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Abstract— We propose and demonstrate a framework called
perception as prediction for autonomous driving that uses
general value functions (GVFs) to learn predictions. Perception
as prediction learns data-driven predictions relating to the
impact of actions on the agent’s perception of the world. It
also provides a data-driven approach to predict the impact of
the anticipated behavior of other agents on the world without
explicitly learning their policy or intentions. We demonstrate
perception as prediction by learning to predict an agent’s
front safety and rear safety with GVFs, which encapsulate
anticipation of the behavior of the vehicle in front and in the
rear, respectively. The safety predictions are learned through
random interactions in a simulated environment containing
other agents. We show that these predictions can be used to
produce similar control behavior to an LQR-based controller in
an adaptive cruise control problem as well as provide advanced
warning when the vehicle behind is approaching dangerously.
The predictions are compact policy-based predictions that
support prediction of the long term impact on safety when
following a given policy. We analyze two controllers that use
the learned predictions in a racing simulator to understand the
value of the predictions and demonstrate their use in the real-
world on a Clearpath Jackal robot and an autonomous vehicle
platform.

I. INTRODUCTION

Understanding the world by learning predictions and using
those predictions to act intelligently in the world is becoming
an important topic of research, cf [1][2][3][4][5][6]. Modern
theory of the brain shows that we are predictive machines that
constantly try to match incoming sensory inputs with predic-
tions [7]. An important highlight of this work are that actions
and sensory perception are intimately related suggesting that
when building intelligent predictive machines, learning to
make action-oriented predictions could be a valuable way
for an machine to understand and interact with the world.
The Horde framework embraces this idea of predicting sen-
sorimotor signals [1] using general value functions to learn
and make action and policy dependent predictions where a
robot is able to learn to predict quantities like time-to-stop
and time-to-obstacle by exploring and interacting with its
environment. This idea was extended to learn predictions
at multiple time scales [6]. There have been a number of
successful applications of general value functions (GVFs)
including controlling a myoelectric robotic arm prosthesis
[2] and controlling a laser welding robot from a camera [3].
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Recently, action-conditioned predictions were learned and
used to navigate a robot with a camera [4] improving
upon a similar technique introduced in [5]. They proposed
supervised learning to learn to predict future event cues
in the environment off-policy, such as through random ex-
ploration in the environment. They used existing detection
methods to label the event cues. Our work distinguishes
from composable action-conditioned predictors [4] in several
ways. Firstly, we learn to make predictions with temporal
difference (TD) learning [8] instead of supervised learning.
The advantage of learning policy-based predictions with TD
is that they are easier to learn while a composable action-
conditioned predictor must generalize to all possible action
sequences and policies. In their work, an action sequence is
needed to make long term predictions; however, in our work,
the predictions are policy-based predictions that predict the
accumulated value after executing the policy to completion.
In [9], trajectories of other traffic actors are predicted using
deep learning from an image. While a powerful approach, it
can be difficult to learn in comparison to predicting safety
with GVFs; we argue that predicting the trajectory of the
traffic actors is not required. Instead, we advocate predicting
the impact of an action taken by our agent on our safety
without explicitly detecting and predicting the other traffic
actors and their trajectories. That is the prediction of the other
traffic actors is implicit by directly connecting the state of
the environment and actions of our (ego) agent directly with
the goal of evaluating and predicting our safety in a dynamic
environment containing many traffic actors.

Control with GVFs though does not permit evaluating the
safety of all possible policies; however, we hypothesize that
making predictions about a small collection of policies can be
a powerful way to control the vehicle. The reason is that we
ignore action trajectories that are unrealistic or impossible
to execute. As an example, a driver will not change the
throttle, brake or steering very rapidly and thus most policies
of interest are smooth; these policies embody the skills, or
policies, that are available to our agent. We demonstrate
in our experiments that there is one target policy that is
very useful in the adaptive cruise control problem: ”what
will happen if I keep doing what I’m doing?” The intuition
behind this special target policy is that it provides a signal
that a controller can use to adjust its action. We believe there
are other useful policy-based predictions but we focus on
learning and analyzing predictions with this target policy in
this paper.

Ultimately, our goal is to bring action-oriented predictions
to the autonomous vehicle that are expressive enough to be
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applied across many kinds of tasks including but not limited
to (a) adaptive cruise control, (b) lane keeping, (c) lane
change, (d) obstacle avoidance, (e) intersection navigation,
and (f) parking. In this work, we focus on learning predic-
tions that will be analyzed and demonstrated on the task
of adaptive cruise control (ACC). The goal of ACC is to
reduce rear-end collisions which account for nearly half of
all vehicle crashes in the United States [10][11]. A number
of ACC methods use predictive models, cf. [12][13][14][15],
however the predictive models employed are next state
predictions which impose significant computational burden
since the model has to be iterated many times to search
for action sequences that minimize a cost function. We
desire long term predictions using temporal difference (TD)
learning [1][6][8][16] that are computationally efficient to
learn and make while being a useful signal for control.

One important question that arises is what is the best
way to use these predictions? We highlight two possible
controllers although we don’t make claims that they are
better than existing controllers. Our desire is to demonstrate a
new way to think about building autonomous vehicles that we
hope is closer to the way we think humans drive a vehicle. In
addition, we hope that this work highlights some early build-
ing blocks that could be combined with other predictions and
traditional perception outputs to build a scalable predictive
control platform for autonomous driving that helps abstract
some of the complexities of the environment when building
the controllers.

One of the important contributions of this work is showing
that we can make GVF predictions in the presence of
other agents. Previous works in general value functions [1],
[2], [3], and [6] do not focus on multi agent prediction
problems like autonomous driving. Because these predictions
are learned from interactions in an environment with other
agents, these predictions are potentially capable of under-
standing and implicitly predicting how other agents will act
in the environment, and also react to our agent’s actions.
For example, the safety predictions that we learn in this
paper can learn to pick up cues in the behavior of the other
agents in order to anticipate whether they will brake, and
thereby reduce safety, or accelerate, and thereby increase
safety. Embedding this expectation of how another agent
will act into the prediction of safety could be important for
adapting an autonomous vehicle’s behavior to different kinds
of situations and drivers.

The contributions of this work are as follows:
• Advocating and demonstrating that learning and using

action-conditioned policy-based predictions with GVFs
in autonomous driving could be useful in better under-
standing the world and how an agent can impacted it
by its actions

• Learning predictions in a multi-agent environment that
includes an expectation of the behavior of other vehicles
in the environment and their reaction to our vehicle’s
behavior

• Demonstrating action-conditioned policy-based predic-
tions in adaptive cruise control and rear-end safety

predictions
The rest of the paper is organized as follows: section II

describes the proposed architecture, section III introduces the
training algorithms used to learn the GVFs, and section IV
details our experiments.

II. PERCEPTION AS PREDICTION IN AUTONOMOUS
DRIVING

A common approach to designing an autonomous vehicle
is to build layers to abstract the decision making that happens
in planning and controlling a vehicle, cf. [17][18]. At a high
level shown in figure 1, the planning layers use the world
model generated by perception tasks to decide on a route,
choose behaviors such as when to change lanes and then
plan a path in the world. This is then passed to a control
layer that executes the plan produced by the planning layers
including lateral (steering) and longitudinal control (throttle
and brake).

Fig. 1. Classical autonomous driving architecture

We propose augmenting this architecture with action-
oriented predictions as shown in figure 2.

Fig. 2. Perception as prediction autonomous driving architecture

The key difference is that this architecture makes predic-
tions with both sensors and actuator signals similar to modern
understanding of the brain discussed in [7]. This is an impor-
tant distinction because it enables the autonomous agent to
understand how the actions taken affect the sensor readings
as well as the objects detected by a traditional perception
pipeline. This information is very helpful in allowing an
agent to understand what actions to take in order to achieve
a variety of goals in the environment. What’s beautiful
about this approach is that when we learn a prediction, the
prediction can be independent of the task in the environment
and therefore represents part of the agent’s knowledge of the
world. Therefore this architecture enables the application of
action-oriented predictions that can potentially be applied to
multiple tasks in the environment such as slowing down to
avoid a collision with a slower vehicle or engaging obstacle
avoidance behavior by either conducting an in-lane or out-
of-lane maneuver.

We propose using GVFs first introduced in [1] to realize
perception as prediction in autonomous driving. We learn



to predict our own speed, safety and safety of the vehicle
behind us using GVFs and build two controllers using the
predictions to understand the utility of these predictions: a
fuzzy controller and a rule-based controller. We don’t use
the safety of the vehicle behind us for control purposes
since it is unclear how to exploit that information for control
purposes but we show that it can, for example, be used as
an advanced warning system. The predictions learned and
demonstrated here can be combined with other predictions
to achieve control solutions to more complex problems in
autonomous driving.

III. METHODS

A. Safety Cumulants

We start by defining safety; this is one of the important
values we wish to predict with the GVF framework. We
borrow from a classical definition of safety in autonomous
driving and adaptive cruise control using the inter-vehicle
distance model also called headway, cf. [15][19]. However,
we extend this model to three dimensions to allow for
use with high dimensional LIDAR sensors as well as low
dimensional radar sensors. The safety function is the pseudo-
reward signal (also called the cumulant in general value
function literature) which the predictor must learn to predict.
The safety cumulant function cf maps the current state st at
time t to a ego safety score on the interval [0, 1]. There are
two safety zones in our implementation: ego safety (or front
safety) and rear safety. Front safety is a binary value defined
by

cf (st) =

{
0, if nf > βf .

1, otherwise.
(1)

where nf is the number of points returned by either
LIDAR or radar sensors that are inside the front safety zone
(or box) and βf ≥ 0 is a minimum threshold. When using
sensor fusion data to predict safety, cf (st) = 0 if a vehicle is
detected in the front safety zone by the fusion module and is
otherwise cf (st) = 1. The width of the front safety zone is
the width of the vehicle plus a safety margin and the height of
the front safety zone is the height of the vehicle plus a safety
margin for clearance. The length of the front safety zone is
the headway to the vehicle in front and is proportional to the
vehicle’s speed following the inter-vehicle distance model

hf = dmin + vτ (2)

where τ is the desired headway in seconds, dmin is the
stand-still distance, and v is the current speed of the vehicle.
For rear safety, we build a three dimensional safety zone for
the rear vehicle and calculate hr = dmin + vrτ where vr is
the speed of the rear vehicle.

B. Learning to Predict Safety with GVFs

General value functions [1][6] form the basis of our per-
ception as prediction framework to learn action-conditioned
predictions of future safety. Unlike [1] and [6], the predic-
tions learned in this present work are action-conditioned

predictions Qπ(s, a) which are a function of state s and
action a conditioned on policy π; we use TD(λ = 0) instead
of GQ(λ) to learn them. Thus, the predictive question we aim
to answer is ”will I be safe if I take action a and take similar
actions thereafter?” This predictive question is a predictive
model of the world that permits queries over a set of possible
next actions where subsequent actions are assumed to be
similar.

The goal is to learn an estimator that predicts the return
of the cumulant Gt defined by

Gt ≡
∞∑
k=0

(

k∏
j=0

γt+j+1)ct+k+1 (3)

where 0 ≤ γt < 1 is the continuation function and ct is
the cumulant (pseudo-reward) sampled at time t. The general
value function is defined as

Qπ(s, a) = Eπ[Gt|st = s, at = a, at+1:T−1 ∼ π, T ∼ γ]
(4)

where π, γ, and c make up the predictive question [1].
Each GVF Qπ is approximated with an artificial neural
network parameterized by θ denoted as q̂π(s, a, θ).

Using non-linear function approximation introduces po-
tential challenges in learning because there is no proof of
convergence. In addition, off-policy learning where the target
policy π may be different from the behavior policy µ could
be problematic with deep neural networks if importance
sampling ratios are required.

The approach adopted here uses TD(λ = 0) [20] to learn
the predictions using non-linear function approximation with
an experience replay buffer. The loss for the general value
function q̂π(s, a, θ) is given by

L(θ) = Es∼dµ,a∼µ[(y − q̂π(s, a, θ))2] (5)

where the target y is produced by bootstrapping a prediction
of the value of the next state and action taken from the target
policy π given by

y = Es′∼P,a′∼π[c+ γq̂π(s′, a′, θ)] (6)

where y is a bootstrap prediction using the most recent
parameters θ but is ignored in the gradient descent. dµ is
the state distribution of the behavior policy µ and P is the
Markovian transition distribution over next state s′ given
state s and action a. The time subscript on c and γ has been
dropped to simplify notation. If the agent behaves with the
same policy as the target policy π such that µ(a|s) = π(a|s)
then the approach is on-policy learning otherwise when the
policies are different, it is off-policy. Note that this approach
doesn’t correct for the state distribution dµ because it still
depends on the behavior policy µ. Both on-policy and off-
policy approaches were tried but the behavior policy was
constructed such that it was very similar to the target policy
and thus no appreciable difference was noticed when learning
on-policy or off-policy.



The gradient of the loss function (5) is given by

∇θL(θ) = Es∼dµ,a∼µ,s′∼P [δ∇θ q̂π(s, a; θ)] (7)

where δ = y− q̂π(s, a; θ) is the TD error. When the agent
observes a state s and chooses an action a according to
its behavior policy, it receives cumulant c, continuation γ
and observes next state s′ and store this tuple in the replay
buffer. If the behavior policy is π, we also store the next
action a′ that the agent takes in the replay buffer otherwise
we generate an action a′ ∼ π and store it in the replay
buffer. The experience stored in the replay buffer is given by
the tuple (s, a, c, γ, s′, a′). When training the GVF, a mini-
batch of m < n samples, where n is the size of the replay
buffer, is sampled randomly to update the parameters θ. The
updates can be either accomplished on-line, while collecting
and storing experience in the replay buffer, or off-line.

Algorithm 1 GVF training algorithm
1: Initialize replay memory D to capacity n
2: Initialize action-value function q̂π

3: Observe initial state s0
4: Sample first action a0 ∼ µ
5: for t=0,T do
6: Execute action at and observe state st+1

7: Compute cumulant ct+1 = c(st, at, st+1)
8: Compute continuation γt+1 = γ(st, at, st+1)
9: Sample target action a′ ∼ π

10: Store transition (st, at, ct+1, γt+1, st+1, a
′) in D

11: Sample random minibatch of transitions
(si, ai, ci+1, γi+1, si+1, a

′) from D
12: Compute yi = ci+1 + γi+1q̂

π(si+1, a
′; θ)

13: Perform gradient descent step on (yi− q̂π(si, ai; θ))2
according to (7)

14: Sample next action at+1 ∼ µ

The training algorithm is described in detail in algorithm
1. The algorithm is general for predicting the return of any
cumulant; in this work, we learn separate estimators: one for
each cumulant of future front safety, rear safety, and speed.
Predicting speed is accomplished with the current speed of
the ego vehicle as the cumulant; the prediction is an average
of future speeds of the vehicle across a defined temporal
horizon. Our motivation for predicting speed was that it
was found to be slightly non-linear with different gear ratios
and the fuzzy controller architecture in particular benefited
from having predictions of speed when choosing an action
to maintain safety. The cumulants are scaled by a factor of
1−γt+1 to normalize them; this ensures the predicted safety
is on the interval [0, 1] since the sum of an infinite geometric
series of 0 ≤ γ < 1 is 1/(1− γ) if γ is constant.

C. Predictive Control

In this section, we describe two very different controllers
that are able to use the predictions of safety and speed to
control the vehicle. Both a fuzzy controller design and a
rule-based controller design are introduced. The objective in

analyzing several controller designs in the simulator environ-
ment is to understand the utility of the predictions learned
and ensure that the performance achieved was not in part due
to a particular controller design. The action space is different
between each platform that we tested on and so there are
small differences between the controllers in TORCS, on
the Clearpath Jackal robot and on the autonomous driving
platform. These details will be discussed in the experimental
section.

1) Fuzzy Predictive Controller: A classical fuzzy rea-
soning architecture was developed to test the predictions
learned in TORCS: a popular racing simulator. The controller
selects an action ât given a collection of predictions about
front safety and speed made by the GVFs. This architecture
requires some tuning of the fuzzy sets to achieve the desired
behavior. The controller aims to select actions that are front
safe, close to target speed and comfortable. The architecture
is depicted in figure 3.

Fig. 3. Fuzzy controller architecture

There are fuzzy sets defined for each objective: front safe,
close to target speed and comfortable as depicted in figure
3. These are tuned manually to achieve the desired behavior.
The controller uses the predictions as models of safety and
speed by sweeping across a set of possible next actions
ât ∈ Â given current state st and producing predictions
for each hypothetical action the agent could take. These
set of predictions are converted into a membership value
through the fuzzification step that represents how closely
the prediction achieves the desired safety, target speed, and
comfort levels, respectively. Comfort is defined as a fuzzy
set over the action space emphasizing smaller throttle and
brake actions as being more comfortable. These fuzzy sets
are combined into a single goal fuzzy set using the product
t-norm operator. The action was determined by calculating
the centroid of the goal fuzzy set g(a)

at =

∑
∀ât∈Â g(ât)

mât∑
∀ât∈Â g(ât)

m
(8)

where m is a parameter that controls the greediness of
the action selected. Increasing this parameter improves the
responsiveness of the controller.

2) Rule-based Predictive Controller: The second predic-
tive controller is a rule-based design. Two different rule-
based designs were used depending on the environment with



the primary difference being how the action space is defined.
For the first rule-based controller, the algorithm is given
below.

Algorithm 2 Rule-based Safety Controller with Speed
1: procedure ACT(st, at−1)
2: Predict future safety v̂front = q̂πfront(st, at−1)
3: Predict future speed v̂speed = q̂πspeed(st, at−1)
4: if v̂front < β then
5: at = at−1 − αdecel(1− v̂front)
6: else
7: espeed = max(emin,min(emax, vtarget − v̂speed))
8: at = at−1 + αspeedespeed

9: return min(amax,max(amin, at))

The parameter β is the threshold that dictates when the
controller starts to respond to unsafe situations. The αdecel
controls the rate of deceleration when the controller is unsafe.
Otherwise, the controller is a simple proportional controller
that aims to achieve a target speed vtarget. The action space
for this controller is typically throttle and brake.

A second rule-based controller was used when integrating
the controller in both the robot and autonomous driving
platform where there exists a control layer between adaptive
cruise control module and the actuators. In this case, the
adaptive cruise control module must supply a target speed to
the control layer to execute the command.

Algorithm 3 Rule-based Safety Controller without Speed
1: procedure ACT(st, at−1)
2: Predict future safety v̂front = q̂πfront(st, at−1)
3: if v̂front < β1 then
4: at = at−1 − αdecel(1− v̂front)
5: else if v̂front > β2 then
6: at = at−1 + αaccelv̂front
7: else
8: at = at−1

9: return min(max(at, 0.0), vtarget)

There are two safety threshold parameters for hysteresis
such that β1 <= β2; whenever the prediction is between
these two parameters, the action doesn’t change.

IV. EXPERIMENTS

An analysis of the predictions and the control behavior of
the controllers that use the predictions are provided in the
TORCS environment under a number of different scenarios.
After evaluation, the rule-based controller was selected for
implementation on the Jackal robot and the autonomous
vehicle platform since it performed similarly with the fuzzy
controller and was simpler to tune. A two stage approach
is used: (1) learn the predictors by following the predictor’s
target policy and (2) use the predictors in autonomous driving
applications (such as a warning system or adaptive cruise
control).

A. Training the Predictors

The target policy chosen was the normal distribution
centered on the last action taken, i.e. π(at|st, at−1) =
π(at|at1) = N (at−1, σ

2) where σ is a tunable parameter.
This target policy represents the question ”what if I keep
doing what I’m doing?” The behavior policy chosen was a
Wiener process where the next action is the last action plus
noise generated by a normal distribution centered on the last
action taken and with standard deviation equal to σ for our
target policy. However, in order to facilitate exploration of
the state and action space, the agent occasionally interrupts
the Wiener process and chooses a random action according
to uniform probability and then continues with the random
walk. A large value of σ is desirable to improve exploration
of the state and action space but when choosing large σ, it
can be challenging to learn longer term predictions since the
actions are changing too rapidly.

We trained predictions for a number of different γ values
including 0.95, 0.975 and 0.983 which correspond to approx-
imately 1 second, 2 second and 3 second prediction horizons.
When training the safety predictors, other vehicles are needed
on the road in order to predict their impact on our safety.
Therefore, the training terminates with γ = 0 upon collision
with another vehicle. When training the speed predictor, we
do not train with other vehicles on the road and so there is
no termination condition.

B. Analysis of TORCS Experiments

We experimented on a number of different scenarios but
here we highlight the two most challenging high-speed
scenarios: (a) emergency stop and (b) follow-and-stop. The
target speed in both of these experiments was 100 km/h. In
the first scenario the vehicle approaches a stopped vehicle
and must stop quickly to avoid collision. In the second
scenario the vehicle follows a slower vehicle going 80 km/h
which then abruptly stops requiring the vehicle to react and
slow down without a collision. The LQR baseline solution
described in [19], called ACC/CA, was implemented in
TORCs as a representative for the state of the industry.
ACC/CA is a full-range adaptive cruise control system that
aims to completely avoid rear-end collisions when vehicle-
following in unsafe situations while driving comfortably
during normal driving conditions. The system parameters are
tuned by using real-driving data. We chose to compare to
ACC/CA because of the additional driving control strategies
for avoiding collisions in unsafe situations when safety
becomes more important than comfort. The target safety
parameters for all controllers were defined by a desired
spacing of τ = 3 seconds, minimum stopping distance
of dmin = 4 meters and βf = 0. The parameters of the
controllers were tuned in order to achieve similar or better
performance than the baseline. The objective was not to beat
the baseline but to match its performance and show that the
predictions can be used to control the vehicle.

The sensor data used to predict safety was the distance
to the vehicle front, the change in the distance, the previous
change in the distance, the speed of the ego vehicle, and



percentage of throttle and brake. The speed predictor was
only learned and used in TORCS and we used the current
speed, the engine RPM, gear ratio and percentage of throttle
and brake as inputs.

In the first set of experiments, the performance of the
predictions is analyzed by comparing them with the safety
signals being predicted. The ACC/CA baseline controller is
used to drive the vehicle.

The safe distances for front and rear are shown in figure
4(c) and (f) for reference. The safety GVFs predict both front
and rear safety effectively and anticipate when the safety
could change based on observations of the other agents. For
example, in figure 4(b) where the back safety dips at around
t = 58 s, the vehicle is slowing down very quickly while the
vehicle behind is not reacting fast enough. Once the vehicle
behind starts to decelerate sufficiently, the predictions jump
back up again predicting that the vehicle is safe from a rear-
end collision. The predictive performance is relatively good
for all values of γ. γ = 0.983 predicts longer term in some
cases. For example in figure 4(b), the vehicle starts from a
standstill and accelerates with the rear vehicle accelerating
quickly behind it resulting in being temporarily unsafe. Yet
the GVF at γ = 0.98 predicting higher values than the other
predictors likely because it was predicting longer term into
the future.

In figure 5, the safety distances and acceleration profile
is plotted when using the GVF predictions to control the
vehicle. The rule-based and fuzzy-based controllers perform
similarly which suggests the predictions learned are useful
for the chosen controllers. The behaviors are not vastly
different from the ACC/CA controller which acted as our
target baseline. Our goal was to achieve similar or better
performance to ACC/CA to demonstrate that controlling a
vehicle with GVF predictions is a viable approach. From
figure 5(b), the GVF-based controllers appear to optimize
the safety rather well and in particular the controllers using
γ = 0.983 tend to keep the vehicle safer during deceleration
possibly because of being longer-term predictions. In fact,
in most of our experiments, the GVF-based controllers did
not cross the safety distance threshold. It is worth pointing
out that sometimes the actual safety did not change despite
the predictions changing such as in figure 5(b); this behavior
is due to the ego vehicle stopping quickly while the vehicle
behind did not initially apply the brake enough; however,
this was eventually rectified to prevent an unsafe situation.
This is also why the longer term prediction γ = 0.983 has a
smaller value initially. It is also noted that while γ = 0.983
weights the future samples more heavily in the prediction, it
is harder to learn with TD learning where larger values of γ
can lead to instability in training.

In terms of computational complexity, the GVF-based ap-
proach with the fuzzy controller required only 21 predictions
of front safety to determine a suitable next action. The
reason is because the predictions are policy-based rather than
action trajectory-based which otherwise would have required
a significantly larger search space over all possible action
sequences. We trained an MPC with a non-linear model (not

shown here for lack of space) and roughly 3000 predictions
were required per time step with an action sequence depth of
5 to achieve similar performance as the proposed approach.
We also note that training a non-linear model was difficult
in comparison to the GVF approach but the performance
was similar. We therefore argue that policy-based predictions
are a viable way achieve predictive control while keeping
computational requirements low. In addition, the rule-based
controller did not require an action search because it relied
on the specific choice of target policy to make a policy-based
prediction which was used as an error signal in a proportional
controller to change the action in the correct direction.

C. Demonstrating in the Real-World

We then trained front safety predictions using a deep
convolutional neural network in Gazebo to test on a real-
world Clearpath Jackal robot. In the training environment,
randomly shaped geometric objects were generated in the
scene to help with sim-to-real transfer to the real-world as
shown in figure 6.

We then tested the predictors on the ClearPath Jackal
robot. The robot has a Hokuyo UTM 30LX laser range finder
which produces 1040 distance measurements in a 260◦ arc
in front of the robot. A 5MP front facing color camera was
used to follow blue tape for lateral steering control while the
rule-based controller in algorithm 3 was used for longitudinal
control. The state vector st of the Jackal robot consisted of a
history of three LIDAR measurements (each of 1040 points)
and current speed vt. We used a deep neural network with 6
convolutional layers and 2 fully connected layers to predict
safety from the LIDAR measurements. The safety parameters
τ = 1.5 seconds and dmin = 0.4 meters were used since the
robot can stop fairly quickly. These parameters were chosen
because the robot is able to stop very quickly.

The safety predictors were tested on a real robot where
we tried several different situations: (a) following a human
with varying walking speeds along a pre-defined path, (b)
approaching a stationary obstacle, and (c) reacting to a
person walking in front of the robot suddenly. In all cases,
the robot was able to stop without collision. There was some
difficulty with interference from strong reflections off some
objects in the test area. This was relatively easy to detect and
filter out by replacing measurements less than the minimum
range of the sensor with an average range value across the
entire measurement.

We also trained front safety predictors in the Webots sim-
ulator environment for deploying on an autonomous vehicle
in a controlled environment rather than on public roads. The
objects detected in the scene were supplied as input to the
neural network which included the distance and speed of the
vehicle in front and in the same lane. We tested the rule-
based controller using the predictors and discovered a mis-
match between the behavior of the underlying controller that
controlled the target speed in simulator and on the vehicle.
The controller on the autonomous vehicle responded slowly
which initially created challenges in tuning the proportional
controller. A derivative term was added and this stabilized the



(a) Front safety predictions (b) Back safety predictions (c) Safety distances

(d) Front safety predictions (e) Back safe predictions (f) Safety distances

Fig. 4. Predicting front and rear safety with different values of γ without using the predictions for control. Top row (a)-(c) is from the emergency stop
scenario and the bottom row (d)-(f) is from the follow-and-stop scenario.

(a) Safe front distance in emergency stop scenario(b) Safe front distance in follow-and-stop scenario (c) Deceleration in follow-and-stop scenario

Fig. 5. Plots of the deceleration regions of the two scenarios for all values of γ and the two GVF-based controllers are given in plots (a)-(c). (a) The
safe front distance is plotted for the emergency stop scenario starting at 100 km/h. (b) Safe front distance is plotted in the follow-and-stop scenario. (c)
Deceleration in m/s2 the follow-and-stop scenario.

control for a comfortable ride. An emergency brake test was
performed where both virtual and real objects were placed in
the scene of the vehicle requiring it to stop immediately. The
tests showed that the vehicle was still able to respond safely
in situations that required emergency braking. Finally, we
proceeded to test the vehicle in a large circular road where
the vehicle had to stop for pedestrians and other vehicles. The
performance was often comfortable and the speed control
usually felt human-like.

V. CONCLUSIONS

In this work, a perception as prediction framework for
autonomous driving using GVFs is presented where we focus
on predicting safety several seconds into the future. The
predictions learned were both action-oriented and policy-
based and it was demonstrated with two different controllers
that one could use the predictions to efficiently and safely
control a vehicle in the presence of other vehicles and

objects. Based on our experiments, action-oriented safety
predictions could be very useful in passive alert systems or
in controlling a vehicle. We believe the safety predictions
learned could form the basic building blocks in constructing a
more comprehensive control platform in autonomous driving
that would rely on learned predictors that better understand
how the vehicle’s actions and the actions of others can
change the environment perceived by the agent’s sensors. We
argue that training an agent to understand how actions impact
sensory inputs is an important component in controlling an
autonomous vehicle. In fact, this idea is not new. Model
predictive control uses a model that informs the agent how
its actions will impact the environment and enables it to
find an action trajectory that minimizes a cost function. The
difference is that the GVF predictions are an alternative way
to learn and view predictions; one benefit is that they are
efficient to use as one prediction is made to describe the final



Fig. 6. Gazebo training environment for the Jackal robot. This figure shows
the ego vehicle and two social vehicles. The ego vehicle is a simulated Jackal
robot with a laser range finder and its sensor readers are used for offline
training. We also spawn several additional Jackal robots for social vehicles.
The social vehicles have a white cube on them so that the ego vehicle’s
laser scan can detect them. The simulated Jackals all do a random walk of
their linear velocity. Randomly shaped geometric objects are also spawned
in the scene to help improve sim-to-real transfer performance.

outcome of following a given policy rather than making a
sequence of state predictions to evaluate an action.

Finally, we were able to demonstrate that safety predictors
learned in simulation can be transferred to a real-world robot
and autonomous driving platform to assist in navigating the
world safely. In the future, we plan to extend this work
to include safety predictions in multi-lane highways. If a
GVF predictor can predict safety where there are multiple
vehicles in multiple lanes, then perhaps the GVF predictor
can implicitly understand what a lane is and identify what
cues to look for when predicting when a vehicle will change
lanes and thereby impact our safety. In addition, we hope to
extend this work to learn predictions off-policy from real-
world driving behaviors since the distribution of policies of
other agents is hard to model in simulator and better learned
from real-world data.
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