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Abstract— Hybrid ground and aerial vehicles can possess
distinct advantages over ground-only or flight-only designs in
terms of energy savings and increased mobility. In this work
we outline our unified framework for controls, planning, and
autonomy of hybrid ground/air vehicles. Our contribution is
three-fold: 1) We develop a control scheme for the control
of passive two-wheeled hybrid ground/aerial vehicles. 2) We
present a unified planner for both rolling and flying by lever-
aging differential flatness mappings. 3) We conduct experiments
leveraging mapping and global planning for hybrid mobility in
unknown environments, showing that hybrid mobility uses up
to five times less energy than flying only1.

I. INTRODUCTION

In recent years, the development of Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)
has been increasingly maturing in various applied fields,
including agriculture [1], search and rescue [2] [3], delivery
[4], and military applications [5]. However, the widespread
adoption of autonomous vehicles still faces significant chal-
lenges, including those introduced by effective mobility in
diverse environments.

While UAVs have great advantages over UGVs in terms of
their ability to traverse difficult terrain, they are constrained
by high energy requirements, short flight times, and low
payload capabilities. They are also fragile, non-robust to
collisions, and may be adversely affected by large wind or
gust disturbances. On the other hand, UGVs can be designed
to carry larger payloads, be more resistant to damage with
heavier, more robust frames, and carry larger sources of
power. The trade-off is that many points of interest are often
inaccessible from the ground. Hybrid UAV/UGV vehicles
are designed to combine the advantages of both classes
of systems by moving on the ground to save power when
possible, and flying when terrain constraints do not allow
otherwise.

There has been some considerable interest in hybrid
ground/aerial vehicles in recent years. The most common
approach seems to be the use of passive or actuated wheels
attached to the frame of a drone or quadrotor in various con-
figurations [6], [7]. Other designs include a quad-rotor hinged
inside a rotating cage [8], modular or adaptive structures
which change configuration for flight or ground mobility
[9], [10], [11], and even legged drones [12], [13]. These
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Fig. 1. Rollocopter hardware configuration

efforts are interesting explorations into the design space of
hybrid ground/air drones. The focus of this work, however,
is a unified guidance, navigation, controls, and autonomy
stack specifically geared towards Unmanned Hybrid Vehicles
(UHVs).

In this work, we make use of a hybrid vehicle which
consists of a quad-rotor aerial vehicle with two passive
wheels attached to each side of the frame of the quad-rotor.
This design has been previously considered in [14], [15]
and has the advantage of possessing the aerial power and
agility of a quad-rotor while maintaining a low additional
mass profile from the added wheels.

The objective of this paper is to describe a unified
framework for controls, planning, and autonomy of hybrid
ground/air vehicles. We take a unified planning approach
which generalizes both rolling and flying by taking advantage
of differential flatness mappings for quadrotors [16] as well
as for two-wheeled non-holonomic wheeled mobile robots
[17]. This results in a planner with the same structure for
both mobility modes. We present a study of autonomous
navigation of our hardware platform in environments which
require hybrid mobility, showing 5x energy savings of hybrid
mobility vs. flying only.

The main contributions of this work are as follows:
1) Control of non-actuated two-wheeled hybrid quadrotor

vehicles.
2) A unified hybrid trajectory planner for both rolling and

flying.
3) Mapping and global planning for hybrid mobility in
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unknown environments.

II. SYSTEM OVERVIEW

Fig. 2. Figure shows reference frames: world frame w (green), body frame
b (blue) i.e. fixed w.r.t the quadrotor frame and rolling frame r (red), whose
z-axis points in the direction of the surface normal of the ground and is
separated from the body frame only by a rotation along y-axis.

We first outline the overall system architecture and de-
scribe the various components. We begin with a description
of the frames used in this work. Three frames are used which
we call world, body, and rolling, the last of which is unique
to the hybrid design (See Figure 2). Note that in this work
we are assuming that the ground is flat, hence, zw is parallel
to zr.

The full state of the quadrotor while in flight is given as
xa = (w~p,w~v,Ra,

w ~ωa)∈R3×R3×SO(3)×R3, and the input
is given by u = (|F |,bMx,

bMy,
bMz) which maps to ~F i.e. the

thrust of four motors. Similarly, the full state while rolling
is given by xg = (w pg,

w vg,Rg,
w ωg) ∈ R2×R2×SO(2)×R

while the control input is same that for flying.
As shown in Figure 3, our system architecture takes a

unified approach to hybrid ground and aerial autonomy. Sen-
sors in the hardware layer feed raw perceptual information
to the perception layer. Visual Inertial Odometry (VIO) is

Fig. 3. System architecture

Notation

f ∈ {w,r,b} Reference frames defined in Figure 2
s ∈ {g,a} Mobility state: g ground/rolling and a aerial/flying
f~pg ∈ R2 Position x, y of rolling frame w.r.t. world frame repre-

sented in f frame
f~pa ∈ R3 Position x, y, z of body frame w.r.t. world frame repre-

sented in f frame
Rg ∈ SO(2) Orientation of rolling frame w.r.t. world frame
Ra ∈ SO(3) Orientation of body frame w.r.t. world frame
f~vg ∈ R2 Linear x, y velocity of rolling frame w.r.t world frame

represented in f frame
f~va ∈ R3 Linear x, y, z velocity of body frame w.r.t world frame

represented in f frame
f ~ωg ∈ R Angular z velocity of rolling frame w.r.t world frame

represented in f frame
f ~ωa ∈ R3 Angular velocity of body frame w.r.t world frame repre-

sented in f frame
f~ag ∈ R2 Linear x, y acceleration of rolling frame w.r.t world frame

represented in f frame
f~aa ∈ R3 Linear x, y, z acceleration of body frame w.r.t world

frame represented in f frame
f~αg ∈ R Angular z acceleration of rolling frame w.r.t world frame

represented in f frame
f~αa ∈ R3 Angular acceleration of body frame w.r.t world frame

represented in f frame
~F Thrust vector whose elements represent thrust of each

motor
θ Angle between z-axis of rolling frame and z-axis of body

frame
ψ Yaw between rolling frame and world frame

xd Desired state
x̂ Estimated state

x f f Feedforward state

used to estimate the current pose. The pose, along with
pointclouds from range sensors, is used to create a map of
the environment in the Local Mapper. This map is passed
along to a geometric planner, the Hybrid Global Planner,
which plans hybrid trajectories in pursuit of some objective,
e.g. reach some global goal or explore unexplored space.
Hybrid trajectories are generated which contain information
about when the robot should roll, fly, land, takeoff, etc. A
local waypoint from this global trajectory is passed along
to the lower level Local Planner. This planner generates
kinodynamically feasible trajectories which balance collision
avoidance with reaching the goal. It is able to handle both
rolling and flying trajectories in a unified manner. Once a
feasible trajectory is selected, a setpoint along that trajectory
is passed to the low-level Controller module. The controller
is a hybrid controller which can perform both rolling and
flying maneuvers and can track given setpoints. It sends de-
sired attitudes/motor thrusts to the low-level flight controller
or ESCs. In the next section we describe the hybrid controller
and show experimental verification of its efficacy.

III. CONTROLS FOR FLYING AND ROLLING

We first describe the control architecture that used for
flying and then extend this architecture for ground mobility.



A. Flying Controller

Position
Controller

Position
& Velocity
Controller

Acceleration
Mixer

Yaw
Controller

Pitch
Controller

Drone

w px,
w py,

w ṗx,
w ṗy

tan−1(wey/
wex)

rMz

rax
b
θpitch

bMy
|F |,bMx,

bMz

Fig. 4. Architecture of the flying controller

Figure 4 shows the non-linear back-stepping controller
used for flying [18], [19]. The controller receives the desired
state w~p,w~v,w~a,w ψ from the local planner. The feedback
position controller uses a proportional control law to gen-
erate the desired velocity. The velocity controller generates
a desired acceleration based on the desired velocity from
the position controller and a feed-forward term from the
position controller using a PID control law. The acceleration
mixer calculates the desired thrust |F |1 and attitude R based
on desired acceleration, feed-forward acceleration and yaw.
Similar to the position controller, the attitude controller
generates a desired angular velocity in body frame based
on error in attitude based on proportional control law and
the body rate controller uses this to generate to generate a
desired moment based on a PID control law. We refer readers
to [19] for the exact equations of the dynamics and control.

B. Rolling Controller

The following are the key differences between rolling and
flying modes:

• In rolling mode, we assume a no-slip condition: the
robot cannot have a velocity along body y-axis due to
the non-holonomic constraint.

• The bandwidth of yaw dynamics for rolling is lower
than that for flying due to interaction with the ground.

• The pitch dynamics for rolling are as fast as flying
assuming the friction in the bearing of the wheels is
negligible.

• The roll of the robot is constrained such that the wheels
always maintain contact with the terrain while rolling.
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Fig. 5. Architecture of the Rolling controller

Based on this intuition we extend the flying control
architecture for rolling as shown in Figure 5. The following
shows the equations of the control law for rolling mode.

Position Controller: Desired velocity along x-axis in
rolling frame is calculated using a proportional control law

on error in position as follows

weg =
w pd

g−w p̂g (1)
reg = R(ψyaw)

weg (2)
rvgx =

pos kp(
reg) (3)

Yaw Controller: The yaw controller generates a desired
moment in rolling frame using a PD control law on S1 as
follows:

w
ψ

d = tan−1(wegy/
wegx) (4)

weψ = dS(1)(
w

ψ
d ,w ψ) (5)

rMz =
ψ kp(

weψ)+
ψ kd(

wėψ) (6)

Velocity Controller: The velocity controller generates a
desired acceleration based the desired velocity and feed-
forward velocity as follows:

r ėgx = (rvg
d
x +

rvg
f f
x )− r v̂gx (7)

rax =
vel kd(

r ėx)+
vel kI χ1 (8)

Acceleration Mixer:
b
θ

d
pitch = sin−1(raxm/|F |) (9)

bMx,
b Mz = R(b

θ̂pitch)
rMz (10)

Pitch Controller:
bepitch = dS(1)(

b
θ

d
pitch,

b
θ̂pitch) (11)

bMy =
pitch kp(

bepitch)+
pitch kd(−b

θ̇pitch)+
pitch kI χ2 (12)

where poskp, ψ kp, ψ kd , velkd , θ kp, θ kd and θ kI are constant
gains, (χ1, χ2) the integral position tracking error of velocity
and pitch angle respectively.
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Fig. 6. Step responses for the pitch, velocity and yaw controllers for rolling.

1) Experimental Validation: We first show performance of
the pitch controller while keeping the wheels fixed (Figure
6). After tuning the pitch controller, we give desired step
inputs in x velocity and plot the response. Finally we give
step inputs in yaw and tune the yaw controller.
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Fig. 7. Performance of rolling controller in response to changing set-points
given by the local planner while traversing through the test course. Plots
show position responses in x and y as well as yaw.

After tuning the controller with step responses we test
the performance of rolling in a test course, as discussed in
Section VI-B. This demonstrates that the robot is able to
successfully navigate with course without colliding, proving
the efficacy of the rolling controller.

C. Transition between Rolling and Flying

As shown in Fig 3 transition between flying and rolling
is made by the Local planner. Besides position, velocity and
acceleration, the hybrid controller receives the mobility mode
s : ground or aerial.

Take-Off: Take-off is triggered by increasing the set-point
along the z-axis in world frame and finished when the ground
clearance is above a certain threshold.

Landing: Landing is triggered by asking for a negative
velocity along the z-axis in world frame and finished when
the ground clearance is lower than a certain threshold for 1
second.

IV. LOCAL PLANNING

A. Hybrid Differential Flatness Planning

The design requirements of our local planner are as
follows:

1) Accept position waypoint goals in the world frame.
2) Plan kino-dynamically feasible trajectories which are

collision-free, for both rolling and flying.
3) Weigh competing costs of reaching the goal vs. main-

taining a safe distance from obstacles.
4) Replan at the rate of received instantaneous point-

clouds for agile responsiveness to dynamic obstacles.
5) Return a position and velocity setpoint for the con-

troller to track.
Various trajectory planning methods exist in both the

literature and in practice. Our approach seeks to fulfill
these design requirements in a way that takes into account
hybrid mobility. To this end we use a motion primitive-based

approach. Generally motion primitives are computed via
alternative paths [20] or by generating trajectories to a selec-
tion of waypoints within the field of view [21]. In this work
we take the latter approach, generating kino-dynamically
feasible trajectories using the same representation for both
aerial and ground mobility.

Prior work has shown that differential flatness mapping-
based planning for quadrotor flight has advantages in terms
of agility, computational efficiency, and simplicity of design
[22], [23]. Similar differential-flatness based mappings ex-
ist for a variety of non-holonomic vehicle configurations,
including two-wheeled mobile robots [24], [17]. We first
begin with a brief overview of differential flatness mappings
for planning, then show how the dynamics of two-wheeled
mobile robot maps to a subspace of the flat space of
quadrotor dynamics (Figure 8). This enables us to plan using
the same representation for rolling and flying, leading to a
unified hybrid local planner.

Fig. 8. Differential flatness

It has been shown [22] that one can find a mapping from
the state xa and control u to a flat space consisting of four
variables: za = (w~pa,ψ) and the derivatives of z. Define a
trajectory za(t) : [t0,T ] → R3 × SO(2) as a smooth curve
parameterized by t. There exists a smooth mapping Φ, such
that (xa,u) = Φ(za, ża, z̈a,

...z a,
....z a). This is the differential

flatness mapping from the dynamics of the quadrotor in flight
to a flat space. Prior work has shown that one can construct
minimum-snap polynomial trajectories in this flat space
which map back to trajectories of the quadrotor dynamics
[22]. Here we take a similar approach and define polynomial
trajectories by their start and end points while assuming the
accelerations, jerks, and snaps at these points are 0, i.e.
za(t) = (~pa(t),ψ(t)), ża(t) = (w~v,w ˙ψ(t)), z̈ f (t) =

...z f (t) =....z f (t) = 0 for t = t0 and t = T .
We now review a similar deferentially flat mapping for

two-wheeled mobile robots [17]. When the vehicle is rolling
on flat ground, the state representation is reduced to xg =
(~xg,ψ) and the control inputs are ug = (rvgx, ψ̇). There exists
a differential flatness mapping from xg and ug to the flat space
zg = (w~p), i.e. (xg,ug) = Ψ(zg, żg). Note that zg is a subspace
of za. We therefore can plan trajectories for rolling using the
same polynomial representations we use for generating flight
trajectories. Instead of generating 4-dimensional polynomials



in za, we generate two-dimensional trajectories in zr. In this
way we maintain a consistent architecture and pipeline for
both mobility modes.

For both mobility modes, primitives are created based on
a selection of endpoints. An arc of endpoints are created in
the horizontal plane around the vehicle are determined based
on a given distance horizon. In the aerial mode, additional
endpoints at different heights are included at a variety of
angles above and below the horizontal plane as seen in Figure
9.

Fig. 9. Motion primitives radiating outward from the origin of the
vehicle, with color-coded costs. Red represents primitives which are in
collision. Dark red are primitives within the near-collision buffer. Dark
green primitives are free-space primitives. Bright green indicates the lowest
cost primitive. Note that primitives radiate outwards in x,y and z. The pink
sphere is the local goal, and the blue arrow is the current pose of the vehicle.
Colored boxes represent occupied space with color representing the height.

B. Selecting Optimal Trajectories

After generating a set of possible kinodynamically feasible
trajectories, the planner needs to select the best one. The mo-
tion primitives are checked for collisions by using multiple
query points along each primitive. For each query point, the
distance to the nearest collision point in the representation
of the environment is determined using a KD-tree search.
If the distance to the nearest obstacle dobstacle is less than
the radius of the vehicle, the trajectory is considered to be
in collision and rejected by assigning it a large collision
cost Ccollision = 106. On the other hand, if dobstacle is larger
than some buffer value, say 1 meter, then we consider it
to be in near collision and it is given a collision cost of
Ccollision = 100×Wg−dobstacle, where Wg is a constant factor
which weighs moving towards the goal against staying away
from obstacles. We then assign the total cost of the primitive
as

Cgoal =Wg×dgoal

Ctotal =Ccollision +Cgoal

C. Choosing a controller setpoint

The lowest cost primitive is used to generate a setpoint for
the controller. This setpoint can be the point along the trajec-
tory corresponding to the current time. When replanning with
a high frequency, this setpoint can be a fixed time interval
ahead of the initial time at which the trajectory begins.

When the local planner receives a new goal, that goal has
a mobility mode associated with it. If the mobility mode
of the goal is different from the current mobility mode, the
local planner will switch mobility modes, either from rolling
to flying or vice versa. The local planner will then send
a flying controller setpoint to command takeoff or landing.
The takeoff command is achieved by sending an increasing z
position setpoint to the controller. This transition is declared
complete when the ground clearance is sufficiently high.
Similarly, the landing command is sent to the controller
as a negative velocity in the z direction. When the ground
clearance is approximately equal to the wheel radius for
a specified time interval, the vehicle is declared as having
landed.

D. Localization-free robustness

In GPS-denied environments, or where position informa-
tion is not available (i.e. ~p is unknown), position control
is no longer feasible. A common approach is to perform
collision avoidance on instantaneous collision information
and follow walls (see [25], [26], [27], [28], [29], and many
others). Our hybrid motion primitive approach is well-suited
to this type of behavior. When localization is unavailable,
we send desired velocities only, since velocity estimates are
more reliable even when position-based localization fails.
Because the differentially flat trajectories are very cheap
and easy to generate, it is possible to re-plan at a high
frequency, even at the frequency of instantaneous collision
point clouds. Even without mapping and localization, basic
collision-avoidance behaviors emerge from this framework.
This provides a level of robustness to unreliable localization
methods. More discussion about localization and mapping
follows in the next section.

V. LOCALIZATION, MAPPING, AND GLOBAL PLANNING

A. Localization

The ability to safely navigate and traverse unknown and
GPS-denied environments necessitates a reliable autonomous
localization system that can run in real-time. The system
utilizes ORB-SLAM2 with RGB-D data from the Intel
Realsense cameras for pose estimation. ORB-SLAM2 is an
open-source SLAM system for monocular, stereo, and RGBD
cameras which leverages the speed of ORB features and
back-end bundle adjustment to enable lightweight and ac-
curate real-time localization [30]. This pose estimate (~p,ψ)
is fused with the IMU onboard the Pixhawk flight controller
via an onboard EKF to produce state estimates.

B. Mapping

Mapping for mobile robots is a well-studied problem [31].
In this work we take a traditional approach and leverage
existing work. The point clouds from a 3D LIDAR along
with the state estimates are combined into a local map using
OctoMap that can be used for higher fidelity planning and
navigation in geometrically complex environments. OctoMap
is an open-source mapping framework which utilizes the
octree data structure and probabilistic occupancy estimation



to efficiently generate three-dimensional models of the envi-
ronment [32]. A local map of obstacles is generated in a 5m
× 5m × 3m region around the current position, and is cleared
upon localization failure. The hybrid mobility of the vehicle
makes mapping especially important due to the limited field
of view in elevation angle of the VLP-16 LIDAR as well as
occlusion by the wheels.

C. Hybrid Global Planning

The vehicle autonomously navigates through the freshly
mapped environment to a goal position through the use of
an A* search planner [33]. Nodes of the search graph are
placed in free space. An incrementally updated Euclidean
Distance Transform (EDT) is calculated from the occupancy
map through a brushfire algorithm to determine whether a
node is in collision or close enough to an obstacle to be
considered collided [34]. Each node has a cost which is
determined by its distance from obstacles. An additional cost
for flight is added to nodes which are above the ground.
This cost is formulated to account for the increased energy
required to fly compared to rolling and results in paths which
prioritize rolling over flying when the terrain allows for it.
See Figure (10).

D. Local Waypoint Generation

Given the hybrid path planned by A*, the global planner
sends a goal to the local planner. This goal is chosen by
taking the nth node further along the path from the current
position. If the next node in the path is a different mobility
mode than the current state of the vehicle, then a transition
is requested of the local planner and controller, either from
rolling to flying or vice versa. The replanning frequency is
determined by octomap updates and the length of time taken
to perform A* search, generally on the order of 1-2Hz.

VI. EXPERIMENTS

In this section, we show experiments to compare energy
consumption for different mobility modes of the rollocopter.

A. Hardware

Figure 1 shows the hardware configuration of the Rol-
locopter system. The electronic speed controllers (ESCs),
motors, and propellers are used to control the drone. The
wheels, connected to the drone by the main shaft, are made
of a light carbon-fiber honeycomb structure. The vehicle is
actuated by the propellers and uses the wheels for rolling,
thus enabling hybrid mobility. The platform uses the follow-
ing sensors onboard:
• RealSense RGB-D Camera: This camera provides the

stereo and RGB-D images which can be used for
simultaneous localization and mapping algorithms, such
as ORBSLAM.

• Velodyne 360o VLP-16 LIDAR: The LIDAR provides
a point cloud around the vehicle with a 360o azimuth
angle and ±15o elevation angle field of view. This is
used for collision checking and local mapping.

• IR LED-based height sensor (TeraRanger Evo 64px):
Two TeraRanger Evo 64px height sensors [35] are used

to provide bottom and top clearances. These sensors
are critical for mitigating the limited field of view of
the Velodyne sensor in the downwards and upwards
directions.

• Pixhawk flight controller: We use a Pixhawk flight
controller with onboard IMU, gyroscope and attitude
estimation.

• Encoders: We utilize wheel encoders to aid in velocity
estimation while operating on the ground.

• Intel NUC: The system is equipped with onboard com-
puting, an Intel i7 Core processor and 32GB RAM. The
system runs Ubuntu 16.04 and we use ROS [36] for
message passing and handling.

The total mass of the system is 4.231 kg. The wheels, bear-
ings, and mounting, weigh around 500g. We experimentally
verify a maximum thrust rating of 62.5 N.

B. Test Environment

The test course in Figure 11is suitable for both flying and
rolling and contains narrow corridors and hairpin turns. It
also contains removable obstacles for testing hybrid mobility.
The walls are 1.5m high and removable obstacles are 0.4m
high. The top of the course is covered to create an enclosed
maze. The total length of one circuit around the track is
approximately 18m. Due to the narrow width of the corridors
(1.2m) and the frequent 180o turns, a high degree of collision
avoidance, and mobility is required.

C. Energy Comparison of Different Mobility Modes

Our first experiment was a comparison between rolling
and flying. We collected rolling and flight data in the test
course and log battery voltage and current levels. The desired
velocity of both air and ground traversal was set at 0.3 m/s.
A comparison between the average power used during both
mobility modes is found in Table I. In these experiments
we found that on average, rolling is 5x more efficient
than flying. This is a conservative lower bound, and further
gains in energy efficiency while rolling should be possible,
since we did not dynamically adjust the thrust of the rolling
controller. We leave this for future work.

As an initial estimate of the hybrid vehicle’s energy
efficiency over a purely aerial vehicle of a similar configu-
ration/mass without the hardware needed to roll, the average
power consumption of both cases can be compared. While
we experimentally verified the power consumption of the
vehicle with wheels in Table I, we approximate the average
power consumption of an aerial vehicle without wheels to
be roughly 650 W. From this approximation and our experi-
mentally determined average power consumption values, the
minimum percentage of rolling time to total travel time to
justify a hybrid vehicle configuration over a purely aerial
one is calculated as 41.4%. This value is obtained under the
assumption that the average power consumption of the hybrid
vehicle is a time-weighted average of the experimentally
determined power consumption values of rolling and flying.

Next, we conducted experiments to quantify the power
consumption of the vehicle in rolling only, flying only



Fig. 10. Time sequence of planned hybrid transition from rolling to flying and back to rolling. Colored blocks are occupied voxels colored by z height.
Blue/Red path indicates hybrid planned path where blue is rolling and red is flying. Transparent spheres denote A* nodes. Pink sphere is goal waypoint
sent from the global planner to the local planner. Motion primitives from local planner are shown. Note that as the vehicle moves forward, an obstacle is
revealed and a small hop over it is planned and executed.

3m

6m

1.2m

Fig. 11. Top-down view of test course with walls represented by black
lines. The red lines represent removable obstacles. The green point and
arrow represent the starting pose of the vehicle.

Mobility Mode Avg. Power (Watts) σ

Rolling 194.5 17.6
Flying 971.9 66.3

TABLE I
COMPARISON OF AVERAGE POWER USAGE DURING ROLLING VS. FLIGHT

OVER 7 MINUTES. ROLLING IS 5X MORE EFFICIENT.

and hybrid modes while planning autonomously in the test
course. We first removed any obstacles to allow the vehicle
to traverse the entire course without flying. We verified that
the planner chooses to roll at all times. We plotted the
power used as well as energy consumption as a function
of the ground distance the vehicle travels (Figure 12. We
then add the obstacles to the course. The hybrid planner
autonomously plans trajectories through the course, flying
when it encounters an obstacle, then landing again, in an
energy-optimal manner (Figure 10). Finally, we force the
local planner to fly only, traversing through the course on
flight alone to perform a comparison between hybrid mobility
vs. flight.

In these experiment shown in Figure 12 we observed about
a 3.5x reduction in power consumption while rolling vs.
flying, due to the use of a higher desired thrust while rolling.
However, >5x power reductions are entirely feasible by
using lower rolling thrust. This reduction depends on a num-
ber of factors including wheel friction, terrain traversability,
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Fig. 12. Comparison of power and distance capabilities of the hybrid
platform while rolling, hybrid planning, and flying in the test course. The
hybrid planner flies over three obstacles, while rolling was tested with all
obstacles removed.

vehicle configuration, etc. See [14], [15], [37] for a more
thorough treatment of the energy trade-offs associated with
this design.

VII. CONCLUSIONS

With the hybrid vehicle system design, we are able to
show advantages in reduced energy consumption, increased
maximum run times, and increased distance traveled, which
translates to further exploration of unknown environments.
We have presented a novel controller for rolling, a unified
planning framework for both ground and aerial mobility, and
experiments quantifying the energy savings of hybrid mo-
bility while exploring unknown, constrained environments.
Future work includes a more comprehensive analysis and
design of controllers for ground mobility on rough terrain,
consideration of differential flatness trajectory optimization
in the context of Model Predictive Control, and investigation
of other hybrid vehicle designs.
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