
Driving with Style: Inverse Reinforcement Learning in General-Purpose
Planning for Automated Driving

Sascha Rosbach1,2, Vinit James1, Simon Großjohann1, Silviu Homoceanu1 and Stefan Roth2

Abstract— Behavior and motion planning play an important
role in automated driving. Traditionally, behavior planners
instruct local motion planners with predefined behaviors. Due
to the high scene complexity in urban environments, unpre-
dictable situations may occur in which behavior planners fail
to match predefined behavior templates. Recently, general-
purpose planners have been introduced, combining behavior
and local motion planning. These general-purpose planners
allow behavior-aware motion planning given a single reward
function. However, two challenges arise: First, this function
has to map a complex feature space into rewards. Second,
the reward function has to be manually tuned by an expert.
Manually tuning this reward function becomes a tedious task.
In this paper, we propose an approach that relies on human
driving demonstrations to automatically tune reward functions.
This study offers important insights into the driving style
optimization of general-purpose planners with maximum en-
tropy inverse reinforcement learning. We evaluate our approach
based on the expected value difference between learned and
demonstrated policies. Furthermore, we compare the similarity
of human driven trajectories with optimal policies of our
planner under learned and expert-tuned reward functions. Our
experiments show that we are able to learn reward functions
exceeding the level of manual expert tuning without prior
domain knowledge.

I. INTRODUCTION

The trajectory planner in highly automated vehicles must
be able to generate comfortable and safe trajectories in
all traffic situations. As a consequence, the planner must
avoid collisions, monitor traffic rules, and minimize the
risk of unexpected events. General-purpose planners fulfill
these functional requirements by optimization of a complex
reward function. However, the specification of such a reward
function involves tedious manual tuning by motion planning
experts. Tuning is especially tedious if the reward function
has to encode a humanlike driving style for all possible sce-
narios. In this paper, we are concerned with the automation
of the reward function tuning process.

Unlike a strict hierarchical planning system, our plan-
ner integrates behavior and local motion planning. The
integration is achieved by a high-resolution sampling with
continuous actions [1]. Our planner, shown in Fig. 1, derives
its actions from a vehicle transition model. This model is
used to integrate features of the environment, which are then
used to formulate a linear reward function. During every

1The authors are with the Volkswagen AG,
38440 Wolfsburg, Germany {sascha.rosbach,
vinit.james, simon.grossjohann,
silviu.homoceanu}@volkswagen.de

2The authors are with the Visual Inference Lab, Department of
Computer Science, Technische Universität Darmstadt, 64289 Darmstadt
stefan.roth@visinf.tu-darmstadt.de

Fig. 1: This figure illustrates our general-purpose planner
for automated driving. The color coding of the visualized
state space indicates the state-action values. The z-axis
corresponds to the velocity, while the groundplane depicts a
subset of spatial features such as distance transformed lane
centers and road boundaries. There are three color coded
policies, black denotes the optimal policy of the planner,
red the odometry of a human demonstration, and green the
projection of the demonstration into the state space.

planning cycle of a model predictive control (MPC), the
planning algorithm generates a graph representation of the
high-dimensional state space. At the end of every planning
cycle, the algorithm yields a large set of driving policies
with multiple implicit behaviors, e.g., lane following, lane
changes, swerving and emergency stops. The final driving
policy has the highest reward value while satisfying model-
based constraints. The reward function, therefore, influences
the driving style of all policies without compromising safety.

Human driving demonstrations enable the application of
inverse reinforcement learning (IRL) for finding the under-
lying reward functions, i.e., a linear combination of the
reward weights. In this work, we utilize this methodology
to automate the reward function tuning of our planner. Due
to the planner’s exploration of a large set of actions, we are
able to project demonstrated actions into our graph represen-
tation. Thereby, the demonstrations and associated features
are efficiently captured. As a result, the learning algorithm
enables the imitation of the demonstrated driving style. Most
related work in IRL utilizes the state visitation frequency to
calculate the gradient in maximum entropy IRL. However,
the calculation of the state visitation is generally intractable
in this high-dimensional state space. We utilize our graph
representation to approximate the required empirical feature
expectations to allow maximum entropy IRL.

To appear in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, November 2019.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

90
5.

00
22

9v
2

 [
cs

.R
O

]
 1

2
Se

p
20

20

The main contributions of this paper are threefold: First,
we formulate an IRL approach which integrates maximum
entropy IRL with a model-predictive general-purpose plan-
ner. This formulation allows us to encode a humanlike driv-
ing style in a linear reward function. Second, we demonstrate
the superiority of our automated reward learning approach
over manual reward tuning by motion planning experts.
We draw this conclusion on the basis of comparisons over
various performance metrics as well as real world tests.
Third, our automated tuning process allows us to generate
multiple reward functions that are optimized for different
driving environments and thereby extends the generalization
capability of a linear reward function.

II. RELATED WORK

The majority of active planning systems for automated
driving are built on the mediated perception paradigm. This
paradigm divides the automated driving architecture into
sub-systems to create abstractions from raw sensory data.
The general architecture includes a perception module, a
system to predict the intention of other traffic participants,
and a trajectory planning system. The planning system is
usually decomposed in a hierarchical structure to reduce
the complexity of the decision making task [2]–[4]. On a
strategic level, a route planning module provides navigational
information. On a tactic and behavioral level, a behavioral
planner derives the maneuver, e.g., lane-change, lane follow-
ing, and emergency-breaking [5]. On an operational level,
a local motion planner provides a reference trajectory for
feedback control [6]. However, these hierarchical planning
architectures suffer from uncertain behavior planning due to
insufficient knowledge about motion constraints. As a result,
a maneuver may either be infeasible due to over-estimation or
discarded due to under-estimation of the vehicle capabilities.
Furthermore, behavior planning becomes difficult in complex
and unforeseen driving situations in which the behavior
fails to match predefined admissibility templates. Starting
with the work of McNaughton, attention has been drawn
to parallel real-time planning [1]. This approach enables
sampling of a large set of actions that respect kinematic
constraints. Thereby a sequence of sampled actions can
represent complex maneuvers. This kind of general-purpose
planner uses a single reward function, which can be adapted
online by a behavioral planner without the drawbacks of a
hierarchical approach. However, it is tedious to manually
specify and maintain a set of tuned reward functions. The
process required to compose and tune reward functions is
outside the scope of McNaughton’s work. We adopt the
general-purpose planning paradigm in our approach and
focus on the required tuning process.

Reward functions play an essential role in general-purpose
planning. The rewards encode the driving style and influence
the policy selection. Recently, literature has been published
on the feature space of these reward functions. Heinrich et
al. [7] propose a model-based strategy to include sensor cov-
erage of the relevant environment to optimize the vehicle’s
future pose. Gu et al. [8] derive tactical features from the

large set of sampled policies. So far, however, there has been
little discussion about the automated reward function tuning
process of a general-purpose planner.

Previous work has investigated the utilization of machine
learning in hierarchical planning approaches to predict tacti-
cal behaviors [5]. Aside of behavior prediction, a large and
growing body of literature focuses on finding rewards for
behavior planning in hierarchical architectures [9], rewards
associated with spatial traversability [10], and rewards for
single-task behavior optimization of local trajectory planners
[11]. The IRL approach plays an import role in finding
the underlying reward function of human demonstrations
for trajectory planning [12]. Similar to this work, several
studies have investigated IRL in high-dimensional planning
problems with long planning horizons. Shiarlis et al. [13]
demonstrate maximum margin IRL within a randomly-
exploring random tree (RRT*). Byravan et al. [14] focus on a
graph-based planning representation for robot manipulation,
similar to our planning problem formulation. Compared to
previous work in IRL, our approach integrates IRL directly
into the graph construction and allows the application of
maximum entropy IRL for long planning horizons without
increasing the planning cycle time.

Compared to supervised learning approaches such as direct
imitation and reward learning, reinforcement learning solves
the planning problem through learning by experience and
interaction with the environment. Benefits of reinforcement
learning are especially notable in the presence of many traffic
participants. Intention prediction of other traffic participants
can be directly learned by multi-agent interactions. Learned
behavior may include complex negotiation of multiple driv-
ing participants [15]. Much of the current literature focuses
on simulated driving experience and faces challenges moving
from simulation to real-world driving, especially in urban
scenarios. Another challenge includes the formulation of
functional safety within this approach. Shalev-Shwartz et
al. [16] describe a safe reinforcement learning approach that
uses a hierarchical options graph for decision making where
each node within the graph implements a policy function. In
this approach, driving policies are learned whereas trajectory
planning is not learned and bound by hard constraints.

Most of the current work in IRL utilizes the maximum
entropy principle by Ziebart et al. [17] that allows training
of a probabilistic model by gradient descent. The gradient
calculation depends on the state visitation frequency, which
is often calculated by an algorithm similar to backward
value iteration in reinforcement learning. Due to the curse
of dimensionality, this algorithm is intractable for driving
style optimization in high-dimensional continuous spaces.
Our work extends previous work by embedding IRL into a
general-purpose planner with an efficient graph representa-
tion of the state space. The design of the planner effectively
enables the driving style imitation without a learning task
decomposition. As a result, we utilize the benefits of a
model-based general-purpose planner and reward learning to
achieve nuanced driving style adaptations.

III. PRELIMINARIES

The interaction of the agent with the environment is often
formulated as a Markov Decision Process (MDP) consisting
of a 5-tuple {S,A, T,R, γ}, where S denotes the set of
states, and A describes the set of actions. A continuous
action a is integrated over time t using the transition func-
tion T (s, a, s′) for s, s′ ∈ S, a ∈ A. The reward function R
assigns a reward to every action A in state S. The reward is
discounted by γ over time t.

In this work, a model of the environment M returns a
feature vector f and the resultant state s′ after the execution
of action a in state s. The reward function R is given by
a linear combination of K feature values fi with weights
θi such that ∀(s, a) ∈ S ×A : R(s, a) =

∑
i∈K −θifi(s, a).

A policy π is a sequence of time-continuous transitions T .
The feature path integral fπi for a policy π is defined by
fπi =

∫
t
γtfi(st, at) dt. The path integral is approximated

by the iterative execution of sampled state-action sets As
in the environment model M . The value V π of a policy
π is the integral of discounted rewards during continuous
transitions V π =

∫
t
γtR(st, at) dt. An optimal policy π∗

has maximum cumulative value, where π∗ = arg maxπ V
π .

A human demonstration ζ is given by a vehicle odometry
record. A projection of the odometry record ζ into the
state-action space allows us to formulate a demonstration
as policy πD. For every planning cycle, we consider a set
of demonstrations ΠD, which are geometrically close to the
odometry record ζ. The planning algorithm returns a finite
set of policies Π with different driving characteristics. The
final driving policy πS is selected and satisfies model-based
constraints.

IV. METHODOLOGY

The planning system in Fig. 2 uses MPC to address
continuous updates of the environment model. A periodic
trigger initiates the perception system for which the planner
returns a selected policy. In the following, we give an
overview of the general-purpose planner. We use the nomen-
clature of reinforcement learning to underline the influence
of reward learning in the context of search-based planning.
Furthermore, we propose a path integral maximum entropy
IRL formulation for high-dimensional reward optimization.

A. General-Purpose Planner for Automated Driving

Our planning algorithm for automated driving in all
driving situations is based on [7], [18]. The planner is
initialized at state s0, either by the environment model or
in subsequent plans by the previous policy, and designed
to perform an exhaustive forward search of actions to yield
a set of policies Π. The set Π implicitly includes multiple
behaviors, e.g., lane following, lane changes, swerving, and
emergency stops [1]. Fig. 2 visualizes the functional flow of
the planning architecture during inference and training.

Algo. 1 formally describes our search-based planning
approach. The planner generates trajectories for a specified
planning horizon H . Trajectories for the time horizon H
are iteratively constructed by planning for discrete transition

Algorithm 1: General-Purpose Planner
Input: planning horizon H, model M ,

reward function R, reward discount factor γ
Output: policies Π, planning solution πS

1 function SearchAlgorithm(H,M,R, γ)
2 for t in H do
3 St ← get set of states
4 forall s ∈ St do
5 As ← sample set of actions
6 forall a ∈ As do
7 execute action a in M(s, a)
8 observe resultant state s′

9 observe resultant transition T
10 observe resultant features f(s, a)
11 construct labels c(T)
12 R(s, a)←∑

i∈K −θifi(s, a)
13 V (s′)← V (s) + γtR(s, a)

14 St+1 ← prune St
15 Π← get policies in S,A
16 πS ← select model-based from Π

lengths. The planner uses the parallelism of a graphics pro-
cessing unit (GPU) to sample for all states s ∈ St a discrete
number of continuous actions As, composed of accelerations
and wheel angles. The sampling distribution for each state
is based on feasible vehicle dynamics. The actions itself
are represented by time-continuous polynomial functions,
where order and coefficients are derived from actor-friendly
continuity constraints. This results in longitudinal actions
described by velocity profiles up to fifth order, and lateral
actions described by wheel angle profiles up to third order.

The search algorithm calls the model of the environment
M for all states s ∈ St to observe the resultant state s′,
transition T , and features f for each state-action tuple.
The feature vector f is generated by integrating the time-
continuous actions in the environment model. A labelling
function assigns categorical labels to transitions, e.g., a label
associated with collision. A pruning operation limits the
set of states St+1 for the next transition step t + 1 ∈ H .
Pruning is performed based on the value V (s), label c, and
properties of the reachable set St to terminate redundant
states with low value V (s). This operation is required, first to
limit the exponential growth of the state space, and second
to yield a policy set Π with maximum behavior diversity.
The algorithm is similar to parallel breadth first search
and forward value iteration. The final driving policy πS is
selected based on the policy value V (π) and model-based
constraints.

B. Inverse Reinforcement Learning

The driving style of a general-purpose motion planner is
directly influenced by the reward function weights θ. The
goal of IRL is to find these reward function weights θ
that enable the optimal policy π∗ to be at least as good

Perception Planner

Model

Label

Reward

Search

Projection IRLBuffer

Selection Control Environment

θ

fp Π πS πH

St

St+1

ζ

fΠ

f T s′

R c s

dΠ

s ∈ St, a ∈ As

dT fπ

trigger

Fig. 2: Functional flow block diagram: The left input of a block corresponds to the output of the previous function. The inputs
on top of the blocks denote intermediate outputs of previous functions. A thick solid line indicates the main flow from the
environment perception fp to the driven trajectory ζ. The vehicle control architecture is outside the scope of this work. In this
work, we focus on the dark grey blocks of the architecture that influence the reward learning. Dashed connections between
the blocks indicate the information flow during the training procedure. During data collection, we record the environment
as well as the odometry ζ of the hidden driving policy of a human πH .

as the demonstrated policy πD, i.e., V (π∗) ≥ V (πD).
Thereby, the planner indirectly imitates the behavior of a
demonstration [19]. However, learning a reward function
given an optimal policy is ambiguous since many reward
functions may lead to the same optimal policy [20]. Early
work in reward learning for A* planning and dynamic pro-
gramming approaches utilized structured maximum-margin
classification [21], yet this approach suffers from drawbacks
in the case of imperfect demonstrations [17]. Over the past
decade, most research in IRL has focused on maximizing
the entropy of the distribution on state-actions under the
learned policy, which is known as maximum entropy IRL.
This problem formulation solves the ambiguity of imperfect
demonstrations by recovering a distribution over potential
reward functions while avoiding any bias [17]. Ziebart et
al. [17] propose a state visitation calculation, similar to
backward value iteration in reinforcement learning, to com-
pute the gradient of the entropy. The gradient calculation
is adopted by most of the recent work in IRL for low-
dimensional, discrete action spaces, which is inadequate for
driving style optimizations. Our desired driving style requires
high-resolution sampling of time-continuous actions, which
produces a high-dimensional state space representation. In
the following, we describe our intuitive approach, which
combines search-based planning with maximum entropy IRL.

C. Path Integral Maximum Entropy IRL

In our IRL formulation, we maximize the log-likelihood L
of expert behavior in the policy set Π by finding the reward
function weights θ that best describe human demonstrations
πD ∈ ΠD within a planning cycle, which is given by

θ∗ = arg max
θ

L(θ) = arg max
θ

∑

πD∈ΠD

ln p(πD|θ) (1)

= arg max
θ

∑

πD∈ΠD

ln
1

Z
exp(−θfπ

D

), (2)

where the partition function is defined by
Z =

∑
π∈Π exp(−θfπ).

Similar to Aghasadeghi et al. [22], we optimize under
the constraint of matching the feature path integrals fπ of
the demonstration and feature expectations of the explored
policies,

∀i ∈ 1, ..., k :
∑

π∈Π

p(π|θ)fπi =
1

m

∑

πD∈ΠD

fπ
D

i = f̂ΠD

i , (3)

where f̂ΠD

i references the empirical mean of feature i
calculated over m demonstrations in ΠD. The constraint in
Eq. 3 is used to solve the non-linear optimization in Eq. 2.

The gradient of the log-likelihood can be derived as,

∇L(θ) =
∑

π∈Π

p(π|θ)fπ − f̂ΠD

, (4)

and allows for gradient descent optimization.
The calculation of the partition function Z in Eq. 2 is

often intractable due to the exponential growth of the state-
action space over the planning horizon. The parallelism of
the action sampling of the search-based planner allows us
to explore a high-resolution state representation St for each
discrete planning horizon increment t. A pruning operation
terminates redundant states having sub-optimal behavior in
the reachable set St, which is denoted by a lower value V (s).
Therefore, the pruning operation ensures multi-behavior ex-
ploration of the reachable set St that is evaluated with a
single reward function. Thereby our sample-based planning
methodology allows us to approximate the partition function
similar to Markov chain Monte Carlo methods.

Once we obtain the new reward function, the configuration
of the planner is updated. Hence, policies that have similar
features as the human demonstration acquire a higher value
assignment. This implies that they are more likely to be
chosen as driving policy.

V. EXPERIMENTS

We assess the performance of path integral maximum
entropy IRL in urban automated driving. We focus on a
base feature set for static environments, similar to the manual

tuning process of a motion planning expert. After this process
more abstract reward features are tuned relative to the base
features.

A. Data Collection and Simulation

Our experiments are conducted on a prototype vehicle,
which uses a mediated perception architecture to produce
feature maps as illustrated in Fig. 1. We recorded data
in static environments and disabled object recognition and
intention prediction. The data recordings include features of
the perception system as well as odometry recordings of
the human driver’s actions. The training of our algorithm is
performed during playbacks of the recorded data. After every
planning cycle of the MPC, the position of the vehicle is reset
to the odometry recording of the human demonstration.

B. Projection of Demonstration in State Space

The system overview in Fig. 2 includes a projection
function that transfers the actions of a manual drive into the
state-action space of the planning algorithm. The projection
metric d is calculated during the graph construction between
odometry ζ and continuous transitions T (s, a, s′) of all
policies π in the set Π:

d(ζ, π) =

∫

t

αt||ζt − πt|| dt. (5)

The norm is based on geometrical properties of the state
space, e.g., the Euclidean distance in longitudinal and lateral
direction as well as the squared difference in the yaw angle.
Further, the metric includes a discount factor αt over the
planning horizon. The policy πD has the least discounted
distance towards the odometry record. There are multiple
benefits of using the projection metric: First, the projected
trajectory includes all constraints of the planner. If the metric
surpasses a threshold limit, the human demonstrator does not
operate in the actor’s limits of the vehicle and therefore can
not be used as a valid demonstration. Second, the projection
metric allows for an intuitive evaluation of the driving style
based on the geometrical proximity to the odometry. Third,
we may augment the number of demonstrations by loosening
the constraint of the policy πD to have least discounted
distance towards the odometry. Thereby, multiple planner
policies qualify as demonstration πD ⊆ ΠD.

C. Reward Feature Representation

In this work, the reward function R(s, a) is given by
a linear combination of K reward features. The features
describe motion and infrastructural rewards of driving. The
discount factor γ is manually defined by a motion planning
expert and is not optimized at this stage of the work. Our
perception system in Fig. 2 provides normalized feature maps
with spatial information of the environment. The feature
path integral fπ of a policy π is created by transitioning
through the feature map representation of the environment.
We concentrate on a base reward set consisting of K = 12
features, which are listed in the legend of Fig. 4a. Heinrich
et al. formally described a sub-set of our features [18]. Seven

of our feature values describe the motion characteristics of
the policies, which are given by derivatives of the lateral
and longitudinal actions. They include the difference between
the target and policy velocity, and the acceleration and jerk
values of actions. The target in the velocity may change
depending on the situation, e.g., in a situation with a traffic
light the target velocity may reduce to zero. Furthermore,
the end direction feature is an important attribute for lateral
behavior that specifies the angle towards the driving direction
at the end of the policy. The creeping feature suppresses very
slow longitudinal movement in situations, where a full stop
is more desired. Infrastructural features include proximity
measures to the lane center and curbs, cost potentials for
lanes, and direction. Furthermore, we specify a feature for
conflict areas, e.g., stopping at a zebra crossing.

D. Implementation Details

During the playback of a human demonstration, the path
integral feature vectors fΠ of the policy set Π are ap-
proximated for every planning cycle and stored within a
replay buffer. By including our projection metric in the
action sampling procedure, we associate each policy π with
the distance to the odometry of the human demonstration.
During training, we query demonstrations ΠD, which are
policies with a low projection metric value, from our replay
buffer where πD ⊆ ΠD ⊆ Π. Hence, the replay buffer
contains features of demonstrations for each planning cycle
denoted as fΠD ⊆ fΠ. Fig. 2 describes the information
flow from the odometry record of the demonstration to the
feature query from the replay buffer. Due to actor constraints
of the automated vehicle’s actions, the planning cycles
without demonstrations are not considered for training. We
utilize experience replay similar to reinforcement learning
and update on samples or mini-batches of experience, by
drawing randomly from the buffered policies. This process
allows us to efficiently use previous experience, which can
be trained on multiple times. Further, stability is provided by
not altering the representation of the expert demonstrations
within the graph representation.

VI. EVALUATION

We aim to evaluate the utility of our automated reward
function optimization in comparison to manual expert tuning.
First, we analyze our driving style imitation in terms of value
convergence towards the human demonstration. Second, we
compare the driving style of our policies under random,
learned, and expert-tuned reward functions against human
driving on dedicated test route segments.

A. Training Evaluation

We analyze the convergence for different training initial-
izations and road segment types, namely straight and curvy.
Due to the linear combination of reward weights, one expects
a segment-specific preference of the reward function. As
a reference, a motion planning expert generated a tuned
reward function for general driving. We perform two drives
per training segment, one with a random and one with an

0 5 10 15

Epoch number

0.1

0.2

0.3

E
xp

ec
te

d
va

lu
e

di
ffe

re
nc

e IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)

(a) Difference between expected value of human driving
demonstration and expected value of planner policies
under learned reward functions.

0 5 10 15

Epoch number

0.04

0.05

0.06

0.07

E
xp

ec
te

d
di

st
an

ce

IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)

(b) Expected distance of planner policies towards the
human driving demonstration under learned reward
functions.

Fig. 3: Illustration of training and validation metrics for multiple segments and training initializations. Convergence of
maximum entropy IRL over training epochs. Validation of the training by indicating the reduction of the expected distance
towards the human demonstration. The probability is calculated independently for every planning cycle of the MPC, whereas
the policy set includes an average of approx. 4000 policies.

expert-tuned reward function. The policies to be considered
as human demonstrations are chosen based on our projection
metric and therefore depend on our chosen reward function
initialization. The expert initialization yields demonstrations
with a mean projection error 7% lower as compared to
random initialization. During every planning cycle on the
segments, we trace the policies of the planner in replay
buffers. We generate four tuned reward functions which are
referred to in Fig. 4a by training on our replay buffers.

The convergence of the training algorithm is measured by
the expected value difference (EVD) over training epochs
between learned and demonstrated policies. The EVD is
calculated for every planning cycle and averaged over the
segment. The EVD is given by

E[V (Π)]− E[V (ΠD)] (6)

=
∑

π∈Π

p(π|θ)V (π)−
∑

πD∈ΠD

p(πD|θ)V (πD). (7)

The performance of the random and expert-tuned reward
functions is given by the EVD at epoch zero. The initial
and final EVD differences between the straight and curvy
segment is 30% and 19% respectively. A preference of the
straight segments by both reward functions is visible in the
initial EVD difference Fig. 3. The learned reward functions
show a large EVD reduction of 67% for curvy and 63% for
straight segments at the end of training.

We can interpret the training results in the following way:
(a) The projection metric depends on the quality of the

reward function.
(b) Improved reward functions lead to improved action sam-

pling and therefore produce better demonstrations.
(c) Learning reward functions without prior knowledge is

possible, e.g. generating a replay buffer with a randomly
initialized reward function and training with a random
initialization.

(d) Unsuitable reward functions improve more significantly
during training.

Hence, continuously updating the policies in the replay buffer
generated from an updated reward function should lead to
faster convergence.

The desired driving style is given by the actions of a
human driving demonstration. Therefore, the projection error
in Eq. 5, which we use to select driving demonstrations,
extends itself as a direct validation metric of the actions. Due
to our goal of optimizing the likelihood of human driving
behavior within the policy set, we calculate the expected
distance (ED) in the policy set, given by

E[d(ζ,Π)] =
∑

π∈Π

p(π|θ)d(ζ, π). (8)

The learned reward functions in Fig. 3b show a large ED
reduction of 54% for curvy and 44% for straight segments
at the end of training. The ED reduction trends have high
similarity to the above mentioned EVD trend and therefore
this validates the premise of a high correlation between value
and distance to the demonstration. An improved expected
distance ensures a high likelihood of selecting policies which
are similar to humanlike driving demonstrations.

B. Driving Style Evaluation

In this part of the evaluation, we compare the driving style
of the random, learned, and expert-tuned reward functions
shown in Fig. 4a to manual human driving. The parameters
of the reward functions allow for introspection and reasoning
about the segment-specific preference. The reward weight is
inversely proportional to the preference of that feature value
in the policy. Learned reward functions are of two types:

(a) IRL with random initialization, hereby referred as
IRL(random). Both the training trajectory set and the
learning task are randomly initialized.

(b) IRL with expert initialization, hereby referred as
IRL(expert). Both the training trajectory set and the
learning task are initialized by expert tuning.

Lon
g.

Acce
l.

Lon
g.

Je
rk

Velo
cit

y

Cree
pin

g

Lat.
Acce

l.

Lat.
Je

rk

End
Dire

cti
on

Cen
ter

lin
e

Con
flic

tar
ea

Cur
bs

Dire
cti

on

Lan
ea

dv
ise

Features

0

2

4

W
ei

gh
t

(a) Feature weights of tested reward functions.

Expert tuned
IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)
Random

Expert tuned
IRLCurve(Expert tuned init)
IRLCurve(Random init)

IRLStraight(Expert tuned init)
IRLStraight(Random init)
Random

0.00 0.05 0.10 0.15 0.20

Distance

0

20

40

C
ou

nt

(b) Distances of the optimal policies on a curvy test
segment.

0.00 0.05 0.10 0.15 0.20

Distance

0

25

50

C
ou

nt

(c) Distances of the optimal policies on a straight test
segment.

0 100 200 300

Planning cycle

0.00

0.05

D
is

ta
nc

e

(d) Distances of the optimal policy over planning cycles
on a curvy test segment.

0 250 500 750

Planning cycle

0.00

0.05

0.10

D
is

ta
nc

e

(e) Distances of the optimal policy over planning cycles
on a straight test segment.

0.08 0.09 0.10 0.11 0.12

Expected distance

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
va

lu
e

(f) Expected value and distance under the expert tuned
reward function of every planning cycle on a curvy test
segment.

0.07 0.08 0.09 0.10

Expected distance

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
va

lu
e

(g) Expected value and distance under the expert tuned
reward function of every planning cycle on a straight
test segment.

Fig. 4: The tests contrast the driving style of random, learned, and expert-tuned reward functions. The graphs present the
results of independent playbacks on a dedicated test track. The probability is calculated independently for every planning
cycle of the MPC, whereas the policy set includes on average 4000 policies.

Using these reward functions, we run our planning algorithm
on dedicated test route segments to verify the generalized
performance of the optimal policies. We carry out multiple
drives over the test segments to generate representative
statistics. Fig. 4b and Fig. 4c present the projection metric
distribution, which is the distance of the optimal policy to the
odometry of a manual human drive for every planning cycle.
We fit a Gaussian distribution over the histogram with 200
bins of size 0.001 with 944 planning cycles for the straight
and 369 planning cycles for the curvy segment. The learned
reward functions improve the driving style on all segments
even in the case of random initialization. Our evaluation
metric, which is the mean distance of the optimal policy
to the odometry, decreases for IRLStraight(random) by 73%
and for IRLCurve(random) by 43%. In case of expert-
tuned initialization, IRLStraight(expert) decreased by 22%
and IRLCurve(expert) by 4%. The strong learning outcome
in the straight segment can be attributed to the easier learning
task as compared to the curvy segment. Even though the
expert-tuned reward functions do not improve substantially
in terms of mean distance, they show a lower variance in
distance of the optimal policy to the odometry over planning
cycles after training as is shown in Fig. 4d and Fig. 4e.
Here we indicate variance in the distance of the optimal
policy over planning cycles by one standard deviation. The
variance reduction of learned reward function depicts higher
stability over planning cycles. Hence, we are able to encode
the human driving style through IRL without applying prior
domain knowledge as done by motion planning experts.

Fig. 4f and Fig. 4g present the expected value of our evalu-
ated reward functions rA under the expert-tuned reward func-
tion rE , given by E[V (Π)] =

∑
π∈Π p(V

π(rA))V π(rE).
The overall trend indicates an inverse relationship between
expected value and expected distance. The learned reward
functions have lower expected distance as compared to expert
tuned and random reward functions, while having a higher
rate of value reduction with increasing expected distance.
This ensures that the learned reward functions induce a
high degree of bias in the policy evaluation such that the
humanlike demonstrated behavior is preferred.

VII. CONCLUSION AND FUTURE WORK

We utilize path integral maximum entropy IRL to learn
reward functions of a general-purpose planning algorithm.
Our method integrates well with model-based planning algo-
rithms and allows for automated tuning of the reward func-
tion encoding the humanlike driving style. This integration
makes maximum entropy IRL tractable for high dimensional
state spaces. The automated tuning process allows us to
learn reward functions for specific driving situations. Our
experiments show that learned reward functions improve the
driving style exceeding the level of manual expert-tuned
reward functions. Furthermore, our approach does not require
prior knowledge except the defined features of the linear
reward function. In the future, we plan to extend our IRL
approach to update the reward function dynamically.

REFERENCES

[1] M. McNaughton, “Parallel Algorithms for Real-time Motion Plan-
ning,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[2] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions,” Transportation Res. Part C:
Emerging Technologies, vol. 60, pp. 416–442, 2015.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Trans. Intelligent Vehicles, vol. 1, no. 1, pp.
33–55, 2016.

[4] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-
Making for Autonomous Vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, no. 1, pp. 187–210, 2018.

[5] S. Ulbrich and M. Maurer, “Towards Tactical Lane Change Behavior
Planning for Automated Vehicles,” in Proc. IEEE Int. Conf. Intell.
Transp. Syst. (ITSC), 2015.

[6] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2010.

[7] S. Heinrich, J. Stubbemann, and R. Rojas, “Optimizing a driving
strategy by its sensor coverage of relevant environment information,”
in IEEE Intell. Vehicles Symp., 2016, pp. 441–446.

[8] T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driving,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS),
Daejeon, South Korea, 2016.

[9] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learn-
ing for motion planning with application to parking lot navigation,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS), 2008.

[10] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” Int. J. Robotics Research, vol. 36,
no. 10, pp. 1073–1087, 2017.

[11] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2015.

[12] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” in arXiv Preprint
arXiv:1806.06877, 2018.

[13] K. Shiarlis, J. Messias, and S. Whiteson, “Inverse Reinforcement
Learning from Failure,” in Proc. Int. Conf. Autonomous Agents Multi-
Agent Syst., 2016.

[14] A. Byravan, M. Monfort, B. Ziebart, B. Boots, and D. Fox, “Graph-
Based Inverse Optimal Control for Robot Manipulation,” in Proc. Int.
Joint Conf. Artificial Intell. (IJCAI), vol. 15, 2015.

[15] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” in Learning,
Inference and Control of Multi-Agent Syst. Workshop (NIPS), 2016.

[16] ——, “On a Formal Model of Safe and Scalable Self-driving Cars,”
in arXiv Preprint arXiv:1708.06374, 2017.

[17] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum Entropy Inverse Reinforcement Learning.” in Proc. Nat. Conf.
Artificial Intell. (AAAI), vol. 8, 2008.

[18] S. Heinrich, “Planning Universal On-Road Driving Strategies for
Automated Vehicles,” Ph.D. dissertation, Freie Universität Berlin,
2018.

[19] A. Y. Ng and S. J. Russell, “Algorithms for Inverse Reinforcement
Learning,” in Proc. Int. Conf. Machine Learning (ICML), 2000.

[20] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. Int. Conf. Machine Learning (ICML).
ACM, 2004.

[21] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proc. Int. Conf. Machine Learning (ICML), 2006.

[22] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforce-
ment learning in continuous state spaces with path integrals,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS). IEEE, 2011.

	I Introduction
	II Related Work
	III Preliminaries
	IV Methodology
	IV-A General-Purpose Planner for Automated Driving
	IV-B Inverse Reinforcement Learning
	IV-C Path Integral Maximum Entropy IRL

	V Experiments
	V-A Data Collection and Simulation
	V-B Projection of Demonstration in State Space
	V-C Reward Feature Representation
	V-D Implementation Details

	VI Evaluation
	VI-A Training Evaluation
	VI-B Driving Style Evaluation

	VII Conclusion and Future Work
	References

