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Abstract— Learning actions from human demonstration is an
emerging trend for designing intelligent robotic systems, which
can be referred as video to command. The performance of
such approach highly relies on the quality of video captioning.
However, the general video captioning methods focus more on
the understanding of the full frame, lacking of consideration
on the specific object of interests in robotic manipulations.
We propose a novel deep model to learn actions from human
demonstration video for robotic manipulation. It consists of
two deep networks, grasp detection network (GNet) and video
captioning network (CNet). GNet performs two functions:
providing grasp solutions and extracting the local features for
the object of interests in robotic manipulation. CNet outputs
the captioning results by fusing the features of both full frames
and local objects. Experimental results on UR5 robotic arm
show that our method could produce more accurate command
from video demonstration than state-of-the-art work, thereby
leading to more robust grasping performance.

I. INTRODUCTION

Learning actions from human demonstrations is an attrac-
tive capability for robotic systems, which enables to learn
more complex skills and tasks without the need of manually
programming. Currently, this technique remains challenging
due to the difficulty of understanding human actions. As
robots become more and more omnipresent, there is an
increasing need for developing intelligent robotic systems
which can understand human demonstrations and perform
diverse tasks.

An intuitive method for imitating human actions is to
record the human body motion trajectories by using wearable
sensors. For instance, Koenemann et al. [1] captured the hu-
man motions using inertial sensors attached to the individual
body segments. Also, one can directly teach the robots to
carry out a task by physically moving it through a desired
trajectories, such as the known kinesthetic teaching [2].
Calinon et al. [3] propose to make the robot learn the actions
of itself generated by the remote control of human. Although
these methods work well for specific tasks, the diversity of
actions they could learn is limited due to involving extra
physical systems to assist learning.

The pioneering video to command (V2C) attempt was
made by Nguyen et al. [4], which shows that the robotic
actions can be learned directly from human demonstration
videos. Given a human demonstration video, they first extract
visual features, and then feed them into an encoder-decoder
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Fig. 1. Overview of our approach.

architecture to generate a command sentence. The command
is finally executed by the robot using an affordance detection
network [5]. By this procedure, the problem of understanding
human actions is simply cast as a video captioning task
which describes visual contents with natural language. So
the major advantage of [4] lies in the adoption of a general
video captioning approach [6] [7]. Since the general video
captioning approach focuses on the global feature of the
full frame, rather than the local features of manipulated
objects, the method in [4] tends to perform worse in complex
scenarios, such as the pick-and-place tasks shown in our
experiments.

To make the video captioning more adaptable to our
robotic manipulation tasks, we propose to fuse the global
features (full frame) and local features (manipulated objects)
together. For this purpose, we design a robotic system
consisting of two modules, grasp detection network (GNet)
and video captioning network (CNet). (see Fig. 1). Similar to
[4], we use a CNet to translate human demonstration videos
to command sentences. The difference is that our CNet takes
as input not only global features but local features. The local
features come from a specially designed GNet, which mainly
serves to provide grasp solutions. Note that in [4] the grasp
solutions are generated by an affordance detection network
[5], which however cannot provide the local features we
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desire and thus is not applied in our method. In experiments,
our method presents desired grasping performance by obtain-
ing better captioning results than [4].

The remainder of this paper is organized as follows. We
provide an overview of the related work in Section II, then
describe the proposed method in Section III. Experiments
are presented and discussed in Section IV. Finally, the paper
is concluded in Section V.

II. RELATED WORK

Robots with the capability of learning actions from human
demonstrations have been widely studied in the robotics
community. In this section, we review the work mostly
related to our approach.

Most of the methods of learning human actions operate
at the level of configuration-space trajectories [8] [9] [10].
Some researchers used kinesthetic teaching as the approach
to provide demonstrations for a robot to learn from demon-
strations [2] [11] [12]. However, it is difficult to collect
suitable demonstrations for real-world robotic manipulation
via kinesthetic teaching. Another approach is to learn tasks
through demonstrations which were captured by teleoper-
ation devices [13] [14] [15]. The work in [16] [17] [18]
tried to capture the human motions with a motion capture
system consisting of sensors which were installed on the
demonstrator. Rojas et al. [19] used a Xbox to collect data
for the evaluation of people with hip disease. Li et al.
[20] [21] developed a wearable system for real-time human
motion capture to assist learning. Although these methods
successfully worked, it is costly to capture the training
demonstration data for the need of extra expensive physical
systems, such as virtual reality headsets and motion capture
sensors.

Intuitively, imitating human actions just by watching the
demonstration videos is more meaningful and practical in
real-world robotic applications. Welschehold et al. [22] pro-
posed to transform human demonstrations to different hand-
object trajectories in order to adapt to robotic manipulation
tasks. The work in [23] [24] [25] studied the human pose
tracking task by estimating human pose and human parts po-
sitions in demonstration videos. Aksoy et al. [26] introduced
a framework that represents the continuous human actions
as semantic event chains (SEC) and identifies the types
of performing manipulations according to SEC. However,
these methods mostly need explicit representations (e.g.
objects, hand grasping types, and human pose) and do not
provide further meaningful clues that can be used in robotic
applications.

Recently, Nguyen et al. [4] proposed to learn actions from
human demonstration videos by casting the the problem of
understanding human actions as a video captioning task.
The caption is translated to a command for robotic actions.
This learning process seems more intuitive and practical, and
probably enables the robotic system to learn complex skills
or tasks without the need of tedious manual programming.
Therefore, the performance of such method highly relies on

Fig. 2. A grasp representation, (x,y) corresponds to the center of grasp
rectangle, θ is the orientation of the rectangle relative to the horizontal axis,
‘blue block’ is the object category label.

the quality of video captioning. However, a general caption-
ing approach [6] [7] is adopted in [4], which focuses on the
understanding of the full frame, rather than the objects of
interest in robotic applications. This limits their performance
in complex scenarios, such as the pick-and-place tasks shown
in our experiments. To address this issue, we propose a novel
framework to improve the performance of video captioning
and object grasping.

III. PROPOSED METHOD
We introduce a novel approach to improve the perfor-

mance of learning actions from human demonstration videos
for robotic applications. The approach is built on two models:
grasp detection network (GNet) and video captioning net-
work (CNet). GNet is developed to provide grasp solutions
for commands execution and to improve the performance
of CNet by providing a video difference map. CNet is
used to translate human demonstration videos to command
sentences. The two models are detailed as follows.

A. GNet based Robotic Grasp Detection

In general, the robotic grasp detection aims to find a
solution to pick up and hold the objects in a given image.
Similarly to [27] [28], we define the representation of a grasp
solution as follow:

g = {x, y, θ, l}, (1)

where (x, y) corresponds to the center of grasp rectangle, θ
is the orientation of the rectangle relative to the horizontal
axis, and l denotes the object category label. Fig. 2 shows
an example of our grasp representation.

To efficiently detect the robotic grasp, we propose GNet,
which combines object segmentation and object classification
in an end-to-end manner. As shown in Fig. 3, GNet consists
of three components: a) a segmentation network which is
used to obtain object masks; b) a grasp solution generator
which outputs grasp solutions by fitting a minimum rectangle
[27] to each object based on the object mask; c) a classifi-
cation network for predicting the object category label. The
operation mechanisms of the above three components are
detailed as follows.



Fig. 3. An illustration of our GNet. From left to right: A segmentation network is first used to generate object mask. Then the grasp generation branch
calculates the grasp position and orientation of each object. The classification branch generates a color mask and classify the object region through a CNN.
Finally, the grasp position, orientation and category label are combined as a complete grasp representation.

1) Segmentation Network: Badrinarayanan et al. [29] pro-
posed SegNet, a deep convolutional encoder-decoder archi-
tecture for real-time image segmentation. Our segmentation
network is built upon this architecture.

As illustrated in Fig. 3, SegNet contains two basic compo-
nents: a) an encoder network which extracts visual features;
b) a decoder network which classifies each pixel indepen-
dently. We take 4-channel images (RGBD) as our input. In
our dataset, images are center cropped to 360×480 size from
its original 540×960 size. The final output is a binary object
mask with the size of 360×480. Specifically, the pixel value
of object mask is 0 and 1 corresponding to background and
object. We refer the readers to [29] for the details of the
SegNet.

2) Grasp Solution Generator: In order to grasp different
objects in real robotic applications, we develop a method
to generate grasp solution from a object mask outputted
by the segmentation network. Considering that noisy points
may exist in the object mask, we only focus on the cluster
that has more than 200 points. Following the approach in
[30] [27], we first find a convex hull for each cluster. Then
we fit a minimum rectangular bounding box around each
cluster based on its convex hull. From this rectangle, we
calculate the rectangle center point as (x, y) in Eq. (1) and
the orientation of the rectangle relative to the horizontal axis
as θ in Eq. (1).

Besides generating grasp solution, object mask can also
be used to obtain a color mask. Given an original image and
its object mask, we obtain the color mask as follows:

Icm = Im � Io, (2)

where Io, Im and Icm denote the original image, object
mask and color mask, respectively; and � is Hadamard
product. As shown in Fig. 3, the color mask retain the
object information and eliminate the influence of illumination
variations, shadow and tablecloth appearance at the same
time.

The input for the following classification network (CNN)
is the object region bounded by a rectangular box B=(x, y,

w, h) where (x, y) are the coordinates of the center of B, and
(w, h) denote the width and height of B. As shown in Fig. 3,
the box can be easily located by our object mask.

3) Classification Network: The last step in our grasp
detection is to obtain the object category label (l in Eq. (1))
for a complete grasp representation. In our work, we classify
the object through a CNN which has five convolutional layers
and three fully-connected layers. We use a final 17-way
softmax to produce a distribution over the 17 class labels.

In our end-to-end architecture, we use a multi-task loss L
to jointly train the segmentation network and the classifica-
tion network as follows:

L = Lseg + Lcls, (3)

where Lseg and Lcls are the loss functions defined for seg-
mentation network and classification network, respectively.
Specifically, Lseg and Lcls are defined as follow:

Lcls(p, u) = − log(pu), (4)

Lseg(m, s) = −
1

N

∑
i∈Image

log(msi
i ), (5)

where pu is the predicted probability of class u, msi
i is the

softmax output at pixel i for the true label si, N is the number
of pixels in image.

B. CNet based Video Captioning

As in [4], we propose to translate the human demonstration
videos to command sentences by video captioning, which is
implemented with a sequence to sequence architecture built
on Long-Short Term Memory (LSTM) [31], as shown in
Fig. 4, called CNet in our paper. To improve the captioning
performance, different from [4], our CNet inputs not only
the global (frame) feature but the local (object) feature. The
details are as follows.

1) Problem Formulation: Given an input video, we extract
visual features X = {x1, x1,..., xn} from the video using
a pre-trained CNN network, where xi is the feature of ith
frame. The output command is presented as a sequence of



Fig. 4. An overview of our CNet. xi1 is the feature of the i-th frame and xi2 is the VDM feature. EOC means the end of the command sentence.

word vectors S = {s1, s2,..., sn}, in which each vector si
represents one word vector. As aforementioned, we use a
grammar-free form to describe the output command for the
convenience of mapping each word in the command sentence
to the real robot command.

As in [7], we identify the most likely sentence for a given
video by training a model to maximize the log likelihood
of the sentence S, given the corresponding video V and the
model parameters θ.

θˆ= argmax
θ

∑
(V,S)

log p(S | V ; θ), (6)

2) Video Features Fusion: We improve the performance
of translating videos to commands by fusing global feature
and local feature. In most robotic applications, the robot
manipulate objects on a fixed table and we mainly focus
on the manipulated object rather than the whole scenarios.
Intuitively, we can represent the changes of video contents
just by the difference between the start frame and end frame,
referred as video difference map (VDM). However, it is
usually hard to obtain a high quality difference map due to
illumination changes and shadow. To address this, our trained
GNet is used to extract the color masks of start frame and
end frame from a demonstration video. Then a high quality
difference map can be obtained by the difference between
the two color masks.

Subsequently, we extract visual features from uniformly
sampled video frames I ={I1, I2,..., In} and VDM using
a pre-trained CNN network, denoted as F(I) and F(V)
respectively. At last, the global feature F(I) and local feature
F(V) are integrated as inputs to LSTM encoder.

Since our fused features have different dimensions from
the standard LSTM unit, we adjust the input unit in the
first LSTM layer. In our application, for an input feature

xt at time step t, it includes both F (I) and F (V ). We only
connect F (I) and F (V ) to half of the xt units, since it
allows different input units to specialize on modeling image
features.

3) Captioning Scheme: We use a sequence to sequence
architecture to build our translation model and select LSTM
as our RNN unit. As shown in Fig. 4, in the encoding stage,
the first LSTM layer takes the visual features X = (x1, x2,...,
xn) as inputs and computes a sequence of hidden states H
= (h1, h2,..., hn). In the decoding stage, the second LSTM
layer converts the list of hidden encoder vectors He into the
sequence of hidden decoder vectors Hd. The final list of
predicted words S is achieved by applying a softmax layer
on the output Hd of the LSTM decoder layer.

In the experiments, we set the number m of output words
equals to the number n of input frames. Specifically, for the
input video, we uniformly sample 30 frames in the video.
Since the number m of words in the output commands is
always smaller than 30, we pad a special empty word to the
list until we have 30 words. In practice, we add an extra word
to the dictionary to denote the end of command sentences.

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of the proposed
approach by examning its two key components, GNet and
CNet. For this, as illustrated in Fig. 5, we design two pick-
and-place tasks, namely stacking blocks and placing fruits
into containers, on a UR5 robotic arm. In what follows, we
introduce and analyze the experimental settings and results.

A. Datasets

Using a UR5 robotic arm, we test our approach on two
tasks, stacking blocks on a table and placing fruits into



Fig. 5. Two pick-and-place tasks by UR5 robotic arm. The left part is the human demonstration and the right part is the robotic imitation.

containers. For robotic study, our scenarios are more repre-
sentative and easier to reproduce compared to the ’breakfast’
scenario tested in our competitor [4], which involves the
tasks of ’turn off stove’, ’open flour lid’, ’stir egg’, etc. The
videos and images for our scenarios are collected as follows.

1) Dataset for CNet: The human demonstration video
is generated as follows. First, we capture raw videos that
contain human actions using a Kinect camera. In each
scenario, we randomly select objects and place them on a
table at random locations and orientations. Then we segment
raw videos into 5,980 short clips (approximately 36 seconds
long). All short clips are center cropped to 480×480 resolu-
tion from its original 540×960 resolution. Each short clip is
then annotated with a grammar-free command sentence that
describes the human action. We use 70% of the dataset for
training and the remaining 30% for testing.

2) Dataset for GNet: The dataset contains the images
of our testing scenarios and their labels at pixel level. The
RGBD images are captured with a Kinect camera, downsam-
pled to the size 360×480 size from its original 540×960 size.
In total, the dataset has 5,160 images, covering 17 object cat-
egories (pink block, blue block, yellow block, green block,
red block, purple block, orange block, pear, kiwi, apple,
lemon, orange, green plate, blue plate, red plate, blue cup,
red cup) and 35,986 annotated object regions. We use 70%
of the dataset for training and the remaining 30% for testing.

B. Experimental Settings and Results

1) GNet based Physical Grasping: To evaluate the grasp
detection performance of our GNet, we conduct real robotic
grasp experiments on a UR5 robotic arm, by comparison
with three typial grasp approaches, Hybrid Grasp [32], Multi-
Modal Grasp [33] and Multi-Object Grasp [34].

The experimental setups are as follows. We use two
different kinds of input data to train our network. First,
we use only the RGB images (GNet-RGB), then we use
both the RGB and their corresponding depth images (GNet-
RGBD). We train the network for 3000 epochs in an end-
to-end manner using stochastic gradient descent. The batch
size is empirically set to 10. Note that, [33] and [34] took

TABLE I
COMPARISON OF GRASP SUCCESS RATES.

Method Grasp Success Rate

Multi-Modal Grasp (RGBD) [33] 66% (79/120)
Hybrid Grasp (RGB) [32] 76% (91/120)
Multi-Object Grasp (RGBD) [34] 90% (108/120)
GNet-RGB 86% (103/120)
GNet-RGBD 93% (112/120)

RGBD images as input, [32] used RGB images as input.
Objects from 12 categories in our dataset were used for
this experiment. For each test, several objects were randomly
placed on a table at different locations and orientations. We
assume all objects on the table are reachable. It is noted that
we combine the 2D information yielded by GNet with the
corresponding depth information to plan a robotic execution.
We performed 120 trials (each object was tested 10 times)
and a grasp is considered successful if the robot can grasp,
raise, and hold the object for more than 3 seconds.

The grasp success rates are shown Table I. It can be
seen that our GNet-RGBD reaches the success rate of 93%,
higher than other competing methods including our GNet-
RGB. This implies that the depth feature can improve grasp
performance. Overall, the experiments demonstrate that our
GNet behaves favorably in the real grasp task.

2) CNet based Video Captioning: To evaluate the video
captioning performance of our CNet, we baseline our ap-
proach with the V2C translation model [4]. We select two
popular pre-trained CNN as our feature extractor: VGG16
[35], Inception v3 [36]. The captioning results are measured
with four standard metrics, BLEU [37], METEOR [38],
ROUGE L [39], and CIDEr [40].

The implementation is detailed below. We use 512 hidden
units in LSTM. For the input, we sample 30 frames uniformly
from each video. Sequentially, we consider each command
has maximum 30 words. If not enough, we pad the empty
word at the end of the list until it reaches 30. We train the
CNet for 200 epochs using stochastic gradient descent. The
batch size is empirically set to 15.



Fig. 6. Four captioning examples of the V2C [4] and our CNet. For each example, the left is the human demonstration. The right shows the groundtruth
caption and the captioning results yielded by V2C [4] and ours.

TABLE II
COMPARISON OF CAPTIONING RESULTS.

Bleu 4 METEOR ROUGE L CIDEr

V2C VGG16 0.130 0.362 0.584 1.381
V2C Inception v3 0.136 0.365 0.593 1.437

Ours VGG16 0.458 0.450 0.752 4.216
Ours Inception v3 0.510 0.465 0.775 4.676

The captioning results are shown in Table II. It can be
observed that our CNet achieves a better performance than
V2C when we utilize VGG16 or Inception v3. As discussed
before, the performance improvement mainly arise from the
fusion of the frame feature and VDM feature.

C. Demonstration of the Robotic System

In the paper, our ultimate goal is to build an intelligent
robotic system to understand and imitate the human actions
from videos. For illustration, we test our approach on a UR5
robotic arm to conduct pick-and-place tasks. Specifically,
we perform 20 tasks and each task is marked as success
or fail depends on whether the robot can imitate the hu-
man actions correctly. The video can be found at the fol-
lowing link: https://www.youtube.com/channel/
UCBCRYLvS8y3cx5qXPCwXT8Q

To test the robustness of our approach, we impose two
challenges to the manipulated objects: a) They are diverse
in color, shape and weight, such as the fruits and blocks
shown in Fig. 5; b) Their positions are randomly placed
before each testing. Finally, we achieve success rates of

80% (16/20), which obviously outperforms the success rates
of V2C [4], 35% (7/20). Fig. 6 shows some examples of
captioning results.

From the experimental videos and results, we can see
that our approach presents stable performance across the
appearance and position changing of the manipulated objects,
while our closest competitor V2C [4] often fails. This verifies
the robustness of our approach.

V. CONCLUSIONS

In the paper, we investigated the problem of learning
actions from human demonstration video based on deep
neural networks. The whole grasping framework consists of
two deep sub-networks: GNet and CNet. To obtain accurate
command and make the video captioning more adaptive
to robotic tasks, CNet was developed to fuse the global
(frame) feature and the local (object) feature of interest
together. GNet was designed to play two roles: provide grasp
solution and generate features for the objects of interests
in robotic manipulation. Extensive results in grasping tasks
demonstrated the superiority of the proposed system over
state-of-the-art work.
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