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Robot Learning via Human Adversarial Games

Jiali Duan*, Qian Wang*, Lerrel Pinto, C.-C. Jay Kuo and Stefanos Nikolaidis

Abstract— Much work in robotics has focused on ‘“human-
in-the-loop” learning techniques that improve the efficiency of
the learning process. However, these algorithms have made
the strong assumption of a cooperating human supervisor that
assists the robot. In reality, human observers tend to also act
in an adversarial manner towards deployed robotic systems.
We show that this can in fact improve the robustness of
the learned models by proposing a physical framework that
leverages perturbations applied by a human adversary, guiding
the robot towards more robust models. In a manipulation task,
we show that grasping success improves significantly when the
robot trains with a human adversary as compared to training
in a self-supervised manner.

I. INTRODUCTION

We focus on the problem of end-to-end learning for
planning and control in robotics. For instance, we want a
robotic arm to learn robust manipulation grasps that can
withstand perturbations using input images from an on-board
camera.

Learning such models is challenging, due to the large
amount of samples required. For instance, in previous
work [1], a robotic arm collected more than 50K examples
to learn a grasping model in a self-supervised manner.
Researchers at Google [2] developed an arm farm and
collected hundreds of thousands of examples for grasping.
This shows the power of parallelizing exploration, while it
requires a large amount of resources and the system is unable
to distinguish between stable and unstable grasps.

To improve sample efficiency, Pinto et al. [3] showed that
robust grasps can be learned using a robotic adversary: a
second arm that applies disturbances to the first arm. By
training jointly both the first arm and the adversary, they
show that this can lead to robust grasping solutions.

This configuration, however, typically requires two robotic
arms placed in close proximity to each other. What if
there is one robotic arm “in the wild” interacting with the
environment, as well as with humans?

One approach could be to have the human act as a
teammate, and assist the robot in completing the task. An
increasing amount of work [4]-[9] has shown the benefits of
human feedback in the robot learning process.

At the same time, we should not always expect the
human to act as a collaborator. In fact, previous studies in
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Fig. 1: An overview of our framework for a robot learning robust grasps
by interacting with a human adversary.

human-robot interaction [10]-[12] have shown that people,
especially children, have acted in an adversarial and even
abusive manner when interacting with robots.

This work explores the degree to which a robotic arm
could exploit such human adversarial behaviors in its learn-
ing process. Specifically, we address the following research
question:

How can we leverage human adversarial actions to
improve robustness of the learned policies?

While there has been a rich amount of human-in-the-loop
learning, to the best of our knowledge this is the first effort of
robot learning with adversarial human users. Our key insight
is:

By using their domain knowledge in applying
perturbations, human adversaries can contribute to
the efficiency and robustness of robot learning.

We propose an “human-adversarial” framework where a
robotic arm collects data for a manipulation task, such as
grasping (Fig. 1). Instead of using humans in a collaborative
manner, we propose to use them as adversaries. Specifically,
we have the robot learner, and the human attempting to make
the robot learner fail on its task. For instance, if the learner
attempts to grasp an object, the human can apply forces to
remove it from the robot. Contrary to a robot adversary in
previous work [3], the human has already domain knowledge
about the best way to attempt the grasp, by observing the
grasp orientation and their prior knowledge of the object’s
geometry and physics. Additionally, here the robot can only
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Fig. 2: Selected grasp predictions before (top row) and after (bottom row) training with the human adversary. The red bars show the open gripper position
and orientation, while the yellow dots show the grasping points when the gripper has closed.

observe one output, the outcome of the human action, rather
than a distribution of adversarial actions.

We implement the framework in a virtual environment,
where we allow the human to apply simulated forces on an
object grasped by a robotic arm. In a user study we show that,
compared to the robot learning in a self-supervised manner,
the human user can provide supervision that rejects unstable
robot grasps, leading to significantly more robust grasping
solutions (Fig. 2).

While there are certain limitations on the human adver-
sarial inputs because of the interface, this is an exciting first
step towards leveraging human adversarial actions in robot
learning.

II. RELATED WORK

Self-supervised Deep Learning in Manipulation. In robotic
manipulation, deep learning has been combined with self-
supervision techniques to achieve end-to-end training [2],
[13], [14], for instance with curriculum learning [15]. Other
approaches include learning dynamics models through inter-
action with objects [16]. Most relevant to ours is the work
by Pinto et al., where a “protagonist” robot learns grasping
solutions by interacting with a robotic adversary. In this
work, we follow a human-in-the-loop approach, where we
have a robotic arm learn robust grasps by interacting with a
human adversary.

Reinforcement Learning with Human Feedback. Previous
work [4], [7], [17]-[21] has also focused on using human
feedback to augment the learning of autonomous agents.
Specifically, rather than optimizing a reward function, learn-
ing agents respond to positive and negative feedback signals
provided by a human supervisor. These works have explored
different ways to incorporate feedback into the learning
process, either as part of the reward function of the agent,
such as in the TAMER framework [20], or directly in the
advantage function of the algorithm, as suggested by the
COACH algorithm [4]. This allows the human to train the
agent towards specific behaviors, without detailed knowledge
of the agent’s decision making mechanism. Our work is
related in that the human affects the agent’s reward function.
However, the human does not do this explicitly, but indirectly

through its own actions. More importantly, the human acts
in an adversarial manner, rather than as a collaborator or a
SUpervisor.

Adversarial Methods. Generative adversarial methods [22],
[23] have been used to train two models, a generative model
that captures the data distribution, and a discriminative model
that estimates the probability that a sample came from the
training data. Researchers have also analyzed a network to
generate adversarial examples, with the goal of increasing
the robustness of classifiers [24]. In our case, we let a
human agent generate the adversarial examples that enable
adaptation of a discriminative model.

Grasping. We focus on generating robust grasps, that can
withstand disturbances. There is a large amount of previous
work on grasping [25], [26], that range from physics-based
modeling [27]-[29] to data-driven techniques [1], [2]. The
latter have focused on large-scale data collection. Pinto et
al. [3] have shown that perturbing grasps by shaking or
snatching by a robot adversary can facilitate learning. We
are interested in whether this can hold when the adversary
is a human user, applying forces at the grasped object.

III. PROBLEM STATEMENT

We formulate the problem as a two-player game with
incomplete information [30], played by a human (H) and
a robot (R). We define s € S to be the state of the world. A
robot and a human are taking turns in actions. A robot action
results in a stochastic transition to new state s € ST, based
on some unknown transition function 7 : S x AR — TI(ST).
The human then acts based on a stochastic policy, also
unknown to the robot, so that 1 : (s, a!). After the human
and the robot’s actions, the robot observes the final state sT+
and receives a reward signal 7 : (s,aR, st afl, stH) 7.

In an adversarial setting, the robot attempts to maximize
r, while the human wishes to minimize it. Specifically, we
formulate r as a linear combination of two terms: the reward
that the robot would receive in the absence of an adversary,
and the penalty induced by the human action:

r = RR(s,aR, sT) — aRU(sT,a", sTT) (D)



The goal of the system is to develop a policy 7® : s 5 al
that maximizes this reward.

T8 = argmax I [r(s, a®, a")|7"] (2)
R

Through this maximization, the robot implicitly attempts
to minimize the reward of the human adversary. In Eq.
(1), a controls the proportion of learning from the human’s
adversarial actions.

IV. APPROACH

Algorithm. We assume that the robot’s policy 7R is pa-

rameterized by a set of parameters W, represented by a
convolutional neural network. The robot uses its sensors to
receive a state representation s, and samples an action aR.
It then observes a new state st, and waits for the human
adversary to act. Finally, it observes the final state s™F, and
computes the reward r based on Eq. (1). A new world state
is then sampled randomly, as the robot attempts to grasp a
potentially different object (Algorithm 1).

Initialization. We initialize the parameters W by optimizing
only for RR(s,aR, s+), that is for the reward in the absence
of the adversary. This allows the robot to choose actions
that have a high probability of grasp success, which in turn
enables the human to act in response. After training in a
self-supervised manner, the network can be refined through
interactions with the human.

Algorithm 1 Learning with a Human Adversary

1: Initialize parameters W of robot’s policy &
2: for batch = 1, B do
3: for episode = 1, M do

4: observe s

5 sample action a® ~ 7R(s)

6: execute action a® and observe st

7: if s is not terminal then

8: observe human action o™ and state s*+
9: observe r given by Eq. (1)

10: record s,aR, r

11: update W based on recorded sequence

12: return W

V. LEARNING ROBUST GRASPS

We instantiate the problem in a grasping framework. The
robot attempts to grasp an object. The human observes the
robot’s grasp. If the grasp is successful, the human can apply
a force as a disturbance in the robot’s hand, in six different
directions. In this work, we use a simulation environment to
simulate the grasps and interactions with the human. We use
this environment as a testbed for testing different grasping
strategies.
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Fig. 3: ConvNet architecture for grasping.

A. Grasping Prediction

Following previous work [1], we formulate grasping pre-
diction as a classification problem. Given a 2D input image
I, taken by a camera with a top-down view, we sample N,
image patches. We then discretize the space of grasp angles
to N, different angles. We use the patches as input to a
convolutional neural network, which predicts the probability
of success for every grasping angle with the grasp location
being the center of the patch. The output of the ConvNet
is a N,-dimensional vector giving the likelihood of each
angle. This results in a N; x IV, grasp probability matrix.
The policy then chooses the best patch and angle to execute
the grasp. The robot’s policy thus uses as input the image
I, and as output the grasp location (x4,%y,), which is the
center of the sampled patch, and the grasping angle 0,:
R I (2g,y4,0,).

B. Adversarial Disturbance

After the robot grasps an object successfully, the human
can attempt to pull the object away from the robot’s end-
effector, by applying a force of fixed magnitude. The action
space is discrete with 6 different actions, one for each
direction: up/down, left/right, inwards/outwards. As a result
of the applied force, the object either remains on the robot’s
hand, or it is dropped to the ground.

C. Network Architecture

We use the same ConvNet architecture with previous
work [1], modeled on AlexNet [31] and shown in Fig. 3. The
output of the network is scaled to (0,1) using a sigmoidal
response function.

D. Network Training

We initialized the network with a pretrained model ini-
tialized by Pinto et al. [1]. The model was pre-trained with
completely different objects and patches. To train the model,
we treat the reward r that the robot receives as a training
target for the network. Specifically, we set RR(s,aR,sT) =1
if the robot succeeds and O if the robot fails. Similarly,
RH(st, af st1) = 1 if the human succeeds, and 0 if the
human fails. Therefore, based on Eq. (1), the signal received
by the robot is:



0 if robot fails to grasp
r= 1 if robot succeeds and human fails 3)
1—« if human succeeds

We note that the training target is different than that
of previous work [3]. There, the robot has access to the
adversary’s predictions by incorporating into the robot’s loss
function the probability that the adversarial network believes
it can succeed. Here, however, the robot can only observe
the outcome of the adversary’s action.

We then define as loss function for the ConvNet, the binary
cross entropy loss between the network’s prediction and the
reward received. We train the network using RMSProp [32].

E. Simulation Environment

For the training, we used the Mujoco [33] simulation
environment. We customized the environment to allow a
human user interacting with the physics engine.'

V1. FROM THEORY TO USERS

We conducted a user study, with participants interacting
with the robot in the virtual environment. The purpose of our
study is to test whether the robustness of the robot’s grasps
can improve when interacting with a human adversary. We
are also interested to explore how the object geometry affects
the adversarial strategies of the users, as well as how users
perceive robot’s performance.

Study Protocol. Participants interacted with a simulated
Baxter robot in the customized Mujoco simulation environ-
ment (Fig. 4). The experimenter told participants that the
goal of the study is to maximize robot’s failure in grasping
the object. They did not tell participants that the robot was
learning from their actions. Participants applied forces to the
object using the keyboard. All participants first did a short
training phase by attempting to snatch an object from the
robot’s grasp 10 times, in order to get accustomed to the
interface. The robot did not learn during that phase. Then,
participants interacted with the robot executing Algorithm 1.

In order to keep the interactions with users short, we
simplified the task, so that each user trained with the robot
on one object only, presented to the robot at the same
orientation. We fixed the magnitude of the forces applied
to each object, so that the adversary would succeed if the
grasp was unstable but fail to snatch the object otherwise.
We selected a batch size B = 5 and a number of episodes
per batch M = 9. The interaction with the robot lasted on
average 10 minutes 2.

Manipulated variables. We manipulated (1) the robot’s
learning framework and (2) the object that users interacted
with. We had three conditions for the first independent
variable: the robot interacting with a human adversary, the
robot interacting with a simulated adversary that learns how

IThe code is publicly available at:
icaros-usc/Interactive-mujoco_py

2The anonymized log files of the human adversarial actions are
publicly available at: https://github.com/icaros-usc/human_
adversarial_grasping_data

https://github.com/

TABLE I: Likert Items.

1. The robot learned throughout the study.
2. The performance of the robot improved throughout the study.

to succeed in snatching the object and the robot learning in
a self-supervised manner, without an adversary. Following
previous work [3], the simulated adversary is trained with
an identical network with training target equal to 1 if the
snatching succeeds and O if the snatching fails.

We had five different objects (Fig. 2). We selected objects
of varying grasping difficulty and geometry to explore the
different strategies employed by the human adversary.
Dependent measures. For testing we executed the learned
policy on the object for 50 episodes, applying a random
disturbance after each grasp and recording the success or
failure of the grasp before and after the random disturbance
was applied. To avoid overfitting, we selected for testing
the earliest learned model that met a selection criterion
(early-stop) [34]. The testing was done using a script after
the conduction of the study, without the participants being
present. We additionally asked participants to report their
agreement on a seven-point Likert scale to two statements
regarding the robot’s learning process (Table I) and justify
their answer.

Hypotheses

H1. We hypothesize that the robot trained with the human
adversary will perform better than the robot trained in a
self-supervised manner. We base this hypothesis on previous
work [3] that has shown that training with a simulated ad-
versary improved robot’s performance, compared to training
in a self-supervised manner.

H2. We hypothesize that the robot trained with the human
adversary will perform better than the robot trained with a
simulated adversary. A human adversary has domain knowl-
edge: they observe the object geometry and have intuition
about the physics properties. Therefore, we expect the human
to act as a model-based learning agent and use their model
to do targeted adversarial actions. On the other hand, the
simulated adversary has no such knowledge and they need
to learn the outcome of different actions through interaction.
Subject allocation. We recruited 25 users, 21 Male and 4
female participants. We followed a between-subjects design,
where we had 5 users per object, in order to avoid confound-
ing effects of humans learning to apply perturbations, getting
tired or bored by the study.

VII. RESULTS
A. Analysis

Objective metrics. Table II shows the success rates for
different objects. Different users interacted with each object;
for instance User 1 for Bottle is a different participant than
User 1 for T-shape. We have two dependent variables, the
success rate of robot grasping an object in the testing phase
in the absence of any perturbations, and the success rate with
random perturbations being applied. A two-way multivariate
ANOVA [35] with object and framework as independent
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TABLE II: Grasping success rate (per cent) before (left column) and after (right column) application of random
disturbance. Different users interacted with different objects (between-subjects design).

User # Bottle T-shape Half-nut Round-nut Stick

1 64 40 56 42 40 36 58 40 90 62

2 64 40 52 28 40 36 82 48 94 o4

3 66 40 56 42 40 36 82 54 92 o4

4 74 40 78 60 40 36 52 40 90 62

5 68 40 78 62 40 36 84 48 100 84
Simulated-adversary 60 38 76 54 42 38 54 50 64 54
Self-trained 14 4 52 34 40 36 80 40 50 18

Fig. 4: Participants interacted with a simulated Baxter robot in the cus-
tomized Mujoco simulation environment.

variables showed a statistically significant interaction effect
for both dependent measures: (F'(16,38) = 3.07,p =
0.002, Wilks” A = 0.19). In line with H1, a Post-hoc Tukey
tests with Bonferroni correction showed that success rates
were significantly larger for the human adversary condition
than the self trained condition, both with (p < 0.001) and
without random disturbances (p = 0.001).

We note that the post-hoc analysis should be viewed
with caution, because of the significant interaction effect.
To interpret these results, we plot the mean success rates
for all conditions (Fig. 5). For clarity, we also contrast both
success rates for each object separately in Fig. 6. Indeed, we
see the the success rate averaged over all human adversaries
was higher for three out of five objects. The difference was
largest for the bottle and the stick. The reason is that it
was easy for the self-trained policy to pick up these objects
without a robust grasp, which resulted in slow learning. On
the other hand, the network trained with the human adversary
rejected these unstable grasps, and learned quickly robust
grasps for these objects. In contrast, round nut and half-
nut objects could be grasped robustly at the curved areas of
the object. The self-trained network thus got “lucky” finding
these grasps, and the difference was negligible. In summary,
these results lead to the following insight:

Training with a human adversary is particularly
beneficial for objects that have few robust grasp
candidates that the network needs to search for.

There were no significant differences between the rates
in the human adversary and simulated adversary condition.

Indeed, we see that the mean success rates were quite close
for the two conditions. We expected the human adversary to
perform better, since we hypothesized that the human adver-
sary has a model of the environment, which the simulated
adversary does not have. Therefore, we expected the human
adversarial actions to be more targeted. To explain this result,
which does not support H2, we look at human behaviors
below.

Behaviors. Fig. 7 shows the disturbances applied over time
for different users. Observing the participants behaviors,
we see that some participants used their model of the
environment to apply disturbances effectively. Specifically,
the user in Fig. 7(b) applied a force outwards in the T-
shape, succeeding in ‘snatching’ the object even at the first
try, which is indicated by the red dots. Gradually, the robot
learned a more robust grasping policy, which resulted in the
user failing to snatch the object (green dots). Similarly, the
user in Fig. 7(a) and Fig. 7(c) used targeted perturbations
which resulted in failed grasps from the very start of the
task.

In some cases, such as in Fig. 7(e), the user adapted their
strategy as well: when the robot learned to withstand an
adversarial action outwards, the user acted by applying a
force to the right, until the robot learned that as well.

Fig. 8 compares the user of Fig. 7(e) with the simulated
adversary for the same object (stick). We observe that the
simulated adversary explores different perturbations that are
unsuccessful in snatching the object. This translates to worse
performance for that object in the testing phase.

However, not all grasps required an informed adversary
for the grasp to fail. For instance, for the grasped bottle
in Fig. 9(a), there were many different directions where
an applied force could succeed in removing the object.
Therefore, having a model of the environment did not offer a
significant benefit, since almost any disturbance would suc-
ceed in dropping the object. On the contrary, several grasps
of the stick object failed only with targeted disturbances in
the direction parallel to the object’s major axis (Fig. 9(b)),
which explains the difference in performance between human
and simulated adversaries for that object.

Additionally, we found that some participants did not act
as rational, model-based agents, which is the second factor
that we believe affected the results. For instance, looking
at one of the participants’ interactions with the stick object
(Fig. 10), we see the variance of the actions increasing over
time. We found this variance surprising, given the geometry
of the object and the fact that all subsequent perturbations



Grasping success rate without disturbances Grasping success rate with disturbances

1004 1004 Stron
gly 5_
Human-
il:nrrjaanvadv Agree 7
Self-trained
80- 80 6 I
60 60 31
4,
40 40
3,
20 20
2 .
Strongly
01— r T T T T T T T T Disagree \ )
Bottle T-shape Half-nut Round-nut  Stick Bottle T-shape  Half-nut Round-nut  Stick Q1 Q2
Fig. 5: Success rates from Table II for all five participants and subjective metrics.
Bottle T-shape Half-nut Round-nut Stick
100 100 100 100 100
Xj g‘““—‘a‘ll-adv 3 @ gg g
g Self-trained g g g g
< < < < <
<~ Qo Q Q <~
= p = = p
= = = = =
k] f] S S o
= = = = =
= = = = =
= = = = =
0 -t T 0T T 0 0
0 100 0 100 0 100 0 100 0 100
Without disturbances Without disturbances Without disturbances Without disturbances Without disturbances
Fig. 6: Success rates from Table II for each object with (y-axis) and without (x-axis) random disturbances for all five participants.
Bottle T-shape Half-nut Round-nut
Out | 060 © @D 00 Out 1000 0000000 Out o @ Out
In 4@ o® o000 In [ 1] In-{00@® © In
§ Down-{ 0@® @ o®e Z Down é Down @e ¢ e8] é Down
£ Up Up £ Up (YN N ) £ Up
< R . < Rig < Rig
Right Right Right 1 @ e oo Right
Left Left Left 1@ Left
0 10 20 0 5 10
# Interactions # Interactions # Interactions # Interactions # Interactions
(@ (b) © (d) ©
Fig. 7: Actions applied by selected human adversaries over time. We plot in green adversarial actions that the robot succeeds in resisting and in red actions

that result in the human ‘snatching’ the object.

Human Sim-adv

y

Out Out ® e o0 ©
In In [ N J [ ]
é Down § Down [} [
33 Up *5 Up @@ e o [ ]
< Right < Right o ® o
Left Left o000
0 10 20 0 20 W
# Interactions # Interactions

(a) (b)

Fig. 8: Difference between training with user and simulated adversary for
the stick object. The simulated adversary explores by applying forces in Fig. 9: A force in almost any direction would make the grasp (a) fail, while
directions that fail to snatch the object. The red dots indicate human success only a force parallel to the axis of the stick would snatch the object in grasp

in snatching the object, while the green dots indicate robot success in (b).
withstanding the human perturbation.

and wanted to assist the robot instead.
were unsuccessful. Looking at the open-ended responses, the ~ Subjective metrics. We conclude our analysis with reporting
participant stated that “it seems some perturbations were the users’ subjective responses (Fig. 5). A Cronbach’s a =
challenging; so after some time I didn’t apply that pertur- 0.86 showed good internal consistency [36]. Participants
bation again.” This indicates that at least one participant did  generally agreed that the robot learned throughout the study,
not follow our instructions to act in an adversarial manner, and that its performance improved. In their open-ended
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Fig. 10: The user started assisting the robot in the later part of the interaction,
instead of acting as an adversary. The red dots indicate human success
in snatching the object, while the green dots indicate robot success in
withstanding the human perturbation.

responses, participants stated that “The robot learned the
grasping technique to win over me by learning from the
forces that I provided and became more robust,” and that
“The robot took almost 8 to 10 runs before it would start
responding well. By the end of my experiment, it would
grasp almost all the time.” At the same time, one participant
stated that the “rate of improvement seemed pretty slow,”
and another that it “kept making mistakes even towards the
end.”

B. Multiple objects.

We wish to test whether our framework can leverage
human adversarial actions to learn grasping multiple objects
at the same training session. Therefore, we modified the
experiment setup, so that in each episode one of the five
objects appeared randomly. To increase task difficulty, we
additionally randomized the object’s position and orientation
in every episode. The robot then trained with one of the
authors of the paper for 200 episodes. We then tested
the trained model for another 200 episodes with randomly
selected objects of random positions and orientations, as
well as randomly applied disturbances. The trained model
achieved a 52% grasping success rate without disturbances,
and 34% success rate with disturbances. The rates were
higher than those of a simulated adversary trained in the
same environment for the same number of episodes, which
had 28% grasping success rate without disturbances and 22%
with disturbances. We find this result promising, since it
indicates that targeted perturbations from a human expert
can improve the efficiency and robustness of robot grasping.

VIII. CONCLUSION

Limitations. Our work is limited in many ways. Our experi-
ment was conducted in a virtual environment, and the users’
adversarial actions were constrained by the interface. Our
environment provides a testbed for different human-robot
interaction algorithms in manipulation tasks, but we are also
interested in exploring what types of adversarial actions users
apply in real-world settings. We also focused on interactions
with only one human adversary; a robot “in the wild” is
likely to interact with multiple users. Previous work [3] has
shown that training a model with different robotic adversaries

further improves performance, and it is worth exploring
whether the same holds for human adversaries.
Implications. Humans are not always going to act coopera-
tively with their robotic counterparts. This work shows that
from a learning perspective, this is not necessarily a bad
thing. We believe that we have only scratched the surface of
the potential applications of learning via adversarial human
games: Humans can understand stability and robustness
better than learned adversaries, and we are excited to explore
human-in-the-loop adversarial learning in other tasks as well,
such as obstacle avoidance for manipulators and mobile
robots.
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