rr,n = 1,∀n (CT6)

Where we again transcribe the⇒ operator via big-M formu-
lation. This ensures that each finger lies in only one of the
regions. Note that this constraint also ensures that q lies in
the interior of Cc(O, θs) without penetrating any C−obstacle.
Sect. V discusses how these loops must interconnect in
between slices to create a compact-connected component
Ccompactfree (O) in C.

V. CONSTRUCTING A CAGE FROM LOOPS

In order for an object to be caged, the compact-connected
components formed at the C−slices must be interconnected,
such that there are no escaping paths in the space between
slices. Furthermore, we always have that Ccompactfree (O) either
repeats periodically in the orientation dimension or closes at
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Fig. 7: Collision-free region assignment of the fingers. In this
example, the complement of the object is segmented in Nr = 4
polygonal regions R1, . . . , R4 where the fingers p1, p2 must lie.
Note that a finger can lie in two different regions simultaneously,
despite only being assigned to one.



two points (limit orientations), in order to remain compact.
In this section, we present a set of sufficient conditions that
guarantee that the object configuration is caged in all C.

1) Limit Orientations: For most objects of interest, caging
in all 360◦ cannot be achieved, except when a manipulators
with sufficiently many fingers fences the object. Hence, in
order to create Ccompactfree (O), the model must determine if
there is a pair of limit orientations θl, θu. To account for
this, we introduce a binary variable Θ ∈ {0, 1}S , such that
Θs = 0 implies that the sth slice has not reached a limit
orientation and, thus, the C−obstacles must create a loop.
Then, we introduce the following constraint:{

1−KΘs ≤
∑Nr

r=1Rr,n(θs) ≤ 1 +KΘs

1−KΘs ≤
∑
i,j Hn(i, j, θs) ≤ 1 +KΘs

(CT7)

Where K ∈ R is a big number, this ensures that a loop is only
enforced in the space between two limit orientations when
these exist. We constrain that Θs = 1 when the component
of Cfree(O) in the slice gets reduced to zero area. Moreover,
assuming slices are ordered by increasing orientation, we add
the condition that Θs = 1 implies Θs+1 = 1 for positive
orientations and Θs−1 = 1 for negative ones. Reaching this
zero-area condition is dependent on the number of fingers
and the L facets of the object. As illustrated in Fig. 8, some
scenarios when this zero-area condition is met are:

1) Two fingers: the fingers make contact with two parallel
but opposite facets of the object, as in Fig. 2.

2) Three or more fingers: either three of the fingers are in
contact with non-parallel facets or four of the fingers
are in contact with non-co-directional facets.

Here, opposite refers to facets with parallel normals and
opposite direction. It is important to note that, since the
fingers create a loop that encloses q, concave vertices in the
object can be considered opposite and non-parallel to any
facet with 180◦ difference to the arc of the vertex.

Finally, in order to determine when a limit orientation has
been reached, we introduce a binary matrix Ts ∈ {0, 1}N×L,
at each slice, such that Ts(n, f) = 1 implies that the
nth finger be in contact with facet f at the sth slice, for
some position of the object within the slice. Depending on
the object and the number of fingers, the T matrix will
be constrained to determine when a limit orientation has
been reached. Denoting LO as the set of facet assignments
resulting in a limit orientation, we constrain:

Ts ∈ LO ⇒ Θs = 1 (CT8)

this constraint guarantees that the model will detect if two
limit orientations are necessary. Examples of some contact
conditions required to reach a limit orientation can be seen in
Fig. 8. As a reference, the idea of caging between two limit
configurations can be seen as equivalent to finding a critical
point of the inter-finger distance function in the contact space
of the object [6], [7].

 

 

Fig. 8: Two examples of limit orientations being reached for two
fingers (left: two opposite facet) and three fingers (right: three non-
parallel facets).

2) Continuous Boundary Variation: The constraints de-
scribed above ensure that there is a compact-connected
component of free-space at each slice and that q lies in one
of them. However, escaping paths might still exist in the
space between slices, where orientation changes along with
the motion [2]. To avoid this, we propose a set of sufficient
conditions, which ensures that the union of all components
Cc(O, θs) encloses q in a compact-connected component of
free-space. First, we define the notion of a boundary:

Definition 2 (Component Boundary): Given a component
C ∈ C, we define its boundary ∂(C) ∈ ∂C as the intersection
of the closure of C and the closure of its complement, where
∂C is the set of all boundaries.

Let us define the map f : C×R→ ∂C , which parametrizes
the boundary of a component C with respect to a variable
θ. Next, we introduce the function δH : ∂C × ∂C → R
which returns the Hausdorff distance [18] between two
boundaries C1 and C2. Finally, we say that the boundary
of C varies continuously with respect to a variable θ if
lim

∆θ→0
δH(f(C, θ), f(C, θ + ∆θ)) = 0,∀θ. Then, let us

propose Theorem 1:

Theorem 1 (Continuous Boundary Variation). Given
a pair of C−slices with compact-connected components
of free-space Cc(O, θs), Cc(O, θs+1), if the boundary
∂(Cc(O, θs)) varies continuously w.r.t. orientation changes
until ∂(Cc(O, θs+1)), then there will exist a compact-
connected component in the free-space bounded by the
slices, intersecting C(θs) and C(θs+1) in Cc(O, θs) and
Cc(O, θs+1) respectively.

A proof of this theorem is sketched in Appendix A. By

Fig. 9: If the connecting polygons have a continuous intersection
(blue) between adjacent slices, there is a continuous variation of
the compact-connect component Cc(O, θ) (red).



(a) The polytopes rotate to the light
colored orientation. The trajectory
of the intersecting point x is an arc.

(b) Arc observed from Pi,n’s
coordinate. The arc is en-
veloped by a triangle.

Fig. 10: In order to avoid that the loop breaks between slices, we
require the polygons always intersect at a point x during rotation.

applying Theorem 1, we can guarantee that the loops defined
at each slice form a compact-connected component of free-
space, as long as their boundaries vary continuously between
adjacent slices. To include this condition within the model,
we introduce lemma 1:

Lemma 1. For a pair of C−slices C(θs), C(θs+1) contain-
ing a closed loop of C−obstacles, with intersections between
polygons Pi,n and Pj,n+1, if there exists a point (fixed
to Pj,n+1) that remains in each intersection Pi,n

⋃
Pj,n+1

during the rotation from slice s to s + 1, then there is a
continuous boundary variation of the loop between C(O, s)
and C(O, s+ 1).

A detailed proof of lemma 1 will be included in an
extended version of this paper. Note that, since rotations map
the C−obstacles continuously along the θ axis, this condition
forbids the component between each pair of slices to dis-
continuously separate in several disconnected components
or become unbounded.

As consequence of lemma 1, A simple convex constraint to
ensure continuous boundary variation, is to require the same
discrete connections between polygons in adjacent slices, as
shown in Fig. 9. To model this constraint, for each pair
of C − obstacles we denote the intersecting point as x,
and introduce its position fixed to Pj,n+1 as new decision
variable j,n+1x. Here, the left superscript j,n+1 denotes the
position is expressed in the local coordinate of Pj,n+1. We
first impose the constraint:

j,n+1x ∈ Pj,n+1 (CT9)

such that this point is always in Pj,n+1. On the other hand,
to constrain that point x remains in Pi,n during rotation
θ ∈ [θs, θs+1], we consider the trajectory of x observed in
Pi,n’s coordinate as a function of θ:

i,nx(θ) = j,n+1x+R(θ)T (cj,n+1 − ci,n)

where R(θ) ∈ R2×2 is the rotation matrix for angle
θ, and ci,n, cj,n+1 are the center of rotation for Pi,n and
Pj,n+1 respectively. Hence, i,nx(θ) is an arc on a circle, with
j,n+1x being the center of the circle, and |cj,n+1 − ci,n| the
circle radius drawn in Fig.10. Constraining point x to stay in
polygon Pi,n is equivalent to requiring this arc being in Pi,n.
Since the arc lies within the triangle formed by the two ends
of the arc (i,nx(θs),

i,nx(θs+1)) and the intersecting point

xv between two arc tangents at the two ends, a sufficient
condition of arc in the polygon is that all three vertices of
this triangle are in the polygon. The position of xv can be
computed as:

xv = (CT10)

i,nx(θs) +

(
I2×2 +R(−90◦) tan(

θs+1 − θs
2

)

)
(cj,n+1 − ci,n)

again as a linear function of our decision variables. We
activate the constraints above when the two polygons are
intersecting, as:

Hn(i, j, θs)⇒ i,nx(θs),
i,nx(θs+1), x ∈ Pi,n (CT11)

Through this constraint, we ensure that the intersecting
polygons of C(θs) remain connected for all orientations
between C(θs) and C(θs+1). Hence, the free-space compo-
nent boundary only expands or contracts continuously when
rotating between slices. Because of this, there is a single
compact-connected component of free-space that enclosed
the configuration of the object q.

VI. IMPLEMENTATION AND RESULTS

In this section we implement an optimization-based cage-
finding algorithm, derived from the proposed model. We also
validate the tractability and versatility of this formulation
by synthesizing cages for different planar geometries, under
different sets of constraints.

A. Formulating Caging as Optimization

Given an object segmented in M polygons, a manipulator
with N fingers and sampling C in S C−slices, we formulate
the cage-finding algorithm as the feasibility problem MIP1.

MIP1 : find
Θ,H,G,R,T,p

p1, . . . , pN

subject to:

1) For all S slices:
• Existence of a loop (CT1)—(CT4).
• Non-penetration (CT6).
• Limit orientation constraints (CT7)—(CT8).

2) For slice containing θs = qθ:
• Configuration enclosing (CT5).

3) Continuous Boundary Variation (CT9)—(CT11).

Through this formulation, we apply our model to find
cages on planar objects, with an arbitrary number of fingers.

1) Properties of the Model: The formulation of the
problem as a Mixed-Integer Convex Program [15] provides
several useful properties and guarantees. First and foremost,
given sufficient time, a solver can always find the global
solution to this type of optimization problem, providing a
convergence guarantee. Secondly, if a convex cost function
is added to MIP1 the solver will always converge to its
global optima (with worst-case exponential complexity).



Finally, this formulation is versatile, as additional mixed-
integer convex constraints can be added to the model [19]
without losing its properties. Because of this, if there is a
cage that satisfies the conditions presented on this paper, the
optimization problem will always find it. Similarly, if there
is no cage that satisfies the sufficient conditions we define,
the solver will always report so.

B. Model Validation

In order to test the proposed cage-finding formulation, we
transcribe the optimization problem and solve it using off-
the-self optimization software. All the tests are performed in
MATLAB R2018b, on a Intel Core i9 laptop running Mac
OS X High Sierra. We use Gurobi 8.0.0 [20] as our MIP
solver. For all tests, we set the parameter S to 9 slices, evenly
distributed in a range between −90◦ and 90◦. As a proof of
concept, Fig. 11 shows an example of a cage found with this
approach, on a non-intuitive object where increasing finger
dispersion does not guarantee a cage [2].
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Fig. 11: Example cage found with MIP1 in the workspace (left),
configuration space slice (center) and its connection graph (right).

To illustrate the capabilities of the model, we will perform
a set of tests showcasing its generality and versatility to
include additional constraints.

1) Caging random polygons: To showcase the generality
of this approach, we generate a set of 20 random polygonal
shapes – segmented in convex polygons through Delaunay
triangulation [21]. Afterwards, we call on the optimizer to
find a cage for a manipulator with four fingers. We report the
obtained cages for 10 of these shapes in Fig. 12, along with
a brief performance analysis of the optimization problem.
Our model can efficiently find the location of the fingers in
order to cage each object regardless of its shape, handling
non-convex and non-symmetric shapes. However, we note
that caging with 2 and 3 fingers usually reports infeasibility
without the appropriate slicing, as limit orientations might be
hard to find in such cases. To deal with this limitation, we
sliced the orientation component by taking into account the
shape of the object and the angular separation between facets.
When caging with four or more fingers, a cage is easily
found with uniform slicing. Also, we assess the scalability of
our model by computing a complexity index γ = M · L ·R
(# of polygons × # of line segments × # of collision-
free regions) for each object. Fig. 12 shows a histogram of
computation time (t) and performance indexes. Our results
show that computation can be generally within 1-2 seconds,
and scales well with shape complexity.

2) Caging with constraints: The optimization nature of
this approach allows us to include additional constraints in
the caging problem. For this, we study two cases of interest:
(1) Caging with kinematic constraints, (2) Caging with two
fingers against a fixed-environment (wall). In particular, we
show cages found using two hands with parallel grippers with
limited opening and cages using two unconstrained fingers
and a wall.

To model the kinematics of (1) we use the dimensions of
an ABB YuMi R© robot over a plane. These kinematics require
that each pair of fingers maintains the same vertical position,
while respecting the reachability of the hand (maximum and
minimum separation between fingers). To incorporate the
wall of (2), we distribute 5 fixed point-fingers above the
object to be caged and allow two robot fingers to move freely
over space. Other methods could also be used to model the
wall, such as computing the C−obstacle of a line segment
directly to include it as part of the loop.

Under these conditions, we optimize cages for 4 different
planar objects, shown in Fig. 13. In contrast to traditional
approaches, where these conditions would be derived ana-
lytically, we need to only include additional constraints that
describe the manipulator M into the model. We also note
that convergence to a cage is significantly faster in these
scenarios, despite having more constraints in the model. The
reason for this speed-up is that additional constraints reduce
the search space by quickly discarding infeasible branches.

VII. DISCUSSION

In this paper, we have presented a novel convex-
combinatorial model for planar caging, able to reason over
arbitrary planar polygonal shapes with an arbitrary number of
point fingers. The formulation is based on a set of sufficient
conditions which can be transcribed as constraints within an
optimization problem. To the best of our knowledge, this is
the first optimization-based approach to formulate the caging
condition. A key contribution of the work is the potential of
the formulation to be compatible with other task constraints.
For example: to include kinematics of the manipulator [19]
(e.g. coupled grippers), environment use [22] (e.g. caging
with a wall), and reaching motions [2] (e.g. cage → reach
→ grasp). Furthermore, we have shown how to implement
a cage-synthesis algorithm derived from our model, easily
solvable as an MIP. Our results showcase the versatility and
convergence properties of this approach.

a) Limitations of the model: The properties of this
model come at the expense of limitations on the cages
that are characterized by the constraints. First, the depen-
dence on slicing makes the model sensitive to the selection
of orientations used for finding a cage, particularly when
shapes are non-symmetric. Second, the enclosing constraints
(Section IV.2) are often restrictive, since [qx, qy]T might
not be able to lie in any of the 4 regions covering a line
segment, making (CT5) infeasible (e.g. caging a triangle with
3 fingers) . Finally, this model assumes all fingers are part
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Fig. 12: Synthesis of cage for a set of random polygonal objects. Our model is able to generalize across convexity and symmetry. Plots
show a performance analysis of the model: computation time histogram (top) and time vs complexity index γ (bottom).

(a)

(b)

Constraint

Fig. 13: Synthesis of cages with additional constraints: (a) Cage using two fingers and a fixed environment, a wall segment located over
the object (b) Caging with four fingers subject to the kinematic constraints of two parallel grippers.

of the enclosing loop and does not emphasize cages with a
minimal number of fingers [11].

b) Future Work: Future efforts should aim to make the
model more flexible. First, by studying how object shape
information can be leveraged for slice selection. Similarly,
it is important to explore methods to reduce the complexity
of the model, currently exponential in the worst case. This
can potentially be done through the introduction of stronger
conditions that reduce the combinatorial elements in the
formulation. Furthermore, while the conditions in this paper
are sufficient to guarantee a cage, in particular those derived
from Theorem 1, we suspect that these could also become
necessary and sufficient through a dense enough slicing.
Hence, this potential “resolution completeness” property of
the model deserves further study.

c) Source Code: The entire source code used as
part of this work is publicly available on GitHub:
https://github.com/baceituno
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APPENDIX

Proof Outline for Theorem 1. The proof of this theorem
follows the contradiction. Suppose that the component of
free-space between the slices, which can be defined as the
union K =

⋃
θ∈[θs,θs+1]

Cc(O, θ), has continuous boundary

variation with respect to the orientation component, but is
not compact or connected. Then if we analyze the boundary:

1) There must exist at least a slice in K, such that there is
no compact-component component of free-space.

2) The component must either not be compact or trans-
forms into several disconnected components after at
least some slice C(θsint

).
Therefore, we have at least one of the following scenarios:

1) The component of free-space becomes non-
compact at C(θsint

), which implies that
lim

∆θ→0
δH(∂Cc(O, θsint

), ∂Cc(O, θsint
+ ∆θ)) =∞.

2) At least a disconnected component of free-
space appears at C(θsint

), which implies
lim

∆θ→0
δH(∂Cc(O, θsint), ∂Cc(O, θsint + ∆θ)) > 0.

An illustration of these cases is shown in Fig. 14. By
hypothesis, lim

∆θ→0
δH(∂Cc(O, θ), ∂Cc(O, θ+∆θ)) = 0,∀θ ∈

[θs, θs+1]. Therefore, the non-existence of a compact-
connected component results in a contradiction, concluding
the proof. �.

Fig. 14: Cases with – (a) – and without – (b) and (c) – continuous
boundary variation used in the proof of theorem 1. All the cases
where the component becomes unbounded (b) or disconnected (c)
lose continuous boundary variation.
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