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Abstract— In the paper, we propose a robust real-time visual
odometry in dynamic environments via rigid-motion model
updated by scene flow. The proposed algorithm consists of
spatial motion segmentation and temporal motion tracking. The
spatial segmentation first generates several motion hypotheses
by using a grid-based scene flow and clusters the extracted
motion hypotheses, separating objects that move independently
of one another. Further, we use a dual-mode motion model to
consistently distinguish between the static and dynamic parts
in the temporal motion tracking stage. Finally, the proposed
algorithm estimates the pose of a camera by taking advantage
of the region classified as static parts. In order to evaluate
the performance of visual odometry under the existence of
dynamic rigid objects, we use self-collected dataset containing
RGB-D images and motion capture data for ground-truth. We
compare our algorithm with state-of-the-art visual odometry
algorithms. The validation results suggest that the proposed
algorithm can estimate the pose of a camera robustly and
accurately in dynamic environments.

I. INTRODUCTION

Visual odometry is a fundamental process of recognizing
the pose of the camera itself using video input [1], [2].
Although various visual odometry algorithms already show
satisfactory performances in well-conditioned environments
and well-defined datasets such as TUM [3] and KITTI [4],
most of them assume that the world the camera is looking
at is stationary, thus making it possible to estimate the pose
of the camera by virtue of the motion of the images taken.
However, most real environments involve dynamic situations
such as residential roads, crowded places, other robots for
cooperation. Although some visual odometry algorithms [5]
which utilize the principle of RANSAC can regard pixels
whose motion is disparate as outliers, they have a limit
that non-stationary objects should occupy small areas in the
image plane. Thus, they cannot be employed to estimate the
motion of a camera in dynamic environments including large
non-stationary objects.

In this paper, we aim for a real-time robust visual odome-
try by separating stationary parts from the image via motion
model update. However, the existing motion segmentation
algorithms have expensive computation loads [7] or con-
straints on the shape [8] or the number [9] of objects.
Here, we design a fast motion segmentation algorithm with
an adequate performance applicable for real-time visual
odometry algorithm.

Sangil Lee, Clark Youngdong Son, and H. Jin Kim are with the Depart-
ment of Mechanical and Aerospace Engineering, Seoul National University,
Seoul, 08826, Korea, Republic of {sangil07, clark.y.d.son,
hjinkim}@snu.ac.kr

Fig. 1. The 3D trajectory on the uav-flight-circular sequence.

In order to differentiate between non-stationary parts and
stationary background, we utilize scene flow vectors which
are distributed uniformly in the image. Particularly, we
choose grid-based scene flow to take advantage of both
dense and sparse methods; a dense flow that calculates
temporary motions for all pixels provides a high resolution,
meanwhile, a sparse flow that calculates temporary motions
for distinctive features has a lighter computational load.
Then, motion segmentation is performed to differentiate
between non-stationary parts and stationary background with
grid-based temporary motions, and the pose of a camera is
estimated using static parts.

Overall, our algorithm can estimate the ego-motion ro-
bustly and accurately in highly dynamic environments while
separating non-stationary parts from an image with no prior
information such as the shape [8], the number of dynamic
objects [9], or the movement of objects [10]. Fig. 1 shows
the performance of the proposed algorithm on the dataset
collected from a multirotor flight. Moreover, the proposed
algorithm shows significantly low runtime of average 19 ms
at VGA resolution, thus it can be applied to real-time tasks.

A. Related Work

Most existing visual odometry algorithms [?], [11]–[13],
[15] assume stationary environments. However, in real appli-
cations, there are often a number of non-stationary objects
such as vehicles. To deal with such environments, some re-
search has attempted to improve robustness against dynamic
situations. Such efforts can be categorized into two types:
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Fig. 2. A schematic diagram of the proposed algorithm.

dichotomous and model-based.
The first type of research has tried to exclude a region

which has a different motion from the major movement in
a similar way to RANSAC as mentioned above. A. Dib
et al. [5] utilizes RANSAC for direct visual odometry in
dynamic environments. They minimize photometric shift
over six random patches in an image, unlike the naı̈ve
direct visual odometry whose optimization process covers
the whole image. In [6], they first categorize patches by
depth value and subtract a category which has a quite
different motion from a majority movement of the camera by
comparing standard deviation of motion vectors, including or
excluding that category. They still assume that the stationary
background occupies a large area on the image so that the
camera movement is estimated via the background.

The second type of research has exploited statistical
models to classify motions belonging to independent ob-
jects. BaMVO [10] estimates background by choosing pixels
whose depth does not change unusually. It is effective in
situations where a dynamic object such as a pedestrian moves
in parallel with the principal axis of a camera. However,
the performance can degenerate when the dynamic object
moves perpendicular to the principal axis while reducing the
depth transition. Joint-VO-SF [17] formulates a minimization
problem with 3D points from RGB-D images. They estimate
camera pose and scene flow accurately, but the average run-
time is 80 ms on an i7 multi-core CPU at QVGA resolution,
which is slightly slow for real-time implementation with
current on-board computers. StaticFusion [?] is the enhanced
version of Joint-VO-SF. It adds dense 3D modeling of only
the static parts of the environment and reduces the overall
drift though frame-to-model alignment.

Among the motion segmentation methods, H. Jung et
al. [9] propose randomized voting to extract independent
motions using epi-polar constraints with the average com-
putational time of 300ms per frame. However, the number
of moving objects should be known. In [21], MCD5.8ms has
an advantage in that it detects a moving object using a dual-
mode model with a low computational load while showing
the execution time per frame of 5.8 ms. Since they calculate
the homography using naı̈ve visual odometry, however, the
performance can deteriorate when a moving object occupies
more than half of an image.

B. Contributions

In this paper, we focus on the environment where there are
rigid moving objects. Furthermore, we propose a dichotomy-
type algorithm to prevent the pose estimates from being

polluted due to pixels with vague states between static and
dynamic.

Our main contributions can be summarized as follows:
1) We propose a real-time robust visual odometry algo-

rithm in dynamic environments. It estimates the motion
of both stationary and non-stationary parts robustly.

2) We design a dual-mode motion model for rigid motion
segmentation. It distinguishes between the background
and moving objects with no prior information.

II. BACKGROUND

A. Rigid Transformation

The proposed algorithm is based upon the property that
3D motions of 3D points belonging to the same rigid object
spatially have the same rigid motion temporally. We calculate
the motion, H, by the least-squares rigid transformation [23].
Moreover, for the evaluation of the motion, we can define
the rigid transformation error as below:

E(H, X̃(j), X̃(k)) := diag((HX̃(j)−X̃(k))T (HX̃(j)−X̃(k))), (1)

where X̃(l) = [x̃
(l)
1 , x̃

(l)
2 , . . . , x̃

(l)
n ] ∈ R4×n is a 3D point set,

and x̃
(l)
∗ = [x, y, z, 1]T ∈ R4×1 is a 3D point in the l-th

frame represented by homogeneous coordinates.

B. Advanced Grid-based Scene Flow

In order to extract a 3D motion of pixels, we utilize Lucas-
Kanade optical flow. For expanding the dimension of optical
flow, we use depth changes from the adjacent depth images
to obtain depth-directional flow. However, since there can be
invalid depth pixels, we improve the quality of depth values
through preprocessing. We fill pixels whose depth value is
invalid with similar value in the vicinity in case of narrow
holes and eliminate pixels whose depth value is abnormally
high or low. Afterward, we interpolate the depth of tracked
points.

III. MOTION SPATIAL SEGMENTATION

In the motion spatial segmentation procedure, we first
fetch a total of n grid-based scene flow vectors, Vi, with
grid cell size, wgrid, and derive segments through their
motions. In the procedure, the number of points m and
heuristic threshold thinlier are used for generating motion
hypothesis. To be specific, m number of points are used
to generate motion hypothesis, and the threshold value is
used to decide whether motions of the m points belong
to the same movement. The motion spatial segmentation
procedure is divided into three steps: motion hypothesis
search, refinement, and clustering. Especially, the searching
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Fig. 3. The description of the motion segmentation on the place-items
sequence.

and the refining processes are executed iteratively until a total
of hmax hypotheses are found or the mean of entropies S is
decreased enough and saturated. Fig. 3 describes the motion
spatial segmentation process.

A. Motion Hypothesis Search

In the search process, a point is randomly selected by
weighting with entropy, S, whose i-th value is defined as
follows:

Si = 1− min
1≤h≤hmax

exp(−λEi − δ), i = 1 . . . n, (2)

where

Ei =
[
Ei(H1, X̃

(j), X̃(k)), . . . , Ei(Hhmax , X̃
(j), X̃(k))

]
. (3)

In the above equations, Ei (·) is the i-th element in the output
of the E (·) function defined in Eq. (1). Also, λ and δ are
parameters for defining the characteristic of the entropy.

As will be discussed in more detail in the following
section, the entropy measures how well the hypothesis is
generated in the corresponding pixels. A pixel with the
high entropy tends to belong to an inappropriate motion
hypothesis, which results in a high probability to be chosen,
consequently improving the convergence rate. Then we select
(m−1)-points randomly near the chosen 1-point. Finally, the
rigid motion hypothesis H can be estimated from the selected
m-points [23].

B. Motion Hypothesis Refinement and Clustering

Motion hypothesis refinement aims to calculate precise
rigid transformation and find multiple regions with the same
rigid motion. We first calculate rigid transformation error
using Eq. (1) for all of the n grid-based scene flow vectors.
This process is designed to consider the cases where a part of
a rigid object could appear in multiple regions on an image
at the same time, in which case, we regard the multiple
regions as belonging to the same object. Then we re-estimate

a refined motion hypothesis using the increased N -points.
For more details, please refer to [?].

In order to find distinct motions from the motion hy-
pothesis set H, we use the existing clustering algorithm,
in particular, density-based spatial clustering of applications
with noise (DBSCAN), since DBSCAN does not require the
number of clusters and is robust to noise. In the process,
hypotheses are refined as the algorithm reorganizes hmax
hypotheses into g distinct motions, which is represented by
vector G ∈ Nn×1 whose elements are distributed from 1 to
g in an natural number. Thus, a G(k) is the segmentation
results of the k-th frame at the motion spatial segmentation
stage.

IV. MOTION SEGMENT TRACKING
In addition to distinguishing objects which move inde-

pendently from one another in a frame, we propose a
motion segment tracking algorithm to update the region of
dynamic objects persistently. Since the above motion spatial
segmentation algorithm runs in a similar way as the naı̈ve
segmentation technique based on two frames, it has no idea
which is which at different times. Thus, we propose the
motion segment tracking algorithm following the motion
spatial segmentation. The following subsection provides a
segment matching algorithm and a probabilistic approach
based on the dual-mode simple Gaussian model [21].

A. Segment Matching

The segment matching algorithm calculates a kind of
correlation coefficient and finds corresponding segment pairs
P̂ between different frames. The correlation coefficient and
segment pairs, P(k,l), between the current k-th and the
previous l-th frames are defined as follows:

C
(k,l)
ij =

N
(k,l)
i,j√

N
(k)
i N

(l)
j

, (4)

P(k,l) =
{
P(k,l)
i

}
=
{(
P(k,l)
i,left ,P

(k,l)
i,right

)}
(5)

=

{(
i, argmax

j
C

(k,l)
ij

)}
,

where N (k)
i is the number of grid-based points belonging to

the i-th segment in the k-th frame, and N (k,l)
i,j is the number

of grid-based points belonging to both the i-th and j-th
segments in the k-th and l-th frames, respectively. Also, the
corresponding segment pairs, P̂(k), whose correlation score
is the maximum, is defined as follows:

P̂(k) = P(k,lm), (6)

where lm is
lm = argmax

l
(score(k,l)), (7)

a score between the (k, l)-th frames is

score(k,l) =

∑g
i=1

(
N

(k)
i ×max

j
C

(k,l)
ij

)
∑g
i=1N

(k)
i

, (8)



and g is the number of distinct motions. And then, we
rearrange G to Ĝ through P̂(k) as follows:

Ĝ
(k)
i ≡ Ĝ(k)

P̂(k)
i,left

= Ĝ
(lm)

P̂(k)
i,right

, (9)

so that we track the object that appeared previously or add
a new segment on the unmatched pairs of the current frame.
From now, we will call the value of Ĝ as a label in the
following paragraphs, while we have called the value of G
as a segment.

B. Dual-mode Motion Model

Since the RGB-D camera has a limited depth range,
it may fail to calculate scene flow vectors in some grid
cells. Thus, we use a discrete statistical model which has
a probability vector and an age as properties in order to
track the static and dynamic parts in the image sequences
persistently under the assumption that the static and dynamic
elements do not appear or disappear abruptly on a frame by
frame. The i-th element of the probability vector means the
likelihood of corresponding pixel belonging to the i-th label.
As shown in the right dashed box of Fig. 2, the algorithm
first compensates the model through the previously estimated
ego-motion to update it with the measurement corresponding
to the identical 3D point. Then, we update the probability
vector and age of the model based on certain criteria. Finally,
labels can be selected as indices which indicate the maximum
value in the probability vector. In this paper, each of n grid
cells has two models, i.e. apparent and candidate models.
The apparent model indicates the estimated label currently,
and the candidate model implies a hidden label which can
appear later in the apparent model. The candidate model is
designed to recognize again an object as static parts when
the moving object stops.

1) Model Update: We denote the probability vector of a
grid cell i as P (k)

i ∈ Rnobj×1 in the k-th frame, and the age
of the grid cell in the k-th frame as α(k)

i , where nobj = 15
is the designated maximum number of identified objects in
a frame. Then, the probability vector and age are updated as
follows:

P
(k+1)
i =

α̃
(k)
i

α̃
(k)
i + 1

P̃
(k)
i +

1

α̃
(k)
i + 1

Ǧ
(k+1)
i (10)

α
(k+1)
i = α̃

(k)
i + 1, (11)

where Ǧ(k) ∈ Rnobj×1 is a binary-valued vector whose Ĝ(k)
i -

th element only is one and the others are zeros, and Ĝ(k)
i is

the result of segment matching algorithm in the k-th frame.
P̃

(k)
i , α̃(k)

i are the compensated parameters of the dual-mode
motion model which will be discussed in Section IV-B.2.

Contrary to [21] which measures pixel intensity to update
models, we take a temporarily matched label, which is a
result of segment matching, as measurements. However, our
measurements might be incorrect, if scene flow may too fast
to find an appropriate match and the properly-matched pair
could not be found. Thus, we make some modification for

the update of both models. The probability vector, AP , and
age, Aα, of the apparent model are updated as follows:

AP
(k+1)
i =


AP̃

(k)
i , if Ǧ(k+1)

i 6= Ǧ
(k)
i

1
Aα̃

(k)
i +1

(Aα̃
(k)
i

AP̃
(k)
i + Ǧ

(k+1)
i ), otherwise

Aα
(k+1)
i =


Aα̃

(k)
i , if Ǧ(k+1)

i 6= Ǧ
(k)
i

bmmin (Aα̃
(k)
i + 1, αmax), otherwise

and the probability vector, CP , and age ,Cα, of the candidate
model are updated as follows:

CP
(k+1)
i =


C P̃

(k)
i , if Ǧ(k+1)

i = Ǧ
(k)
i

1
C α̃

(k)
i +1

(C α̃
(k)
i

C P̃
(k)
i + Ǧ

(k+1)
i ), otherwise

Cα
(k+1)
i =


C α̃

(k)
i , if Ǧ(k+1)

i = Ǧ
(k)
i

min (C α̃
(k)
i + 1, αmax), otherwise

Also, the candidate and apparent models are swapped if the
age of the candidate model reaches the maximum age, αmax,
or is larger than that of the corresponding apparent model.
Because we treat a foreground object as a static element
when the object stops. Thus, after the previously moving
object stops, the corresponding apparent model is not up-
dated whereas the candidate model is updated. Consequently,
the age of only the candidate model increases and both
models will be swapped with each other when the age of
the candidate model becomes saturated or larger than that of
the apparent model.

A label which is the output of the motion segment tracking
is obtained from the probability vector of the apparent
model with several criteria. The label is updated when the
corresponding apparent model is initialized or updated. By
doing so, we prevent the algorithm from prejudging the label
of an unobserved or unmeasured grid cell while maintaining
the previous label of the grid cell. Finally, the label is
obtained from the indices that represent the maximum value
in the probability vector of the apparent model.

2) Compensate Model: In the previous section, we use
the probability vector for updating and determining the
label of a grid cell. These processes for the motion model
assume that each grid cell represents a fixed point in the
world coordinate consistently. However, in the case of a
non-stationary camera, the result of the segment matching
following the spatial segmentation cannot be used directly
for updating the apparent and candidate model. In order
to update the motion model, therefore, we compensate the
model by warping.

Since each model has simple parameters such as prob-
ability vector and age, we use area-weighted interpolation.
The current model is proportionally compensated with scene
flow vectors in Section II-B. For grid cells that have valid
scene flow vectors, these motion models are compensated
individually on the two-dimensional image plane. We denote
the set of grid cells overlapping with the current grid cell i
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Fig. 4. Variations of the parameters. The relative pose error are denoted as magenta boxplot with 3-σ whiskers. Average computational time is represented
as a black solid line with respect to the right y-axis.

in the (k + 1)-th frame as A(k+1)
i , weights for interpolation

as ωj , and the region of overlap between the current grid
cell i and the previous corresponding grid cell as Rj where
j is the index of element in A(k+1)

i . Then, the compensated
probability vector and age are obtained as follows:

P̃
(k)
i =

∑
j∈A(k+1)

i

ωjP
(k)
j , α̃

(k)
i =

∑
j∈A(k+1)

i

ωjα
(k)
j , (12)

where ωj are set to be proportional to Rj and normalized to∑
j ωj = 1.

V. EVALUATION RESULTS

This section is divided into three parts: analysis of parame-
ters, description of the dataset, and quantitative evaluation of
the odometry. In the validation, we used RGB-D images of
640×480 pixels. Our algorithm is run on an Intel i7-7500U
CPU at 2.7 GHz and Ubuntu 16.04 LTS.

A. Parameters Analysis

Here, we discuss the value of parameters introduced in the
paper. These parameters are obtained from indoor environ-
ments including our dataset. Therefore, they need to be tuned
for a new environment including outdoor environments.

Fig. 4 shows variations of the performance and com-
putational loads according to parameters (from left): grid
spacing, i.e. size of grid cell wgrid, the maximum number of
motion hypothesis hmax, rigid transformation error threshold
in motion hypothesis generation thinlier, the saturated age
of motion model αmax. In each plot, one parameter varies
while others remain the designated values given in the last
paragraph of this subsection. As wgrid increases, the spatial
density of the scene flow reduces, thus the computation
time decreases reciprocally and Relative Pose Error (RPE)
increases slightly. Therefore, this is advantageous in the
presence of a small dynamic object. Also, if we choose a
small value of hmax, it is difficult to extract all meaningful
motions due to few tries in motion hypothesis searching,
whereas a large value of hmax can produce an erroneous
label with a high computational load. Thus, if there are a
lot of dynamic objects, it is recommended that the value of
hmax be not small. thinlier is related to hypothesis searching;
a low threshold makes the algorithm to extract motion
hypothesis strictly. A small value of αmax is vulnerable to
erroneous label, whereas a high value makes the algorithm
too insensitive not to notice that the previously moving object
has stopped.

Fig. 5. The validation environment for the uav-flight-circular
sequence.

From the above boxplot analysis, the parameters were set
to: wgrid = 16, hmax = 20, thinlier = 3 × 10−5, αmax =
5, which are well-tuned values for our indoor dataset. The
parameters are kept the same over the dataset for consistency.

Rest of the parameters are set as follows:

• The number of points and the searching radius in
Section III-A are set to m = 7 and rsearch = 2 pixels.

• The characteristic parameters and the minimum thresh-
old of search weighting in Section III-B are set to
λ = 103 and δ = 10−2, heuristically.

• DBSCAN parameters are set to pmin = 1, ε = 0.005.

B. Dataset

To the best of our knowledge, there is no well-known
RGB-D dataset captured in a situation where a rigid moving
object appears. TUM dataset [3] contains moving people
but human body is not a rigid object and KITTI [4] does
not provide depth images. Therefore, in order to evaluate
the proposed algorithm, we collected a dataset using ASUS
Xtion RGB-D camera and Vicon motion capture system for
ground truth (Fig. 5). Each sequence is composed of 16-bit
depth images and 8-bit color images with a size of 640×480.
There are two kinds of sequences depending on whether
they are captured from the static or non-stationary camera as
shown in Table I. In the case of sequences using the static
camera, we regard the origin of the world coordinate as the
true position of the camera. On the other hand, for the non-
stationary camera, we validate the performance of our visual
odometry algorithm with Vicon measurements. The detailed
description and download link of the dataset are available
online at:

http://sangillee.com/ pages/icsl-de-dataset



TABLE I
EVALUATION OF VISUAL ODOMETRY ALGORITHMS ON OUR DATASET.

Environment Sequence Relative Pose Error [m/s]
Proposed DVO ORB-VO BaMVO Joint-VO-SF StaticFusion

Static camera &
Dynamic environment

one-object-static 0.0053 0.6002 0.0008 0.0017 0.0053 0.2042
two-object-static 0.0221 0.1673 0.0725 0.0063 0.0172 0.1603

place-items 0.0039 0.0550 0.0017 0.0462 0.0344 0.0085

Dynamic camera &
Dynamic environment

fast-object 0.0249 0.4240 0.3428 0.2022 0.0405 0.1726
slow-object 0.0600 0.1962 0.1772 0.1248 0.0724 0.1311

close-approach 0.0469 0.2101 0.0931 0.0992 0.0707 0.1360
leading-pioneer 0.0996 0.1449 0.0679 0.2790 0.1444 0.5503
uav-flight-static 0.0231 0.3880 0.2389 0.2342 0.0279 0.3812

uav-flight-circular 0.0290 0.2586 0.1512 0.4034 0.0737 0.3109

TABLE II
EVALUATION OF VISUAL ODOMETRY ALGORITHMS ON TUM DATASET.

Environment Sequence Relative Pose Error [m/s]
Proposed DVO ORB-VO BaMVO Joint-VO-SF StaticFusion

Dynamic camera &
Static environment

fr1/xyz 0.0266 0.1379 0.0139 0.1763 0.0174 0.0549
fr1/rpy 0.0420 0.0406 0.0303 0.1858 0.0384 0.0889

fr1/desk 0.0535 0.0675 0.0409 0.2653 0.0291 0.1718
fr1/floor 0.0306 0.1172 0.0129 0.1247 0.0266 0.4150

Dynamic camera &
Dynamic environment

fr3/walking static 0.0374 0.2022 0.1669 0.0939 0.0709 0.0146
fr3/walking xyz 0.2358 0.2980 0.2434 0.1887 0.2064 0.0913
fr3/sitting xyz 0.0909 0.0367 0.0110 0.0442 0.0444 0.0325

C. Visual Odometry

For the quantitative comparison between the proposed
algorithm and the current state-of-the-art visual odometry
algorithms, we use RPE with a one second drift as proposed
in [3] since RPE is well-suited for evaluating the drift of
visual odometry. Open-source algorithms were executed with
default settings.

Table I and Table II show the evaluation results for each
sequence in our dataset and TUM dataset, respectively. The
algorithm with the best result in each sequence is shown
in bold, and the algorithm with an error greater than 0.1
m/s is in red. The proposed algorithm is compared with
a well-known or state-of-the-art visual odometry algorithms
such as DVO [12], ORB-VO [?], BaMVO [10], Joint-VO-
SF [17], and StaticFusion [?]. Particularly, BaMVO, Joint-
VO-SF, and StaticFusion were designed to be robust in
dynamic environments likewise ours. In order to verify the
performance as visual odometry, we evaluate a modified
ORB-SLAM2, which is unable to detect and correct loop
closure. We refer to this modified ORB-SLAM2 as ORB-
VO.

On the one-object-static sequence, algorithms
show outstanding performance except for DVO. Because
DVO is a direct dense method, it performs optimization
across all pixels, thereby its performance is seriously in-
fluenced by dynamic elements. Next, when there appear
two moving objects, the performance of our algorithm,
BaMVO, and Joint-VO-SF is superior to the other algo-
rithms. The performance of BaMVO is degraded when
the object moves perpendicular to the principal axis in

TABLE III
ENHANCED VISUAL ODOMETRY ALGORITHMS FOR ROBUSTNESS.

Environment Relative Pose Error [m/s]
Proposed × ORB-VO ORB-VO

one-object-static 0.0009 0.0008
two-object-static 0.0242 0.0725

place-items 0.0053 0.0017
fast-object 0.0232 0.3428
slow-object 0.1553 0.1772

close-approach 0.0728 0.0931
leading-pioneer × 0.0679
uav-flight-static 0.0078 0.2389

uav-flight-circular 0.0714 0.1512

the uav-flight-static, uav-flight-circular
sequences. ORB-VO tends to track features of a dynamic
object when the object is observed for a long time in the
fast-object sequence even if there are a lot of features
on static backgrounds. Besides, Joint-VO-SF and Static-
Fusion fail optimization sometimes and does not perform
well on some sequences. On the other hands, our algorithm
shows a balanced and sufficient performance over all tested
sequences. In the static environment sequences of TUM
dataset, ORB-VO shows reliable performance superior to the
other algorithms. Since the dynamic environment sequences
of TUM dataset include the non-rigid human body, the
proposed algorithm does not have an advantage over the
existing algorithms, but it does not have a bad performance
either. Please see the distribution of red texts for validating
the reliability of the proposed algorithm.

Moreover, since the motion segmentation and the estima-
tion parts of our algorithm are not strongly coupled with



Fig. 6. Some of the sequence images and the segmentation results that the proposed algorithm provides. Filled circles mean grid cell that has accurate
scene flow and valid label. (Recommended to print out in color)

each other, it is possible to incorporate the proposed motion
segmentation into the existing visual odometry algorithms
in order to improve their robustness in dynamic environ-
ments. As shown in Table III, we validate the combina-
tion of ORB-VO and our motion segmentation. We can
see that the proposed motion segmentation enhances the
odometry performance compared with the original version.
The leading-pioneer sequence contains only a small
amount of valid depth for the entire time, so the feature
points are not extracted enough causing failure. One way to
improve the performance in this case is to convert from the
grid-base to the dense method, and the accurate dense optical
flow must be preceded first.

D. Runtime Comparison

The median runtimes of the compared algorithms are:

• Proposed: 53 ms1,
267 ms2

• DVO2: 1.032 sec
• ORB-VO1: 33 ms

• BaMVO1: 278 ms
• Joint-VO-SF1: 92 ms
• StaticFusion1: 1.221 sec

They are evaluated with 1 C++ implementation on a laptop
computer as described in the first paragraph of Section V or
2 Matlab on a desktop computer (Intel i5-3770 at 3.4 GHz).
Also, we make algorithms fetch RGB-D images of the same
VGA size for fair comparison.

VI. CONCLUSIONS
In this paper, we proposed a real-time robust visual odom-

etry algorithm via rigid motion segmentation using grid-
based scene flow. The proposed algorithm is considerably
more robust and accurate than the state-of-the-art visual
odometry algorithms. For robustness, the proposed spatial
motion segmentation uses scene flow to generate and search
distinct motions with no prior information such as the shape
or number of objects. Besides, temporal segmentation initial-
izes and updates a dual-mode motion model of the grid cell
so that our algorithm differentiates stationary background
and dynamic objects robustly. Finally, the ego-motion is
estimated by the use of scene flow vector fields belonging
to the stationary background. An additional benefit of the
proposed algorithm is that it can be combined with the

existing visual odometry algorithms to improve their robust-
ness in dynamic environments. Furthermore, the proposed
approach can estimate the motion of moving objects unlike
the other existing algorithms, so it can be employed as a
part of an efficient dynamic obstacle avoidance algorithm
for an autonomous robot by using the kinematic information
of moving objects.

REFERENCES

[1] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Com-
puter Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, vol. 1. IEEE,
2004, pp. I–652.

[2] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics & Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

[3] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 573–580.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[5] A. Dib and F. Charpillet, “Robust dense visual odometry for rgb-d
cameras in a dynamic environment,” in Advanced Robotics (ICAR),
2015 International Conference on. IEEE, 2015, pp. 1–7.

[6] S.-J. Jung, J.-B. Song, and S.-C. Kang, “Stereo vision-based visual
odometry using robust visual feature in dynamic environment,” The
Journal of Korea Robotics Society, vol. 3, no. 4, pp. 263–269, 2008.

[7] R. Sabzevari and D. Scaramuzza, “Monocular simultaneous multi-
body motion segmentation and reconstruction from perspective views,”
in Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 23–30.

[8] Y.-H. Tsai, M.-H. Yang, and M. J. Black, “Video segmentation via
object flow,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 3899–3908.

[9] H. Jung, J. Ju, and J. Kim, “Rigid motion segmentation using random-
ized voting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 1210–1217.

[10] D.-H. Kim and J.-H. Kim, “Effective background model-based rgb-d
dense visual odometry in a dynamic environment,” IEEE Transactions
on Robotics, vol. 32, no. 6, pp. 1565–1573, 2016.
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