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Abstract— Distributed scalable algorithms are sought in
many multi-robot contexts. In this work we address the dynamic
optimal linear assignment problem, exemplified as a target
tracking mission in which mobile robots visually track mobile
targets in a one-to-one capacity. We adapt our previous work
on formation achievement by means of a distributed simplex
variant, which results in a conceptually simple consensus solu-
tion, asynchronous in nature and requiring only local broadcast
communications. This approach seamlessly tackles dynamic
changes in both costs and network topology. Improvements
designed to accelerate the global convergence in the face of
dynamically evolving task rewards are described and evaluated
with simulations that highlight the efficiency and scalability of
the proposal. Experiments with a team of three Turtlebot robots
are finally shown to validate the applicability of the algorithm.

I. INTRODUCTION

Teams of robots are becoming a realistic proposition for
many real-world tasks, like exploration, search and rescue,
surveillance, etc. In many cases, robots can perform only one
activity at a time, like visiting a place, following a target, or
fulfilling a role in a formation [1]. The need to assign tasks
or roles to robots is a particular form of multi-robot task
allocation, in which an optimization problem is solved. Many
approaches optimize the sum of individual costs or rewards
as a way of improving the aggregate team performance. The
static case of assigning one task per robot, with known costs
or utilities, is known as the linear assignment or maximum
bipartite matching problem. This optimization has been long
known to be centrally solvable in polynomial time with, e.g.,
the Hungarian method [2].

The increasing desire for resilient, large fleets of robots
prompts the use of distributed solutions with partial com-
munication [3]. An early example for the described problem
appears in [4], although an implicit complete communication
graph is used in this case. The DCOP framework [5] is a gen-
eral approach to distributed constraint optimization, tailored
to NP-complete problems. Distributed methods based on
auctions have also been deeply studied in this context [6]–[8].
A distributed task-swapping technique to reach the optimal
assignment was presented in [9]. A distributed Hungarian
method with convergence bounds was recently presented in
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a robotic context in [10], being applied to the multi-robot
routing with time windows variant.

In some problems, however, there is the need to continu-
ously re-evaluate the assignment of tasks to robots, in what
was termed the iterated assignment in the classical taxonomy
in [11] for multi-robot task allocation. This situation arises
in any mission where new information can be ascertained, or
that have task rewards that evolve with time. A paradigmatic
example is the multi-target tracking problem [12], in which
sensors or robots have to be assigned to uncooperative
moving targets. The effect of changing task rewards was
addressed in a centralized way by the Hungarian method
in [13]. Uncertainty in a set of static costs was treated in a
distributed fashion in [14]. A distributed method based on
sequential single-item auctions was proposed in [15].

The algorithm discussed in this work is based on a
distributed simplex initially described in [16] for static
costs and modified in our earlier work in [17] for optimal
formations. The main advantage of a simplex formulation
for this problem is that it can be easily extended to handle
time-varying costs without the need for re-initialization,
i.e., the algorithm can be run continuously and seamlessly,
updating the costs as new information arrives, providing,
at each communication round, the best possible outcome
given the current information that each robot has. Besides,
the algorithm only requires local communications and works
well with changing neighborhoods.

In particular, the contributions in this paper are: firstly, the
adaptation of our previous algorithm in [17] to a different
problem. while in that work there were no moving targets
or robots, but evolving pose estimations, herein we consider
dynamically moving entities. The former problem is simpler
in the sense that once convergence is achieved there is no
change in the optimal assignment, whereas the movement
of robots and targets makes the problem treated here open-
ended. Secondly, we add a reward-estimation capability to
reduce the impact of outdated information in the assignment
process. Finally, we deploy our algorithm in actual robots
that mimic a distributed target tracking mission with panning
cameras.

The following section describes the problem formalization.
Section III describes the static distributed Simplex algorithm.
Our algorithm to consider the dynamic assignment case is
presented in Section IV. Simulations and a real experiment
are discussed in Sections V and VI, before the conclusion.

II. PROBLEM FORMULATION

In this paper, we will consider a team of N robots,
V = {1, . . . , N}, with limited communication capabilities



modeled with a connected and undirected graph, G = (V, E).
Each robot represents a node in the graph, whereas an edge,
(i, j) ∈ E , represents the possibility of robots i and j to
exchange information. We denote by Ni the neighbors of
robot i, i.e., Ni = {j ∈ V | (i, j) ∈ E}, and |Ni| its
cardinality.

The objective of the robots is to observe a set of N
mobile targets over time. Following standard nomenclature in
classic assignment problems, we define the set of assignation
variables xij(t), i, j ∈ {1, . . . , N}, where xij(t) = 1
implies that robot i is assigned to observe target j at
time t, and xij(t) = 0 otherwise. Here, the time will be
considered discrete, understanding each time step as the time
required for a communication round of robots with their
direct neighbors.

Let rij(t) be the time-varying reward associated to assign-
ing robot i to target j at time t, which we consider that each
robot is able to compute by means of onboard perception,
e.g., by means of the blob size within an image [18]. We
do not make any assumption on the motion of the robots
or the targets, nor we assume that robots need to know
any positions. Each robot initially has access to its own
rewards. The knowledge of other robots’ rewards can only
be obtained by means of communications, which can only
be done with neighbors in G. On the other hand, we assume
an implicit common knowledge among the robots regarding
the identities of the targets, namely, target j is the same for
all robots. This can be achieved by means of a distributed
data association initialization, e.g., [19].

We also impose the typical constraints on linear assign-
ment problems, i.e., at each time each robot can only be
assigned to one target and each target should have one robot
assigned. This is formally described by

N∑
j=1

xij(t) = 1, ∀i ∈ {1, . . . , N},

N∑
i=1

xij(t) = 1, ∀j ∈ {1, . . . , N}, and

xij(t) = {0, 1}, ∀i, j ∈ {1, . . . , N},

(1)

for all t.
Therefore, the objective of the paper is to obtain, at each

time step, the optimal assignment in terms of overall reward,
satisfying the constraints given in (1). Formally speaking, this
is:

maximize
xij(t)

∑
t

N∑
i=1

N∑
j=1

xij(t)rij(t),

subject to (1) for all t.

(2)

For a given t the problem has been thoroughly researched,
as discussed in the introduction. The key assumption here
is that the rate of change of the rewards is considered to
be of the same order of magnitude as the communication
frequency, which implies that existing centralized or dis-
tributed static assignment algorithms will be only able to
provide outdated solutions, as rewards become obsolete over

time. The objective of this paper is precisely to account for
both variations in rewards and topology, looking for the best
possible assignment at each time in a distributed fashion,
exploiting the information of the past.

III. DISTRIBUTED SIMPLEX

The solution presented in this paper exploits the distributed
implementation of the simplex algorithm given in [16].
For the sake of completeness, we briefly summarize this
algorithm.

A. Centralized simplex

Assume first constant rewards, rij , describing the benefit
obtained by assigning robot i to target j. The concatenation
of all the rewards is denoted by r = (r11, . . . , rNN )T . Then,
the linear program is:

maximize
x

rTx,

subject to Ax = b,

where x ∈ {0, 1}N2

is the vector with all the decision
variables and

A =

(
IN ⊗ 1T

N

1T
N ⊗ IN−1

)
∈ R2N−1×N2

, and b = 12N−1,

code the constraints given in (1), with IN the identity matrix
of dimension N×N , 1N the column vector of dimension N
with all its components equal to one and ⊗ is used to denote
the Kronecker product. The second block of the matrix A is
of dimension N − 1, instead of N as in (1), to satisfy linear
independence of all the constraints.

Since the problem is under-constrained, there are infinite
possible optimal solutions. The idea behind simplex is to
find a partition of 2N − 1 columns of A, B∗, such that
they form a basis of the space whose associated decision
variables yield the optimal reward. The value of the decision
variables is equal to xB∗ = B∗−1b, while the rest of the
decision variables are set to zero. The algorithm finds this
base by swapping the elements that belong to xB, forcing
the overall reward to grow with each change and converging
to the optimal solution in a finite number of changes.

The particular problem of assignment is degenerated,
because there are several decision variables in the optimal
basis that take the value zero1. Thus, the algorithm is slightly
modified by the method described in [20], based on lexico-
graphic perturbation of vectors. This nonstandard simplex
method guarantees that no cycling can occur in degenerate
problems, and that for dual degenerate ones the same optimal
basis will be chosen by all robots in the distributed setup.

B. Distributed simplex

The distributed simplex algorithm defines a partition A =
{A[1], . . . ,A[N ]} ≡ A of the full problem columns so that
each robot knows initially only the columns relative to its
own reward for every target, plus a set of artificial columns
constructed using the big-M method. In our case the rewards

1Note that only N decision variables take the value of one



associated to the artificial columns need to be smaller than
any possible rewards, e.g., the value −1. From that set, an
initial basis, B[i], is computed locally by each robot using
the simplex algorithm.

At each communication round, robots broadcast to neigh-
bors only the columns forming their current optimal basis,
B[i], with their associated rewards. Then, each robot solves
to optimality the subset simplex formed by the columns it
is aware of, namely its permanent set A[i], its current basis,
B[i], and the bases received in the last round, B[Ni], using as
starting basis its current one. The algorithm is guaranteed to
converge in a finite number of communication rounds to the
optimal, same basis for all the robots [16], B[i] = B∗,∀i.

IV. DISTRIBUTED DYNAMIC SIMPLEX

Unfortunately, in our problem, the distributed simplex
described in the previous section cannot be used “as is”
because the rewards evolve with time at the same pace that
the robots exchange their basis. Moreover, there are other
important aspects that we need to consider.

First of all, since we assume a common knowledge among
robots regarding the identities of the targets, we can consider
that the matrix A is fixed and known by all the robots, even
when the rewards of other robots are still unknown to each
one. This implies that robots do not need to exchange the
columns of A that form their basis, but instead their indices,
(i, j), together with the associated rewards.

On the other hand, since the rewards evolve with time,
and each robot is only able to update the rewards associated
to its permanent set of columns, these values need to be
periodically exchanged as a part of the current optimal solu-
tion that each robot is handling. The simplest solution here
would be to broadcast to neighbors all the current rewards,
besides those available from other robots, but this would
incur in unnecessarily large bandwidth requirements. Instead,
it seems better to only send the rewards of the elements
that belong to the current optimal basis for each robot, i.e.,
send r

[i]

B[i](t) to the neighbors at each communication round,
together with the indices of those values.

However, this information is not enough for the method
to work. On the one hand, it might happen that a robot
receives two different values of the same reward, because
of the different lengths of different paths of G. On the other
hand, and more importantly, some reward rij(t) can reach
at some point a sufficiently high value that it is not further
propagated, if it leaves the optimal basis in the robot where
it has been computed. This value can prevent other columns
with current reward values from entering into the solution of
other robots, resulting in stuck sub-optimal solutions.

A. Adding time-to-live to the rewards

We address these two issues following the same procedure
that we used in a formation control problem in [17], attaching
to each reward an additional value containing the time when
it was computed. For robot k this is:

aij(t) =

{
0 ∀(i, j) ∈ A[k]

aij(t− 1) + 1 otherwise
. (3)

When a robot receives this information from its neighbors,
it chooses the newest possible reward to guarantee that the
error with respect to the current ones is as small as possible.
Additionally, in order to prevent old rewards to get stuck in
the basis of the robots, we eliminate the rewards that are old
enough, making them artificially small. We consider that one
reward is old whenever aij(t) > N , assuming the worst case,
in which the diameter of G is maximum. Thus, the rewards
of robot k at iteration t are:

rij(t) =


rij(t) ∀(i, j) ∈ B[k]

argmin a
[Nk∪k]
ij (t) (i, j) 6∈ B[k]∧

min a
[Nk∪k]
ij (t) ≤ N

−1 min a
[Nk∪k]
ij (t) > N

(4)

These rewards can be used to make an update on the local
optimal basis, solving locally an instance of the LexSimplex
algorithm, as in the original method in [16]. Then, each robot
can decide locally which target to track by finding the target
j such that xij ∈ xB[i](t) is equal to one.

B. Predicting current rewards

It is noteworthy that the rewards associated to non-
neighboring robots in (4) will not be the current rewards for
those robots but rather the rewards at time t− aij(t). Under
the assumption that rewards evolve smoothly with time,
robots can use the knowledge from previous communication
rounds to obtain an estimation of the current value of the
rewards from their past values.

The key idea is to replace the second case in (4) for another
value more representative of the current reward. In particular,
in this paper we use a simple first order extrapolation model

r̂ij(t) = rij(tij) + aij(t) (rij(tij)− rij(tij − 1)) (5)

where tij is a shortcut for t − aij(t), as an initial test of
the potential of estimation in the problem. Nevertheless, our
algorithm could use any existing estimation or extrapolation
technique [21], [22], being onboard computation the only
limitation to account for.

C. Full Algorithm

The iterative method is schematized in Algorithm 1. Note
that the whole procedure is fully distributed, in the sense
that the robots only use their own information and the
one provided by direct neighbors in the communication
graph. The communication demands of the algorithm grow
linearly with the size of the network, sending 3 data at each
communication round for each column in B[i](t): the indices
in A, the rewards and their ages. Finally, computationally
speaking, each robot needs to solve a simplex algorithm at
each round, which current processors can handle efficiently
for large values of N .

V. SIMULATIONS

To assess the performance of the allocation algorithm in
dynamically changing situations we ran randomized simula-
tions with the following parameters. The number of robots
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Fig. 1. Three consecutive simulation steps that show possible allocation status during convergence. On the left, robots (blue dots) 1 and 4 have wrongly
allocated to themselves (red dashed lines) each other optimal target (X markers). Thus, the allocation is suboptimal but all targets have an assigned tracker.
In the center, robot 4 already has found its optimal target, but robot 1 still wants the same target for itself. Thus, target 3 (yellow) has two trackers while
target 4 (red) has no assigned tracker. Finally, on the right, all targets are assigned to its optimal trackers. Gray solid lines denote communication neighbors.

Algorithm 1 Distributed Dynamic Assignment (Robot i)

1: Use simplex to obtain an initial basis, B[i], from A[i]

2: while true do
3: Compute own rewards rij , j = 1, . . . , N
4: Update age of all the rewards with eq. (3)
5: Send indices of B[i], r

[i]

B[i] and a
[i]

B[i]

6: Receive information from neighbors
7: Update rewards using eqs. (4)-(5)
8: Compute a new basis, B[i], using LexSimplex
9: Assign j such that xij ∈ xB[i] and xij = 1

10: end while

and targets was in N = {4, 8, 16}. Communication range
was always 2 units, while the scenario size was a square of
side length equal to N . Both robots and targets moved with
a random linear velocity in the 0.1 . . . 0.5 units/second range
and angular velocity in {−π/3 . . . π/3} rad/s, bouncing off
the scenario limits. Fig. 1 shows three situations in the small
simulation size. Each run lasts for 600 iterations of 0.1
seconds of simulated time. Each scenario combination was
run a hundred times, preserving the random seeds across
scenarios. Every simulated iteration corresponds too with one
iteration of Algorithm 1.

The reason for the random movement of robots is that the
objective of the simulations is to observe the evolution of the
distributed assignment. In the same way, the reward function
is not really critical; an exponentially decreasing reward was
used, defined as

rij(t) = e−||pi(t)−qj(t)|| (6)

where pi and qj are the poses of robots and targets.
Besides the effect of increasingly large N , three algorithm

variants were evaluated: the regular algorithm, including the
prediction described in Sec. IV-B (predictive in the figures),
the same algorithm without the prediction (not predictive),
and the distributed simplex from [16] (static), which does not
consider dynamic rewards. We run this last algorithm in the
following way: whenever the globally optimal assignment
changes, we reset the baseline algorithm. As long as the
optimal solution remains valid for enough iterations, the

static algorithm will converge to it. In other words, for lack
of a dynamic algorithm, a team could use a static one at
fixed time intervals, hoping that solutions arrive faster than
the ground truth changes.

Fig. 2a shows the percentage of assignments that are
optimal at the current time, both globally and for individual
robots. It is noteworthy that for large teams global distributed
optimality is elusive; this is due to the short-livedness of
the optimal assignments. Nonetheless, individual robots have
for most of the time their globally optimal target assigned.
Essentially, the solution is individually correct for most
robots, except for locally transient assignments whenever the
optimal solution changes.

Fig. 2b captures the convergence speed, in the sense of
how many communication rounds are required to re-achieve
the optimal solution when it changes. The values depicted are
the quotient between non-optimal iterations and total ground
truth changes of optimal assignment. Notice that the values
can be optimistic when ground truth optimal assignments
last for less iterations than required to converge, which will
happen more as N increases.

Finally, Fig. 2c shows the number of local simplex pivot-
ing operations in average that each robot locally performs per
iteration. In other words, it may serve as a proxy of CPU
load, which may be important in low-power devices. The
benefits of the dynamic simplex are clear, as can be expected,
besides its intrinsic anytime advantage that precludes the
need to periodically replan of a static algorithm. However,
the predictive rewards increase the pivots with N .

VI. EXPERIMENTS

A. Setup

The experiment consisted in tracking 3 people moving
freely using 3 cameras mounted on mobile robots distributed
through a laboratory, as it is shown in Fig. 42. The robots
stayed in a fixed position, so that they could rotate on their
own axes to point to the targets with their on-board cameras.

Since the computation of the rewards and the specific
perception of the targets are not the core of this paper,

2We refer the reader to the accompanying video of this experiment for a
complete visualization.
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we opted for deriving them from the relative positions
between the robots and the people. In particular, each robot
was localized using the Adaptive Monte Carlo Localization
(AMCL) algorithm and the people were localized using a
DecaWave Indoor Location system.

From these positions, the rewards were computed using
the same function as in the simulation results, decreasing
exponentially with the distance between the robot and the
target. This was carried out using the same Matlab implemen-
tation as in section V in which the distributed nature of the
system is simulated by software. The individual assignments
computed by our algorithm were fed back to each robot
which, using the pose information, rotated its camera to put
the assigned target in the center of its field of view.

The software architecture of the experiment is schematized
in Fig. 3. From the bottom up, three ROS nodes —Kobuki,
Hokuyo and Camera — manage the TurtleBot II platform
equipped with an on-board Intel NUC Core i7 computer, a
Hokuyo URG-04LX LiDAR sensor and a Microsoft Kinect
RGBD sensors used as standard RGB camera for visualiza-
tion purposes. The first two nodes provide odometry and laser
readings to the AMCL node, which is in charge of localizing
the robots on a pre-built map (obtained previously to the
experiments) provided by the Map Server node.

The target positions were provided by the DecaWave
Indoor Location system. It consists in a GPS-like system
with two categories of devices: anchors and tags. The former
must be positioned in advance in known locations, taking the

place of satellites in the analogy. The tags are instead the
mobile receptors. These compute their own position using a
triangulation technique using the time-of-flight of Ultra Wide
Band (UWB) frames exchanged with the anchors. These
positions were acquired and published by the Decawave
node, using one additional DecaWave device as listener.

Finally, the assignment computed in Matlab was published
in ROS and used to provide goal orientations to the Tracker
nodes that generate the angular velocities for the cameras.

B. Evaluation
Table I shows some of the same metrics that were used

in simulations: team and individual optimality percent, and
average iterations and wall time to convergence. Measure-
ments were taken since the first person starts to move until
the last one stops, lasting for 900 iterations and 100 seconds.
The results in the table show that the algorithm is able to
obtain both individually and globally the optimal solution
above 90% of the time.

Optimality % Convergence
Team Robot Iterations Time
91.8% 95.7% 2.0 0.22 s

TABLE I
EXPERIMENT METRICS

A practical analysis of the tracking quality shows that
the real-world behavior of the algorithm is also satisfactory.
Considering the field of vision (FOV) of the RGB camera
of the Microsoft Kinect sensor used which is of about 62◦,
the targets have been visible during about 95.15% of the
experiment. Figure 5 shows graphically this metric for one
of the robots: the blue line shows the error of the system,
obtained as the difference between the angular reference sent
to the Tracker node and the actual orientation of the robot for
the whole experiment. It is possible to observe that the graph
only sporadically exceeds the dotted lines at ±31◦ (half of
the FOV) coinciding with assignments that forced a notable
orientation adjustment.

VII. CONCLUSION

This work presented a solution to the dynamic linear
assignment problem with dynamic network topology applied



Fig. 4. Overview of the experiments. In the left figure there is a view of the experiment from an external camera with the three robots and the three
targets. For a better interpretation, each target is assigned a different color. The middle figure shows the views of the three cameras. The target assigned
to each camera is identified by the color of the outside rectangle. The right plot shows the visualization of the same instant in rviz, including links with
the assignment.
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Fig. 5. Angular error of Robot #1 during one of the experiments. The
dotted line represents the field of vision of the Kinect sensor used.

to a multi-robot tracking mission. We presented and tailored
a distributed simplex algorithm which is able to consistently
provide optimal assignments for the reward function chosen
during most of the running time in the evaluated conditions.
Whenever the optimal assignment changes, our solution
converges in a fraction of the iterations that would be needed
with a static solution approach, which in turn reduces compu-
tational load and sub-optimal assignment periods. Validation
experiments with a team of three robots serve to put in
context the time scales and demonstrate its applicability in
a real setup. As a closing assessment, the algorithm has
in our opinion many desirable properties for robotic teams:
from the theoretical point of view, it is scalable, optimal,
and exhibits fast optimal tracking capabilities. In regard to
implementation, it requires only local asynchronous message
broadcast, eliminating complex topology management, and it
is not CPU-intensive during steady-state periods.
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