
Variable Impedance Control in End-Effector Space:
An Action Space for Reinforcement Learning in Contact-Rich Tasks

Roberto Martín-Martín, Michelle A. Lee, Rachel Gardner, Silvio Savarese, Jeannette Bohg, Animesh Garg

Abstract— Reinforcement Learning (RL) of contact-rich ma-
nipulation tasks has yielded impressive results in recent years.
While many studies in RL focus on varying the observation
space or reward model, few efforts focused on the choice of
action space (e.g. joint or end-effector space, position, velocity,
etc.). However, studies in robot motion control indicate that
choosing an action space that conforms to the characteristics
of the task can simplify exploration and improve robustness to
disturbances. This paper studies the effect of different action
spaces in deep RL and advocates for variable impedance control
in end-effector space (VICES) as an advantageous action space
for constrained and contact-rich tasks. We evaluate multiple
action spaces on three prototypical manipulation tasks: Path
Following (task with no contact), Door Opening (task with
kinematic constraints), and Surface Wiping (task with continu-
ous contact). We show that VICES improves sample efficiency,
maintains low energy consumption, and ensures safety across
all three experimental setups. Further, RL policies learned with
VICES can transfer across different robot models in simulation,
and from simulation to real for the same robot. Further
information is available at https://stanfordvl.github.io/vices.

I. INTRODUCTION

Diverse control tasks in robot manipulation are naturally
addressed in different action spaces – for a specific task, one
action space might simplify learning and control more than
another. For a walking robot, it is important to directly control
contact interactions to avoid slippage [35]. In contrast, for
a tennis swing, it is important to track and control position,
velocity, and at times the acceleration of the end-effector [11].
For a surface-to-surface alignment task, minimizing the
moment around a contact is important for robustness [15].
Tackling all these tasks requires solving two subproblems:
(1) the generation of reference signals (desired contacts,
trajectories, moments, etc.), and (2) the tracking of these
signals.

Control systems for robots can be structured with two
feedback control loops that address the aforementioned
subproblems: an outer loop controller that generates a time-
varying reference trajectory, and an inner loop controller
that tracks this trajectory. Let us refer to the outer loop
as a functional map from observations to reference signals
g(o) : O→A, and the inner loop as a map from reference
signals to actuation commands f (a) : A→ U . The combined
control law becomes: u = f ◦ g(o), where o ∈ O is some
observation, a ∈A is an abstract action providing a reference
signal in some space, and u ∈ U is the control command sent
to the robot’s actuators to track this reference.

While control theory provides a vast repertoire of strategies
to map from reference signals to actuation commands (f (·)

All authors are with Stanford Artificial Intelligence Lab (SAIL), Stanford
University. A. Garg is also with Nvidia, USA. This work has been
partially supported by JD.com American Technologies Corporation (“JD”)
under the SAIL-JD AI Research Initiative. This article solely reflects the
opinions and conclusions of its authors and not JD or any entity associated
with JD.com. [robertom, mishlee, rachel0, ssilvio,
bohg, animeshg]@stanford.edu

π(o) = a
Fig. 1: Depending on the characteristics of a task, different action
spaces for policy learning are better suited than others; Variable
impedance control in end-effector space (VICES) is efficient to
learn both free-space motion and contact-rich tasks. Through the
compensation of the robot’s kinematics and dynamics, the policies
learned for one robot in simulation transfer seamlessly to other robot
instances and to the real robot.

implementations), a key problem in robotics is to generate
a viable reference in a suitable space given raw sensory
observations, i.e. modelling the function g(·) and deciding
on the interface to f (·). Once the interface has been defined
(e.g. forces, positions, contact points, etc.), the generation of
reference signals by g(·) can be addressed in multiple ways,
ranging from hand-tuned state machines [15, 41], trajectory
optimization [14, 45], imitation learning [5, 12, 19, 38], or
reinforcement learning (RL) [9, 23].

Recent research in RL has focused on “observations-to-
torques” [25], which is akin to merging f (·) and g(·) into
a single learned model. Other methods use higher-level
action spaces, such as joint space commands (e.g. position
or velocity) [7, 8, 46, 48] or task space commands (e.g.
end-effector poses, force or fixed impedance) [13, 23]. These
works typically focus on the effects of choosing an observation
space O on the learning process and rarely justify the choice
of action spaces, A. However, the choice of action space
defines the quantity around which the inner control loop is
closed, and by extension the space wherein tracking error
is minimized. This critically impacts robustness and task
performance as well as learning efficiency and exploration.

Moreover, previously proposed action spaces do not neces-
sarily create suitable references for some contact-rich tasks.
Consider the task of wiping a board, wherein a robot must
control forces in some directions (to keep pressing against
the board) and motion in others. The physical constraints of
the task dictate in which axes the robot should be stiff and in
which it should be compliant. This can often be time-varying.
Manual specification of the task constraints is not a scalable
solution for the variety of contact-rich tasks the robot may
need to perform, and for some tasks, manual specification
may be non-trivial.

This paper studies how the selection of an interface between
g(·) and f (·), (the space A) affects RL as a method to
learn the mapping from observations to reference signals,

ar
X

iv
:1

90
6.

08
88

0v
2

 [
cs

.R
O

]
 2

 A
ug

 2
01

9

https://stanfordvl.github.io/vices

g(·), and presents the first empirical study comparing the
most common choices for the A in contact-rich manipulation.
We argue that an action space that captures motion and
impedance in end-effector space can enable efficient learning
of such tasks. We evaluate joint position, joint velocity,
joint torque, joint variable impedance, as well as fixed
and variable impedance in end-effector space. The choice
of action space should be guided not only by the robot
model but also by prior knowledge of the task. Hence, we
compare action spaces across tasks with varying degrees of
task-space constraints, i.e., Path Following with no contact
(path following), manipulation of constrained mechanisms
(door opening), and continuous unconstrained contact (surface
wiping).

Moreover, we introduce variable impedance control in
end-effector space (VICES) and advocate this action space
for Deep RL algorithms applied to contact-rich manipulation.
We show that policies defined in VICES improve sample
efficiency for exploration in RL, energy efficiency, and reduce
applied forces. Thanks to the classical dynamically consistent
operational space formalism [17], we observe that policies
learned in end-effector space are also more robust to transfer
across robots with significant differences in dynamics whether
in simulation or the real world.

II. RELATED WORK

Robot Motion Control: Compliant control of a robot ma-
nipulator enables adaption to uncertainty in the environment
(e.g. exact shape of a surface, or kinematic constraints of
mechanisms) during contact-rich tasks. However, certain tasks
require direct control of the contact interactions (e.g. don’t
apply too much force when wiping a window). Previous
abstractions have divided dimensions of the task into those
that are controlled kinematically (through position and
velocity) and dynamically (through force and torques) [17, 20,
29]. However in practice, the hard decoupling requires a level
of knowledge about the task that is not always available [3].
Impedance control [10] allows safe robot contact manipulation
with an unknown environment by explicitly controlling the
amount of force the robot exerts when it deviates from a
given kinematic goal. Therefore, it alleviates the need for
perfect knowledge or hard separation between the dynamic
and kinematic task dimensions.

However, different phases of a manipulation task may
require a dynamic balancing between kinematic and dynamic
control. Existing methods address it by scheduling variable
impedance gains to maintain stability or safety for a given
kinematic trajectory [27, 30, 37]. However, these methods
assume that a reference trajectory is given.Instead, we propose
to directly predict both end-effector displacement (reference)
and variable impedance gains based on observations.
Action Spaces in Learning from Demonstrations: LfD
derives a task policy based on demonstrations provided
by some other agent(s) [2]. If the demonstrations do not
perfectly overlap, a possible approach is to derive a policy
that imitates the mean motion of the demonstration set, and
varies the stiffness according to the coherence of the trials [6,
21] or according to the force sensed during kinesthetic
replay [1]. Similar use of variable impedance as an action
representation for LfD has been demonstrated to be successful
for adaptive grasping [26], manipulation of deformable
objects [22], and co-adaptation to human workers [36].

However, the specification of impedance in the demonstration
only reflects variability in demonstrations trajectories but not
the underlying task constraints imposed by the environment
nor the force profiles required for the task. This approach
is also restricted to tasks where expert demonstrations are
feasible, and hence is limited in application to kinematic
tasks with phases that require different level of precision.
Reinforcement Learning: In the field of model-based rein-
forcement learning, Kim et al. [18] proposed a method to learn
the parameters of a variable impedance position controller in
end-effector space based on the equilibrium point formalism.
They demonstrated the convergence, robustness and energy
efficiency of their method on simulated manipulation task
with a two DoF planar arm. However, their method requires
an initial trajectory which is not always available.

Similar to our method, Buchli et al. [4] apply policy
improvements with path integrals (PI2) [44] to refine initial tra-
jectories and learn variable scheduling for the joint impedance
parameters. They demonstrate that energy consumption can
be optimized while achieving a task using variable impedance.
However, they use joint space as their action space, which
limits the transferability of the learned behaviors to different
robots and the optimality of the trajectories in the space of
the task. Also, their method requires an initial estimate of
the solution to start the iteration.

Rey et al. [34] propose an approach to simultaneously
learn kinematic trajectories from demonstrations and variable
impedance in task space from exploration. They use Gaussian
Mixture Regression as representation for the policy and
demonstrate their method in simulation and in one real-world
planar task with one single stiffness parameter. [13] proposed
a method to refine given trajectories with additional force
profiles using PI2[44] and readings from a force-torque sensor.
We aim to achieve dynamic behavior without direct force
loop control by using impedance to learn both trajectories
and variable stiffness profiles.

It is worth noting that all previous approaches have
boostrapped learning with initial demonstrations while we
explore learning from scratch to better understand how
fast policies converge. Viereck et al. [47] studied how to
incorporate control structure to learn hopping policies for
one-legged robot with RL. They use an optimal controller for
fixed task conditions and learn to imitate its policy with neural
networks to generalize to new task conditions. Interestingly,
they compare two network architectures outputting signals
in different action spaces: directly desired torques or full
feedback parameters and desired configuration, which is
transformed into torques with an analytic function. Their
experiments show that this second action space is best suited
for the hopping task with intermittent contact and adds
interpretability to the network output. We study a set of
analytic functions (controllers) that map policy actions to low
level robot commands for robot manipulation in three tasks
with different contact properties.

With related motivation to ours, Peng et al. [33] studied the
importance of different action representations in RL for the
task of locomotion. Similar to us, they aimed to shed light
on the best action space to be used, but in their case they
focused on imitation learning in bipedal motion of simulation
agents. We would like to provide similar insights in the more
complex contact-rich robot manipulation domain and include
preliminary studies of transfer to real world.

III. REINFORCEMENT LEARNING

The goal in reinforcement learning is to find a policy π ,
that selects actions based on current observations so as to
maximize the expected reward obtained from interactions
with the environment [42]. We assume that the underlying
problem can be modelled as a discrete-time continuous
Markov decision process (S, A, P , R, γ , ρ), where S is a
continuous state space, A is a continuous action space, P
is a Markovian transition model defining the probability of
transitioning between states for a given action P(s′|s,a), R
is a reward function R(s,a) = r ∈ R, γ ∈ [0,1) is a discount
factor (for infinite horizon problems) and ρ is the initial
state distribution. When π is probabilistic it represents the
probability of the action, a, given the state, s: π(a|s) = p(a|s),
and π(·|s) is the density distribution over A in state s.

Alternatively, we can assume the state is not directly
observable and learn a policy π(a|o) conditioned on observa-
tions o ∈O instead of latent states s ∈ S. Herein, the agent
following the policy π obtains an observation ot at time t
and performs an action at , receiving from the environment an
immediate reward rt and a new observation ot+1. Assuming
the policy is parameterized by θ , a policy gradient algorithm
optimizes θ to maximize that the expected future return:

θ
∗ = argmax

θ

J(θ ,ρ) = argmax
θ

E

[∑
t

γ
trt

]
(1)

These algorithms are based on the policy gradient theorem
that states: δJ

δθ
=
∑

s µπθ
(s,ρ)

∑
a

δπθ (a|s)
δθ

Qπθ
(s,a), where

µπθ
(s,ρ) =

∑
t γ tP(st = s|ρ) and Qπθ

is the action-value
function associated to the current policy πθ .

There are multiple algorithmic solutions based on the
policy gradient theorem that allow us to represent the policy
with a deep neural network, e.g. Trust Region Policy Opti-
mization (TRPO) [39], Deep Deterministic Policy Gradients
(DDPG) [28], or Advantage Actor-Critic (A2C) [31]. In our
evaluation of different action spaces for policies, we will use
Proximal Policy Optimization (PPO) [40]. The evaluation of
the sensitivity of different algorithms to the action space is
deferred to future work.

IV. ACTION SPACES IN RL FOR ROBOT MANIPULATION

Relating the formalisms we introduced in Sec. I and III,
π corresponds to g(·), the function that maps observations
to reference actions in some space A, assuming that another
function f (·) will map these actions to low level control
commands, u ∈ U .

We note that the RL algorithms in Sec. III are agnostic
to choice of action space A. In practice, the most common
A in RL for robot manipulation are a) joint torques [25],
b) joint velocities [7, 46, 48], c) joint positions [8], and
d) end-effector position [23, 43] possibly with orientation.
The most common lowest level control commands (and the
one we assume for our underlying physical agent) are joint
torques, u = τ ∈ T . Joint torques are safer than positions and
velocities for contact-rich tasks in unstructured environments,
because the forces the robot will apply on the environment
are limited by the specified desired torques.

Manipulation tasks can seldom be solved solely by only
controlling motion since there are tasks that contain contact
and force constraints (e.g. the adaptation required to manip-
ulate an articulated object or the minimum force to press

Policy
(20Hz)

Linear
Interpolator

Robot &
Environment

Controllers:

Controller
(500 Hz)

A) B)

C) D)

Joint
Torques

Joint
Velocity

Joint
Position

End-Effector
Pose

Fig. 2: We trained policies that output actions, a, on different
action spaces, A at 20 Hz; Depending on the action space, the
appropriate controller takes in the desired control signal, the control
parameters (fixed or given by the policy), and the current state
and outputs actuation commands u ∈ U at 500 Hz, which for our
robots correspond to joint torques τ . We interpolate linearly between
consecutive low-frequency policy actions to generate smoother high-
frequency controller signals (and parameters, if controlled by policy).

while we wipe a surface) [3, 17, 20, 29]. To succeed in these
tasks, the robot needs to dynamically modulate the exerted
force on the environment through the torques on each joint.

To map between action space A and actuation space U , we
can define analytic parameterized functions (i.e. controllers),
fκ(a,srobot) : A×Srobot→ U , that transform the output of the
policy from the action space to the space of control commands
depending on the current state of the robot, srobot ∈ Srobot.
The parameters of these functions, κ , can be made part of the
policy action space so that the agent has full controllability
on the manipulation behavior [4].

In the following, we will introduce the different choices
of analytic controllers fκ , we use to map policy actions from
commonly used policy action spaces into joint torques.

Joint Torques: When the policy directly outputs desired
joint torques, i.e. a = τdes, the function that transforms to
robot commands is simply (jt = joint torques):

u = f jt
κ (a = τdes) = τdes (1)

Joint Velocities: When the policy outputs reference joint
velocities a = q̇des, the function to map to joint torques is
(jv = joint velocities):

u = f jv
κ (a = q̇des,st = q̇) = kv(q̇des− q̇) (2)

where we close the loop around q̇, the current joint velocity
(state), and kv is a vector of proportional gain (parameter κ).

Joint Positions: For policies that output reference joint
positions, a = qdes, it is most straightforward to use a
proportional-derivative (PD) controller that generates torques
that increase with the joint position error and decrease with the
current joint velocity. We also remove the dynamic effects of
the mechanism by scaling the torques with the inertia matrix,
M [17]. The function to transform reference joint positions
to joint torques is thus (jp = joint positions):

u = f jp
κ (qdes,q, q̇) = M

[
kp∆q− kvq̇

]
(3)

where ∆q = qdes− q is the difference between current and
desired joint configurations, which can be used as an
alternative policy action space. kp and kv are vectors of
proportional and derivative gains (parameters κ).

End-Effector Pose: In the cases where the policy outputs
the desired 6-D pose ∈ SE(3) of the robot in end-effector
space, xdes, we can use an impedance-based PD controller
to first derive an end-effector space acceleration to move

0.0 0.5 1.0 1.5 2.0
Number of Steps (106)

0

2000

4000

6000
R

ew
ar

d

(a) Path Following

0.0 0.5 1.0 1.5 2.0 2.5
Number of Steps (106)

102

103

104

105

R
ew

ar
d

(b) Door Opening

0.0 0.5 1.0 1.5
Number of Steps (106)

0

2000

4000

6000

R
ew

ar
d

(c) Surface Wiping
Variable Impedance Control

in End-Effector Space
High Impedance Control

in End-Effector Space
Medium Impedance Control

in End-Effector Space
Low Impedance Control

in End-Effector Space Joint Velocity Joint TorqueJoint PositionVariable Impedance

Control in Joint Space

Fig. 3: Training curves for a) Path Following (free space), b) door opening (kinematic constraints), and c) surface wiping (contact rich)
tasks; The plots depict mean and standard deviation of five learning processes with different random seeds; Tasks without contact or with
kinematic constraints (Path Following and door opening) do not require variable impedance as action space to achieve high reward; In the
contact-rich task (surface wiping) the policy using variable impedance in end-effector space achieves higher reward because it learns to
adapt correctly the amount of force applied to the tasks constraints

towards the goal. To do that, xdes can be decomposed into
desired position, pdes ∈ R3, and desired orientation, Rdes ∈
SO(3). In the impedance-based PD controller, the end-effector
acceleration increases with the difference between desired
end-effector pose and current pose, p and R, and decreases
with the current end-effector velocity, v and ω .

We then compute the robot actuations (joint torques) to
achieve the desired end-effector space accelerations leveraging
the kinematic and dynamic models of the robot with the
dynamically-consistent operational space formulation [16].
First, we compute the wrenches at the end-effector that
correspond to the desired accelerations, f ∈ R6. Then, we
map the wrenches in end-effector space f to joint torque
commands with the end-effector Jacobian at the current joint
configuration J = J(q): u = JT f .

Thus, the function that maps end-effector space position
and orientation to low level robot commands is (ee =
end-effector space):

u = f ee
κ (pdes,Rdes, p,R,v,ω)

= JT
pos[Λ

pos[kpos
p (pdes− p)− kpos

v v]]+

JT
ori[Λ

ori [kori
p (Rdes	R)− kori

v ω
]
]

(4)

where Λpos and Λori are the parts corresponding to position
and orientation in Λ ∈ R6×6, the inertial matrix in the end-
effector frame that decouples the end-effector motions, Jpos
and Jori are the position and orientation parts of the end-
effector Jacobian, and 	 corresponds to the subtraction in
SO(3). The difference between current and desired position
(∆pos = pdes− p) and between current and desired orientation
(∆ori = Rdes 	R) can be used as alternative policy action
space, A. kpos

p , kpos
v , kori

p , and kori
v are vectors of proportional

and derivative gains for position and orientation (parameters
κ), respectively.

Variable Impedance End-Effector Space (VICES):
Thus far, we have defined transformations between policy

actions a and robot commands u are parameterized with κ . In
these cases, parameters κ are manually specified. We observe
that it is beneficial to augment the action space with these
parameters to give the agent full control of the behavior. As
discussed in Sec. II, this idea has been previously explored in
joint space for kp and kv [4]. In this paper, we propose to also
turn the parameters of the end-effector space function (kpos

p ,
kpos

v , kori
p , and kori

v) into policy outputs. We term this action
space as Variable Impedance End-Effector Space (VICES).

It enables the policy to learn both to predict the end-effector
pose as a trajectory reference as well as to dynamically adapt
the impedance gains along each of the six axes (rotation and
translation) according to the phase of the task.

V. EXPERIMENTS

We conduct experiments in three application domains: a)
free space Path Following [4], b) manipulation of articulated
mechanisms [18] and c) surface wiping [24, 32]. These tasks
are not only relevant applications in robotics, but also span
different levels of task constraints from free motion to highly
constrained contact-rich manipulation, which allows us to
evaluate and compare the characteristics of the different action
spaces for policy learning.

For these three tasks and for each of the evaluated action
spaces we aim to answer the following questions: is the
action space suitable for model-free RL? Is the learned policy
physically efficient? Does the policy learned with a simulated
robot transfer to a different simulated robot? Does a policy
learned in simulation transfer to a real robot? To answer these
questions we will use the following metrics and tests:
1) Sample efficiency and task completion: samples re-
quired for the policy to succeed in the task and/or converge
2) Physical efficiency: energy consumed by the robot when
using the trained policy. We assume a proportional relation-
ship between joint torques and electric power
3) Physical effort: wrenches applied to the environment by
the trained policy during contact-rich manipulation tasks
4) Transferability between robots: does a robot achieve
the task using a policy trained on a different robot?
5) Sim-to-real transfer of contact-rich policies: does a real
robot achieve the task using a policy trained in simulation?

Our control framework is outlined in Fig 2. In all exper-
iments our policies output actions (a ∈ A) at 20 Hz, while
we send joint torque commands (u ∈ U = T) to the robot at
500 Hz. To generate torque commands at a higher frequency,
the controllers use the constant desired goal from the policy
while updating the current state of the robot, srobot. In order
to ensure smooth robot commands and generated motions, in
all of our controllers we interpolate linearly between policy
commands at consecutive time steps.

A. Free-Space Motion - Path Following
Setup. In this experiment we aim to measure the properties
of different action spaces for tasks that do not involve any

contact with the environment. Agent’s goal is to follow a
trajectory in free-space passing through four via-points. The
via-points are placed on a virtual plane in front of the agent
at a constant distance along the x axis. The order and location
of the via-points are fixed. We measure success as the fraction
of the four via-points that are passed through.

This setup is a more complex version of the one via-point
trajectory of Buchli et al. [4]. This task can be solved
kinematically without impedance control. However, we found
that controlling the compliance of the robot could still offer
benefits in this setup.
Reward Model. This task is trained in two phases : a first
phase of task completion and a second phase of energy
optimization. In the first phase, the agent is rewarded only
to complete the task: to pass through the four via-points. In
the second phase, the trained models from previous phase
are further trained with the additional objective of optimizing
their motion to reduce energy consumption.

In the first phase of the experiment, the agent is rewarded
when it hits a via-point (it gets closer than dth = 5cm). To
help guide exploration, we also provide a small dense reward
inversely proportional to the distance to the next via-point
in the trajectory. Since the episodes continue after the task
is completed, a task-completion bonus proportional to the
remaining time steps was introduced to discourage the robot
from unnecessarily extending the duration of the task. We
train policies with this reward using the different action spaces
to evaluate if they can learn to follow the free-space trajectory.

In the second phase of the experiment , we explore if
the action spaces can optimize for the additional objective
of minimizing energy consumption without decreasing the
quality of the first objective (passing through the via-points).
We include an energy consumption penalty to the previously
defined reward function. To evaluate energy consumption we
assume that the torques from the motors are proportional
to electric current and the voltage is constant, and thus the
amount of electric power scales proportional to the torque
and the energy is its time integral.
Observations. We use as observations the pose and velocity
of the end-effector in the robot reference frame, as well as
the location of the via-points (and whether each one has been
checked).
Evaluation. We first evaluate each of the different action
spaces in simulation, using a simulated Panda robot agent
with five different random seeds. In the first phase of the
experiment, we measure sample efficiency (reward as function
of the iterations) and level of completion of the task (number
of via-points crossed). In the second phase of the experiment,
we also measure the total energy consumption and task
success. In both phases we evaluate how the original trained
policies transfer between robots.
Sample Efficiency and Task Completion. Fig. 3 (a) shows the
training curves for policies in each of the action spaces. All
policies except the ones that output reference joint torques
and end-effector poses resolved with a fixed low impedance
controller were able to achieve the goal of the task: checking
all 4 via-points (see Fig. 5a). For the policies that achieve
the task, the differences in reward value after convergence
is simply a consequence of the termination bonus: some
action spaces (e.g. desired end-effector poses resolved with
high fixed impedance) allow for faster motion and thus faster

0 2 4 6 8
120

140

160

180

200

N
/m

k
pos-x
p

k
pos-y
p

k
pos-z
p

0 2 4 6 8

Time (s)

−5

0

5

10

N

k
pos-x
p ·∆x

k
pos-y
p ·∆y

k
pos-z
p ·∆z

Fig. 4: Free space Path Following: Time evolution for a single
episode of a policy using variable impedance in end-effector space;
Impedance (stiffness, kp) changes as via-points are checked as
indicated by the vertical dotted lines; The four via-points of the
trajectory are aligned with the same x coordinate and thus the
policy learns to not exert force in that dimension (blue curves);
After checking a via-point, the policy increases stiffness (kp) and
combines it with the right desired displacement (kp∆x) to generate
motion in the direction to reach the next via-point of the trajectory

completion of the task
We gain insights on how an RL policy exploits VICES

for this task by observing the stiffness and damping over
the course of an episode. Fig. 4 depicts the commands (the
desired stiffness and the product of desired stiffness and delta
position) from the policy trained with VICES for one episode
after the first stage of training (before applying the energy
penalty). The policy exploits the impedance (stiffness) to
reach each via-point in the different portions of the trajectory.
As it checks each via-point (indicated by the vertical bars
in the figure), the impedance changes in the appropriate
dimension to move quickly to the next via-point with enough
stiffness to avoid overshooting.
Physical Efficiency. We evaluate the physical efficiency of
policies in different action spaces by comparing the total
energy consumption of the agents at the end of the first phase
and of the second phase of our experiment, where we add
the energy penalty. We found that the policies using variable
impedance in end-effector space as action space were the only
end-effector space policies that consistently improved energy
efficiency while maintaining task performance. Both the
medium and high fixed impedance models became unstable,
since the action space does not have sufficient degrees of
freedom to optimize the motion to reduce energy consumption
while still achieving the trajectory task. Note that since the
low impedance model never achieved the task, it was not
evaluated with energy penalties.

In joint space, the policies outputting actions in variable
impedance space were also able to reduce the energy
consumption significantly more than the controllers with
fixed impedance, as expected [4]. They also reduced more
energy than policies outputting variable impedance in end-
effector space. This reflects that the policies outputting
joint space commands resulting from the first phase of
our experiment solved the task much faster (with higher
energy consumption) than their end-effector counterparts
and therefore had much more room for improvement when
optimizing for energy efficiency. Therefore, the difference
in absolute energy optimization between policies in joint
and in end-effector space is an artifact of the difference in

0.00

0.25

0.50

0.75

1.00
T

as
k

C
om

pl
et

io
n

(a) Path Following

0.00

0.25

0.50

0.75

1.00

T
as

k
C

om
pl

et
io

n

(b) Door Opening

0.00

0.25

0.50

0.75

1.00

T
as

k
C

om
pl

et
io

n

(c) Surface Wiping
Variable Impedance Control

in End-Effector Space
High Impedance Control

in End-Effector Space
Medium Impedance Control

in End-Effector Space Joint VelocityJoint PositionVariable Impedance
Control in Joint Space

Fig. 5: Evaluation of the the task performance and transfer of policies learned on a robotic platform (Panda, dark color bars) to a different
platform (Sawyer, lighter color bars) for a) Path Following (free space), b) door opening (kinematic constraints), and c) surface wiping
(contact rich) tasks; Transfer is between simulated robots without retraining; The error bars indicate the range of percent task performance
across the 5 seeds; Policies trained in the joint torque action space and in the end-effector low impedance action space did not learn to
achieve the task in the original embodiment (Panda) and are not part of the transfer evaluation; Policies in joint space are unable to transfer
between embodiments while policies in end-effector space transfer better because they are not dependant of the robot dynamics; Policy
transfer is harder for tasks with increased contact with the environment, as the agent is more likely to hit joint limits

magnitude between end-effector space delta position limits
and joint space delta angle limits (i.e., the joint space agents
were originally allowed to move more at each time step).
Transferability. We also evaluate how policies using different
action spaces transfer in simulation from one robot to another
through zero-shot transfer from the Panda robot to the Sawyer
robot. The results are depicted in Fig. 5a. As expected, we
observed that after convergence only the policies using fixed
and variable impedance in end-effector space could transfer
directly between robots. The joint-space policies were not
able to transfer due to the very different kinematics and
dynamics of the two robot platforms. By using end-effector
space control, we factor out the effects of the embodiment
from the policy learning problem.

B. Manipulation of Constrained Mechanisms - Door Opening
Setup. In this task, the robot has to learn how to manipulate
a one DoF constrained mechanism, a door, to a specific
configuration. The agent is equipped with a two-finger gripper
it can use to hold the door handle. The door handle is a bar
attached vertically on the door leaf. The gripper is closed,
leaving a space between the fingers to cage the door handle
while still allowing for rotation between handle and gripper.

We ensure that the agent learns to interact in a controlled
and safe manner. Hence instead of maximally opening the
door, we set the goal to manipulate the door into a desired
joint configuration (θgoal = 60°). We measure success as the
fraction of the total desired joint state achieved by the robot:
1− |θdoor−θgoal |

θgoal
.

Reward Model. We reward the agent when the door joint
gets closer to the desired configuration. We provide additional
constant reward if the configuration of the door is very
close to the desired value (less than 5°). We penalize forces
and torques exerted on the environment that go beyond the
physical payload of the robot (40 N). We also penalize the
agent for colliding with the environment with links other than
the gripper and for going beyond its joint limits. For safety,
the episode terminates when joint limits are violated.
Observations. We use as observation the pose and velocity
of the robot’s end-effector in the robot reference frame, as
well as the door’s angle and angular velocity.
Evaluation: We evaluate the different action spaces in
simulation. We train an agent with a Panda robot embodiment
for each action space with five different random seeds.

Sample Efficiency and Task Completion. We first evaluate the
different action spaces on their sample efficiency of learning
the door-manipulation. The training results are depicted in
Fig. 3, middle. The task success results for the door task can
be found in Fig. 5b.

We observe that policies that output end-effector space ac-
tions (with medium, variable, and high impedance) outperform
policies in all other action spaces, in terms of achieving close
to 100% task success rate and higher rewards. In end-effector
space, the policy resolved with an impedance controller with
fixed medium stiffness and damping is able to learn the task
at a faster rate than the variable impedance controller, as it is
initialized with a suitable impedance to operate the door with
the defined friction. However, policies outputting actions in
the both aforementioned spaces reach similar rewards and
task success rates at the end of training, as the policies that
can vary impedance end up learning a suitable impedance
for the task.

While the policies resolved with an impedance controller
with fixed high impedance parameters also achieve on average
100% task success rate, their rewards are lower because they
exert higher forces in the environment that is penalized. The
policies resolved with an impedance controller with fixed
low impedance parameters are not able to learn the door
opening task because they cannot exert high enough forces to
overcome the friction of the door and move it. The policies
outputting joint velocity actions can reach up to 75% task
success, but the rewards are much lower than policies in
VICES, as they often reach joint limits while opening the
door. Policies outputting other joint-space actions (torques,
positions) are unable to learn to exert enough force to open
the door without reaching joint limits.
Transferability. We also evaluate the ability of policies in
different action spaces to transfer from the Panda robot to
the Sawyer robot. The results are shown in Fig. 5b, in
lighter colors. Transferring policies for the door opening
task is more complex than for the free-space Path Following
task because the different robots’ kinematics lead to very
different task-space limitations, as well as very different
joint limit constraints. Similar to results in the other tasks,
policies trained in joint space are unable to transfer, since the
kinematics of the robots differ substantially. The end-effector
space policies are able to transfer much more successfully,
as the end-effector space policies are able to abstract away
the dynamics and kinematics of each specific robot model.

There is still a performance drop, as the policies in end-
effector space do not learn to account for the robots’ different
kinematic constraints (i.e. joint limits).

C. Contact-Rich Manipulation - Surface Wiping
Setup. In this experiment the goal is to wipe a table whose
surface location is unknown. The agents are equipped with a
wiping tool, resembling a scrubber or a whiteboard eraser (see
Fig. 1). In the simulator, the tool is modeled as a soft material
that creates contact forces that increase proportionally to the
penetration into the tool’s surface. The material to wipe is
modeled as a set of small elements of a color different from
the table. The elements are placed randomly on the table
surface to form a continuous “stain” and are marked initially
as unwiped. They become wiped if the wiping tool passes
through them, which also causes them to disappear visually.
Note that since the elements are modeled as very thin (1 mm
height) cylinders resting on the table’s surface, the agent
needs to press the tool against the surface so as to be able to
wipe elements. Success rate is measured as the fraction of
the elements wiped. The sliding coefficient of friction of the
table acting along both axes of the tangent plane is sampled
uniformly between 1.0 and 0.1. The initial location of the
agent above the table is randomized.
Reward Model. The main reward comes from wiping off
elements. We also provide additional reward for wiping off all
the elements. Additionally, to help during the initial phases of
exploration, we give the agent a small reward for maintaining
contact with the table. Finally, since we aim to generate
safe solutions that can directly be tested on the real robot,
we slightly penalize the agent for applying forces over the
payload of the real robot (40 N), and harshly penalize the
agent for reaching joint limits or colliding with the table with
parts other than the wiping tool. If such collisions occur, the
episode ends and the tasks restarts.
Observations. There is no straightforward way to represent
the state of a wiping task. Instead, we directly use visual
observations: 48×48×3 RGB images of the wiping scene
generated in our simulator, and obtained from a camera on
our real robot platform for the simulation-to-real transfer
experiments. As in previous experiments, we also provide
the pose and velocity of the end-effector.
Evaluation: We first evaluate the different action spaces on
simulation. We train an agent with a Panda robot embodiment
for each action space with five different random seeds.
Sample Efficiency and Task Completion. Fig. 3, right, shows
the convergence of the agents with different action spaces.
We observe that the agents with variable impedance in end-
effector space converge faster and achieve higher reward.
The higher reward is obtained thanks to a lower penalty
for applying excessive force on the table since the agents
can learn to appropriately adapt their stiffness. The mean
force applied by the policies with variable impedance in end-
effector space is 28 N, less than the robot’s payload. Agents
using other action spaces apply higher mean force or not
enough to wipe the table. In terms of task completion, the
results are depicted in Fig. 5c, dark colors. Policies outputting
actions in VICES achieve the highest ratio of wiped units.
Transferability. We also evaluate if the policies learned with
the Panda robot embodiment transfer directly to the Sawyer
robot in simulation. Fig. 5c, depict the results of the policy

0 5 10 15 20 25 30

1.20

1.25

m

pz

0 5 10 15 20 25 30

�0.1

0.0N

k
pos-x
p · �x

0 5 10 15 20 25 30

0.0

0.1

N

k
pos-y
p · �y

0 5 10 15 20 25 30

Time [s]

0.12

0.14

N

k
pos-z
p · �z

1

2

3

4

Fig. 6: Sim2Real transfer: we apply directly the policy learned in
simulation with action in variable impedance in end-effector space
to the real robot; pictures correspond to dotted vertical lines in the
plots; 1) the robot pushes towards the table in a compliant manner
(height over the table in the top plot, force in z, bottom plot); the
experimenter marks different parts of the whiteboard, 2) and 4), and
the robot reacts 3) moving towards the area following the forces in
x and y (second and third rows)

transfer between robots. Policies trained in variable impedance
in end-effector space transfer better than policies in any other
space since the policy is independent of the robot embodiment.
However, there is a significant drop in performance due to
the different forces generated by the different embodiments.
Simulation-to-real transfer. In a final experiment we evaluate
if the policies trained in simulation can be used on the real
robot without any retraining. We use in our experiment the
best performing simulation policy. The goal in the real world
is to wipe a whiteboard painted with a marker. Since our focus
is on the evaluation of the action space and not on learning
a representation of the image, we convert the real images
into fake simulated images by superimposing the results of a
color segmentation for the colored parts of the table on an
image from the simulator where the robot configuration is
set to track the real robot. As a safety precaution, we stop
the robot if the payload is exceeded. We note that the robot
does not use any direct force sensing during the experiments.

We initialize the robot to the same location and run ten
trials each with a different part of the whiteboard painted.
One example of the run can be seen in Fig. 6 and more runs
in the video attachment. We assume a successful trial when
the robot wipes more than 3/4 of the painted line. The robot
wipes successfully the board in 8 of the 10 trials. In one of the
failed trials the robot moved abruptly and triggered the safety
mechanism. In another trial the robot did not wipe the mark
entirely. These results indicate that the policies trained with
VICES can transfer seamlessly to real world by exploiting
the knowledge of the dynamics model of the robot.

VI. CONCLUSION

Reinforcement Learning (RL) as a family of algorithms has
ushered in impressive results in generalization, yet principled
evaluation on how to choose action spaces to learn control

policies is missing. We presented a thorough evaluation of
the effect of the choice of action space on learning policies in
RL for tasks without contact, with kinematic constraints and
contact-rich manipulation tasks. We also presented variable
impedance in end-effector space (VICES) as an efficient
choice of action space for RL and showed empirically that,
even when contact conditions are dynamically variable during
the task, this model outperforms other action space choices on
sample efficiency, energy consumption, and safety. We also
showed that, thanks to the subtraction of the dynamic effects
of the embodiment, using variable impedance in end-effector
space we can transfer policies learned in simulation to other
simulated robots and to a real robot without fine tuning.

REFERENCES
[1] F. J. Abu-Dakka, L. Rozo, and D. G. Caldwell, “Force-based

variable impedance learning for robotic manipulation”, Robotics
and Autonomous Systems, vol. 109, pp. 156–167, Nov. 2018.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration”, Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, May 2009.

[3] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the "task frame formalism"-a synthesis”, Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 581–589, Aug. 1996.

[4] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control”, IJRR, vol. 30, no. 7, pp. 820–833, 2011.

[5] S. Calinon and A. Billard, “A probabilistic programming by demon-
stration framework handling skill constraints in joint space and task
space”, in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), Nice, France, Sep. 2008, pp. 367–372.

[6] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control
strategy for safe human-robot interaction exploiting task and robot
redundancies”, in IROS, Oct. 2010, pp. 249–254.

[7] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates”, in ICRA, IEEE, 2017, pp. 3389–3396.

[8] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications”, ArXiv preprint arXiv:1812.05905, 2018.

[9] J. Harrison*, A. Garg*, B. Ivanovic, Y. Zhu, S. Savarese, L. Fei-
Fei, and M. Pavone (* equal contribution), “Adapt: Zero-shot
adaptive policy transfer for stochastic dynamical systems”, in ISRR,
SPRINGER STAR, 2017.

[10] N. Hogan, “Impedance control: An approach to manipulation”,
Journal of dynamic systems, measurement, and control, vol. 107,
p. 17, 1985.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots”, in ICRA, vol. 2,
May 2002, 1398–1403 vol.2.

[12] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for
motor behaviors”, Neural Comput., vol. 25, no. 2, 2013.

[13] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation”, in IROS, 2011.

[14] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. Garcia Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation”, IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1864–1871, Jul. 2018.

[15] M. Khansari, E. Klingbeil, and O. Khatib, “Adaptive human-inspired
compliant contact primitives to perform surface–surface contact under
uncertainty”, IJRR, vol. 35, no. 13, pp. 1651–1675, 2016.

[16] O. Khatib, “Inertial Properties in Robotic Manipulation: An Object-
Level Framework”, IJRR, vol. 14, no. 1, pp. 19–36, 1995.

[17] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation”, IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[18] B. Kim, J. Park, S. Park, and S. Kang, “Impedance learning for robotic
contact tasks using natural actor-critic algorithm”, Transactions on
Systems, Man, and Cybernetics, vol. 40, no. 2, pp. 433–443, 2010.

[19] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks”, in ICRA, IEEE, 2015.

[20] T. Kröger, B. Finkemeyer, U. Thomas, and F. M. Wahl, “Com-
pliant motion programming: The task frame formalism revisited”,
Mechatronics & Robotics, Aachen, Germany, 2004.

[21] K. Kronander and A. Billard, “Learning compliant manipulation
through kinesthetic and tactile human-robot interaction”, Transactions
on Haptics, vol. 7, no. 3, pp. 367–380, Jul. 2014.

[22] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning
force-based manipulation of deformable objects from multiple
demonstrations”, in ICRA, IEEE, 2015, pp. 177–184.

[23] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei,
A. Garg, and J. Bohg, “Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich
tasks”, in ICRA, 2019.

[24] D. Leidner, W. Bejjani, A. Albu-Schäffer, and M. Beetz, “Robotic
agents representing, reasoning, and executing wiping tasks for daily
household chores”, in AAMAS, 2016.

[25] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies”, JMLR, vol. 17, no. 1, 2016.

[26] M. Li, H. Yin, K. Tahara, and A. Billard, “Learning object-level
impedance control for robust grasping and dexterous manipulation”,
in ICRA, May 2014, pp. 6784–6791.

[27] Y. Li, G. Ganesh, N. Jarrasse, S. Haddadin, A. Albu-Schaeffer, and
E. Burdet, “Force, Impedance, and Trajectory Learning for Contact
Tooling and Haptic Identification”, Transactions on Robotics, vol.
34, no. 5, pp. 1170–1182, 2018.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning”, ArXiv preprint arXiv:1509.02971, 2015.

[29] M. T. Mason, “Compliance and force control for computer controlled
manipulators”, Transactions on Systems, Man, and Cybernetics, vol.
11, no. 6, pp. 418–432, Jun. 1981.

[30] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Learning impedance
control of antagonistic systems based on stochastic optimization
principles”, IJRR, vol. 30, no. 5, pp. 556–573, 2011.

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning”, in ICML, 2016, pp. 1928–1937.

[32] C. Ott, Cartesian impedance control of redundant and flexible-joint
robots. Springer, 2008.

[33] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?”, in SIGGRAPH,
USA: ACM, 2017.

[34] J. Rey, K. Kronander, F. Farshidian, J. Buchli, and ·. A. Billard,
“Learning motions from demonstrations and rewards with time-
invariant dynamical systems based policies”, vol. 42, 2018.

[35] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal,
“Optimal distribution of contact forces with inverse-dynamics con-
trol”, IJRR, vol. 32, no. 3, pp. 280–298, 2013.

[36] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras,
“Learning physical collaborative robot behaviors from human demon-
strations”, Transactions on Robotics, vol. 32, no. 3, 2016.

[37] E. A. Rückert, G. Neumann, M. Toussaint, and W. Maass, “Learned
graphical models for probabilistic planning provide a new class of
movement primitives”, Frontiers in computational neuroscience, vol.
6, p. 97, 2013.

[38] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches
to motor learning by imitation”, Philosophical Transactions of the
Royal Society of London. Series B: Biological Sciences, vol. 358, no.
1431, pp. 537–547, 2003.

[39] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization.”, in Icml, vol. 37, 2015, pp. 1889–1897.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms”, ArXiv, 2017.

[41] S. Sen*, A. Garg*, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg
(* equal contribution), “Automating multiple-throw multilateral
surgical suturing with a mechanical needle guide and sequential
convex optimization”, in ICRA, 2016.

[42] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[43] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and
K. Goldberg, “Multilateral surgical pattern cutting in 2d orthotropic
gauze with deep reinforcement learning policies for tensioning”, in
ICRA, IEEE, 2017, pp. 2371–2378.

[44] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning”, JMLR, vol. 11, no. Nov,
pp. 3137–3181, 2010.

[45] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Dif-
ferentiable physics and stable modes for tool-use and manipulation
planning”, in RSS, 2018.

[46] M. Večerík, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards”, ArXiv preprint arXiv:1707.08817, 2017.

[47] J. Viereck, J. Kozolinsky, A. Herzog, and L. Righetti, “Learning a
Structured Neural Network Policy for a Hopping Task”, RAL, 2018.

[48] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvu-
nakool, J. Kramár, R. Hadsell, N. de Freitas, et al., “Reinforcement
and imitation learning for diverse visuomotor skills”, in RSS, 2018.

	I Introduction
	II Related Work
	III Reinforcement Learning
	IV Action Spaces in RL for Robot Manipulation
	V Experiments
	V-A Free-Space Motion - Path Following
	V-B Manipulation of Constrained Mechanisms - Door Opening
	V-C Contact-Rich Manipulation - Surface Wiping

	VI Conclusion

