
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

A Novel Robust Approach for Correspondence-Free Extrinsic Calibration

Hu, Xiao; Olesen, Daniel; Per, Knudsen

Published in:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Link to article, DOI:
10.1109/iros40897.2019.8968447

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hu, X., Olesen, D., & Per, K. (2020). A Novel Robust Approach for Correspondence-Free Extrinsic Calibration.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE.
https://doi.org/10.1109/iros40897.2019.8968447

https://doi.org/10.1109/iros40897.2019.8968447
https://orbit.dtu.dk/en/publications/e87b4dd7-4748-47b4-9d3a-208c0db8f3e9
https://doi.org/10.1109/iros40897.2019.8968447


A Novel Robust Approach for Correspondence-Free Extrinsic
Calibration

Xiao Hu1, Daniel Olesen1, Knudsen Per1

Abstract— Extrinsic calibration is a necessary step when
using heterogeneous sensors for robotics applications. Most
existing methods work under the assumption that the prior
data correspondence is known. Considering data loss and false
measurements, the correspondence may not be accessible in
practice. To solve this problem without knowing the corre-
spondence, several probabilistic methods have been proposed.
However, an implicit restriction on input data limits their
application. Therefore, in this paper, we propose a more stable
correspondence-free method with two improvements that can
relax the restrictions on inputs and improve the calibration
accuracy. The first improvement finds consistent sets from
raw inputs using screw invariants, which significantly improve
the robustness in case of outliers and data loss. A new
optimization method on matrix Lie group is proposed as the
second improvement, which demonstrates better accuracy. The
experimental results on both numerical and real data show the
superiority and robustness of the proposed method.

I. INTRODUCTION

Extrinsic calibration for heterogeneous sensors is one of
the most fundamental and important tasks for many robotics
applications, e.g. sensor fusion, and Simultaneous Localiza-
tion And Mapping (SLAM). In general, extrinsic calibration
between two rigidly connected coordinate systems, as shown
in Fig. 1, can be modeled as AX = XB (A, B, X are
homogeneous matrices in SE(3)), which also relates to the
hand-eye calibration problem. The previous work [1] has
proved that at least two motion pairs with nonparallel rotation
axes are needed to estimate X. If the data correspondence
is known, this problem can be solved with certificated
global optimality by approach [2]. However, finding pair-
wise correspondence could be challenging in practice in
case of package loss during data transmission or outliers
generated by abnormal sensor measurements. Therefore,
several probabilistic methods have been proposed recently
to solve the calibration problem without the need to know
the correspondence. Although the pairwise correspondence
is not essential for those methods, there is still an implicit
assumption that the two sets should be bijective. In other
words, every data in set {A} must have a corresponding
match in set {B}, and vice versa. If this assumption does not
hold, then their performance will drop dramatically, which
constrains the application of those methods in practice.
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Fig. 1. Extrinsic calibration problem: CA, CB represent the coordinate
frames of sensor A and sensor B, respectively. The corresponding transfor-
mation matrix from CB to CA is denoted with X. The dashed connections
are transformation matrices directly measured and dotted connections are
transformation matrices to be estimated.

This paper focuses on solving the calibration problem
without knowing the correspondence beforehand. By con-
sidering the restriction on data sets that required by the
aforementioned correspondence-free approaches, we propose
a method which can relax the restriction on data sets and
improve the accuracy using a new optimization algorithm
on matrix Lie group. The proposed method starts with a
preprocessing modular to find consistent sets from the raw
inputs by computing the consistency using screw invariants.
After obtaining the consistent sets, we carry out the calibra-
tion using the proposed optimization approach. Compared
with previous methods which use linearization, this opti-
mization method works directly on special Euclidean group
for better accuracy. Evaluations on synthetic data and real
datasets have been carried out to validate the performance
of the proposed method. The experimental results show the
superiority and robustness of the proposed method against
other correspondence-free approaches. When compared to
state-of-the-art correspondence-dependent methods, it also
shows stable performance. The main contributions of our
work is that we propose a new algorithm using optimization
on matrix Lie group which can improve estimation accuracy.

The remainder of the paper is organized as follows:
Section II presents related work. Section III introduces the
notation and mathematical preliminaries used in this paper.
Section IV explains the details of the proposed approach.
Section V describes the experiments and results. Finally, the
conclusion is drawn in Section VI.

II. RELATED WORK

The hand-eye calibration problem was firstly studied in
[3], followed by a considerable number of works on hand-
eye calibration. Related work is reviewed in this section.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 1



The first category of methods attempts to solve the hand-
eye calibration in a decoupled fashion, i.e. firstly the rotation
estimation and followed by the estimation of the translational
part. The majority of the earlier proposed approaches [1],
[3]–[5] belong to this category. Their formulations vary with
the parameterizations of the rotational part, e.g. axis and
angle, unit quaternion, etc. Decouple rotation from transla-
tion yields efficient solutions, but at a cost that the rotation
estimation errors would propagate to the translational part.

The second category of methods solves the hand-eye
calibration jointly by estimating the rotation and translation
simultaneously [4], [6]–[8]. The introduction of the screw
theory in [9] provides a geometric view to analyze the
restrictions of the hand-eye calibration problem, which later
motivated the invention of the dual quaternion approach [6].
A similar linear formulation was proposed in [7] by using the
Kronecker product. Due to noise, neither the constraint of the
unit quaternion (||q|| = 1) nor the orthogonality constraint
of SO(3) can be maintained, which requires normalization
or orthogonalization. To suppress the influence of noise,
iterative nonlinear optimization methods [4], [8] have been
proposed. However, iterative approaches rely on good initial
values for accuracy and fast convergence, while obtaining fa-
vorable initial values may be difficult in practice. Therefore,
global optimization methods arise nowadays, which can per-
form calibration without the request for good initial values:
e.g. using Second Order Cone Programming (SOCP) [10],
using multivariate polynomial optimization [11], and by
solving the Lagrange dual problem [2].

All the aforementioned approaches focus on solving the
problem by assuming that the data correspondence is known
in advance. To deal with motion pairs with unknown cor-
respondences, several stochastic methods [12]–[14], which
we summarize as the third category, have been proposed
recently. The latest work by [13] proposed two novel batch
methods that show better performance compared with ap-
proaches in [12], [14]. However, methods [12]–[14] share the
common assumption that the two sets should be bijective. Put
differently, every data in set {A} must have a corresponding
match in set {B}, and vice versa. In case that this assumption
breaks, their performance will drop dramatically.

III. NOTATION & PRELIMINARIES

In the following sections, scalars are indicated with small
letters (e.g. f ). Vectors are indicated as small bold letters
(e.g. r). Matrices are represented by bold capital letters (e.g.
K).

A. Matrix Lie Group

The Lie algebra g associated with an n-dimensional matrix
Lie group is an n-dimensional tangent space. The mapping
relationships are shown in Fig. 2. The exponential exp(·) and
logarithm log(·) operations establish a local diffeomorphism
between a neighborhood of 0n×n in the tangent space to
a local neighborhood of the identity on the manifold. g
associates to its vector space Rn by (·)∨ : g → Rn and

0n×n
g

G
exp(·)log(·)

0n×1 ξ

(·)∨
(·)∧

Fig. 2. Mapping relationship among matrix Lie group, Lie algebra, and
the vector space.

(·)∧ : Rn → g. The Lie algebra of se(3) is given as follows:

ξ∧ =

[
ρ
φ

]∧
=

[
φ∧ ρ
0T 0

]
∈ se(3) (1)

φ∧ =

φxφy
φz

∧ =

 0 −φz φy
φz 0 −φx
−φy φx 0

 ∈ so(3) (2)

where φ,ρ ∈ R3 and ξ ∈ R6 being the coefficients in
corresponding vector spaces. An additive increment in the
vector space will associate to a multiplication increment on
SE(3), which follows the following approximation [15]:

exp((ξ + δξ)∧) ≈ exp
(
(J −1l δξ)∧

)
exp(ξ∧) (3)

where J l is the left Jacobian of SE(3) defined as (4):

J l =

∞∑
n=0

1

(n+ 1)
(ξ	)n, ξ	 =

[
ρ
φ

]	

=

[
φ∧ ρ∧

0T φ∧

]
(4)

Finally, the adjoint T of T ∈ SE(3) is defined as:

T =

[
R t∧R
0 R

]
(5)

B. Probabilistic Solution Without Correspondence
Probabilistic solutions for solving the calibration problem

without knowing correspondence were proposed in [12]–
[14]. Next, we briefly recall the necessary mathematical
formulation. Assuming two data sets {A : Ai}, {B :
Bi}, Ai,Bi ∈ SE(3), i = 1, 2, · · · , n and the pairwise
correspondence is known, we have that AiX = XBi. By
using the probability theory on SE(3), the following two
equations can be obtained as follows [13], which serves as
the key for solving X without establishing correspondence.

MAX = XMB (6)

T X−1ΣAT T
X−1 = ΣB (7)

where M(·), Σ(·) represent the mean and covariance, respec-
tively. The discrete definition of the mean and covariance,
taking MA and ΣA for example, are given as:

n∑
i=1

log(M−1
A A) = 0 (8)

ΣA =

n∑
i=1

εεT (9)
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Fig. 3. Illustration of the proposed approach. It starts with finding consistent sets from raw inputs. The consistency is measured with the screw invariants.
All pairwise combinations are checked to build a consistency matrix that is used for generating final consistent sets. Then consistent sets are fed to a new
optimization method for estimating MA, ΣA, MB, ΣB. Finally, X is computed accordingly from MA, ΣA, MB, ΣB.

where ε = log(M−1
A A)∨. According to [12], Σ can be

further decomposed as: Σ =

[
Σ1 (Σ2)T

Σ2 Σ3

]
. After some

derivations, we will have:

RT
XΣ3

ARX = Σ3
B (10)

RT
XΣ2

ARX

(
(−RT

XtX)∧
)T

= Σ2
B −RT

XΣ2
ARX (11)

As described in [12], RX can be recovered from (6)
and (10). Once RX is known, tX can be easily obtained
from (11). To estimate MA and MB, [13] proposed two
batch methods that use linearization for SE(3). However,
linearization will degrade accuracy. Hence, in Section IV, we
propose a method using optimization on matrix Lie group to
estimate the mean values for better accuracy.

IV. PROPOSED METHOD

The proposed approach is depicted in Fig 3 and summa-
rized in Algorithm 1.

A. Finding Consistent Sets
According to the Screw Congruence Theorem [9] and

Euclidean group invariants [16], the rotation angle and the
screw translation are invariants to coordinate transformations
despite the motion being expressed in different coordinate
systems. Therefore, these invariants are used as a measure
to assess how likely a sample from one data set will have
a correspondence in another data set. The computation of
the rotation angle and screw translation (θ, d) from their
corresponding SE(3) is as follows: apply the Rodrigues
formula to obtain the rotation angle θ and rotation axis r,
then d = tT r. Based on screw invariants (θ, d), we define
the consistency c of two motion Ai,Bj as:

cAi,Bj = w1|angdiff(θi, θj)|+ w2|d1 − d2| (12)

where (θi, di), (θj , dj) are the screw invariants of Ai, Bj ,
w1 and w2 are weights with respect to rotation angle and
translation, angdiff(·) computes the minimum distance of two
angles. The consistency matrix is established by computing
the consistency for all possible combinations of data pairs:

C =


cA1,B1 cA1,B2 · · · cA1,Bn

cA2,B1 cA2,B2 · · · cA2,Bn

...
...

. . .
...

cAm,B1
cAm,B2

· · · cAm,Bn

 (13)

where the ith row of C represents the consistencies of Ai

relative to each element of set {B}. Assuming Ai has a
correspondence in set {B} in the noise-free condition, then
the corresponding element in ith row of C must be zero.
In practice, due to the noise, the corresponding consistency
cannot guarantee to be zero, but within a threshold ε, i.e.
|cAi,Bj | < ε. In contrast, if all consistencies of Ai to set {B}
are over the threshold, then it is unlikely that Ai would have
a correspondence in set {B}. Thus, based on this point, we
find the consistent set from set {A} by traversing each row of
the consistency matrix C and collecting Ai if there is at least
one consistency within the given threshold ε. The consistent
set for set {B} is found by the same operation to every
column, which results in two consistent sets from the raw
inputs as shown in Fig 3. It should be noted that this process
does not aim to establish the pairwise correspondence by
using screw invariants because screw invariants are relative
measures which only serve as the necessary condition for the
statement that two motion pairs are associated.

B. Optimization of Mean on Matrix Lie Group

Now we have two consistent sets from the raw input data
sets, we start our probabilistic solution for recovering X.
Previous work [13] has shown a good approximation of
mean can significantly improve the accuracy of X. Here we
propose a new iterative optimization algorithm to estimate
mean. Unlike the second-order method proposed in [13]
which uses linearization by relaxing the constraints imposed
by SO(3), the proposed method directly optimizes on matrix
Lie group, which will recover a more accurate X, as shown in
Sec V. Without loss of generality, the optimization algorithm
is only illustrated on MA for brevity.

The nonlinear iterative optimization starts with an initial
value which is computed with the first-order method [13].
Recalling the definition of mean in (8) and using the
Taylor expansion of the matrix logarithm ( log(A) =∑+∞

i=1
(−1)i−1

i (A− I)i), the first-order approximation of M
should satisfy

1

n

n∑
i=1

(
M−1

A Ai − I
)
≈ 0⇔M−1

A

(
1

n

n∑
i=1

Ai

)
= I (14)

Consequently, the first-order approximation of the mean is
given as M1st

A = 1
n

∑n
i=1 Ai. Unfortunately, M1st

A may not

3



belong to SE(3) because the Euclidean mean of rotation
matrices cannot guarantee to be within SO(3) [17]. To handle
this problem, the singular value decomposition (SVD) is
performed to find the orthogonal projection of the rotational
part of M1st

A onto SO(3) [17] and then recompose M1st
A

using the refined rotational part.
With M1st

A as the initial value, we then start the iterative
optimization by optimizing the following objective function:

fopt =
1

n

n∑
i=1

(
log(M−1

A Ai)
)
= 0 (15)

Considering the right small perturbation δξ ∈ R6 to current
MA on its corresponding vector space, the perturbed trans-
formation matrix M̃A is given as M̃A = MAexp(δξ

∧). The
objective function after the perturbation is then given as:

fopt =
1

n

n∑
i=1

log
(
M̃AAi

)
=

1

n

n∑
i=1

log
(
exp(−δξ∧)M−1

A Ai

)
(16)

Since MA, Ai ∈ SE(3), with the closure property of matrix
Lie Group, their product still belongs to SE(3). We use ξ′i
to represent the Lie algebra of M−1

A Ai, i.e. M−1
A Ai =

exp(ξ′i
∧
). Using (3), we will have the objective function as:

fopt =
1

n

n∑
i=1

log
(
exp

(
−J −1l (ξ′i)δξ + ξ

′
i

)∧)
(17)

By taking the (·)∨ operation and some algebraic operations,
it can be further written in a normal equation as Ax = b:

1

n

n∑
i=1

(
−J −1l (ξ′i)δξ + ξ

′
i

)
= 0

⇒ 1

n

n∑
i=1

(
J −1l (ξ′i)

)
︸ ︷︷ ︸

A

δξ︸︷︷︸
x

=
1

n

n∑
i=1

(ξ′i)︸ ︷︷ ︸
b

(18)

δξ is solved with (18) and then used to update MA by
MA = MAexp(δξ

∧). This optimization will be solved
iteratively with the latest updated MA until a maximum
iteration achieves or the norm of δξ is smaller than a given
threshold ε. We finally summarize the proposed approach in
Algorithm 1 for clarity.

Algorithm 1 Proposed calibration approach
Require: {TAi

}, i = 1, · · · , n, {TBj
}, j = 1, · · · ,m

Ensure: Extrinsic transformation matrix X
Find consistent sets.
Compute M1st by (14) and let M = M1st.
while not converged do

Solve for δξ by (18) and update M
end while
Compute Σ by (9).
Recover X by (6), (10), and (11).
return X

V. EXPERIMENTS

In this section, experiments on numerical data and real
datasets are reported to validate the performance of the
proposed method. In the first numerical experiment, we
benchmark the performance of the proposed method with
other state-of-the-art correspondence-free approaches. After
that, the proposed method is compared with state-of-the-
art correspondence-dependent approaches on real datasets.
Methods to be compared are listed as follows:
• the Batch1 (marked as B1) and Batch2 (B2)

correspondence-free methods from [13] are used in the
first experiment.

• the joint method (KR) [7], the iterative methods (NLQ
by [4] and ATA) [8]), the SOCP optimization method
(SOCP) from [10], the global optimization method
using multivariate polynomial (GPOLY1) [11] and the
DUAL method proposed in [2] are used in the second
experiment.

Regarding the initial value for iterative methods, we use
the default initialization routine of NLQ and ATA, see [4]
and [8]. The proposed method is marked with BS through-
out this section. All experiments are executed in MATLAB
R2018A on a workstation with 2.80-GHz Intel Core i7 CPU
and 32-GB RAM. The following error metrics are used to
evaluate the results in both experiments:

ER = ||log(R̂T
XRtrue)

∨||, Et = ||t̂X − ttruth||

where (·)truth represents the ground truth, (̂·) denotes the
estimation, and || · || denotes the Euclidean norm.

A. Numerical results of correspondence-free methods

We divide the first experiment into three parts. The first
part aims at evaluating the accuracy of the proposed mean
optimization algorithm. The second and third parts are used
to analyze the performance with respect to data loss and
outliers.

To generate correspondence-free data, we firstly gen-
erate {Ai,Bi}, i = 1, 2, · · · , N with randomly selected
ground truth Xtruth, i.e. Bi = exp(γ∧i )exp(ζ

∧
i ), γi ∈

N (0, σ2I), ζi ∈ N (0, σ2
nI), then Ai = XtruthBiX

−1
truth.

Note ζi represents the noise drawn from a zero-mean
multivariate isometric Gaussian distribution with σn de-
noting the standard deviation of the additional noise. Fi-
nally, {Ai}, {Bi} are completely scrambled. Moreover, a
percentage ploss is used to simulate the situation of data
loss. We compute the number of missing data as Nloss =
round(ploss ∗N) and then randomly discard Nloss samples
from one set. Similarly, regarding outliers, we generate
Noutlier = round(poutlier ∗ N) outliers and place them
randomly into one set. Consequently, the size of set {A}
and set {B} may not necessarily be equal. Without loss of
generality, we use M and N to represent the size of set {A}
and set {B}, respectively.

1The dual quaternion method ”dqhec” is used for comparison since it is
the best approach compared with another two formulations according to the
results in [11].
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Fig. 4. Results of three cases simulated in the first experiment: the top
two rows show the rotation and translation error plots for case 1 (M = N ,
No Outliers), the third row shows the error plots for case 2 (M 6= N , No
Outliers), and the bottom row shows the error plots for case 3 (M 6= N ,
Outliers). In all plots, the mean errors of 50 trials are taken as vertical
ordinates.

1) M = N , No Outliers: We begin the first test by letting
M = N = 50 and including no outliers to compare the
accuracy of the proposed mean optimization method with
the accuracy of B1 and B2. By taking the mean values of
50 trials, we have the rotational and translational error plots
shown in the top two rows of Fig 4. More specifically, the
first top row shows the error plots by varying σ (0.3− 0.15,
stride=0.3) without exerting noise, while the second top row
demonstrates the performance when we fix σ = 1 and
apply noise with the noise level σn increasing from 0.01
to 0.05 by a step of 0.01. Several observations can be made
from these figures. Firstly, regarding rotation, all methods
demonstrate approximately similar performance except BS
behaves slightly worse than B1 and B2 when σ goes to
1.5. Secondly, for translational accuracy, BS significantly
outperforms B1 and B2 in all test cases.

2) M 6= N , No Outliers: In the second test, we aim to
simulate the data loss situation which happens occasionally
due to the reasons such as communication delay or package

loss. Thus, ploss is varied from 0.0 to 0.5 with a step of
0.1. Here, we set σ = 1 and use a moderate noise level
σn = 0.025. Similarly to the previous test, 50 trials have been
carried out and the mean errors for rotation and translation
are used for analysis. The result is shown in the third row
of Fig 4. As can be seen, only BS can obtain stable results
regardless of the variation of ploss. B1 and B2 demonstrate
degenerate performance in this case with the errors diverging
gradually. The result verifies the previous analysis that for
batch methods in [13], although the pairwise correspondence
is not a necessity, the two sets must be bijective. BS is
capable of dealing with this case thanks to the proposed
consistent set finding method.

3) M 6= N , Outliers: In the third test, we benchmark
their performance against outliers. The same setting for σ
and σn as the previous test is used here. Instead of varying
ploss, poutlier is increased from 0.0 to 0.5 with a stride of
0.1. The mean errors for rotation and translation are shown
in the bottom row of Fig 4. Once again, only BS can obtain
accurate results, while the errors for B1 and B2 gradually
diverge.

B. Runtime Comparison

The runtime for B1, B2, and BS is evaluated by varying the
number of samples (10−200, stride=10), which is shown in
Fig 5. Firstly, BS shows a relatively longer runtime compared
with B1 and B2. Secondly, all methods can converge within
600 ms when the number of samples is less than 200.

Considering these observations, it can be concluded that 1)
the proposed method shows superior performance in terms of
estimating translation while maintaining a similar accuracy
for estimating rotation; 2) the proposed method is capable of
dealing with irregular cases including random outliers and
data loss. However, the proposed method is relatively more
time-consuming, which leaves as a future improvement.

0 50 100 150 200
Number of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e:
 (

s)

Runtime Comparison

B1
B2
BS

Fig. 5. Runtime comparison: the figure shows the evaluations of runtime
versus the number of measurements. Mean runtime of 50 trials is used as
the vertical ordinate.

C. Real Datasets

In the second experiment, we benchmark the perfor-
mance of BS against correspondence-dependent methods
on real datasets to evaluate its accuracy and robustness.

For a fair comparison, data correspondence is provided
to correspondence-dependent methods (KR, NLQ, ATA,
SOCP, GPOLY, DUAL). In the first comparison, the real
RGB-D data provided by [18] is used. The results are
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TABLE I
QUANTITATIVE RESULT ON RGB-D DATASET

Method ER: (rad) Et: (m) Runtime: (s)
KR 0.0310 0.0588 0.0221

NLQ 0.0739 0.0233 1.1680
ATA 0.0260 0.0127 0.5185

SOCP 0.1005 0.1273 5.8258
GPOLY 0.0255 0.0180 1.6093
DUAL 0.0263 0.0125 0.9428

BS 0.0280 0.0344 0.6671
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Fig. 6. Evaluations on RMSE of rotation and translation on datasets
primesense 1 and primesense 2. For both datasets, the RMSE of rotation
is shown in the left plot, whereas the RMSE of translation is shown in the
right plot.

shown in Table. I. The rotational and translational errors are
computed with respect to the ground truth provided in the
dataset. Based on Table. I, GPOLY has the most accurate
result for rotation estimation. Regard to translation, DUAL
bypasses others. BS shows slightly worse accuracy compared
with global optimization methods such as GPOLY, DUAL.
In the second evaluation, the datasets primesense 1 and
primesense 2 from [19] are used. Since no ground truth is
provided in those datasets, similarly to [19], the Root Mean
Squared Error (RMSE) of the translation and orientation
is used for evaluation. The boxplots in Fig. 6 represents
the experimental results. For both datasets, we can see that
except NLQ and SOCP, all other methods demonstrate
stable calibration performance with slight differences.

To summarize from the second experiment, certain global
optimization methods show their superiority in terms of
accuracy. The proposed correspondence-free approach shows
stable performance on real datasets, but the accuracy is
slightly worse than some advanced global optimization meth-
ods. However, considering its capability of working under
the correspondence-free condition, we can use the proposed
method as the front-end for establishing data correspondence
and find a good initial value, then refine the result using
advanced global optimization methods for better accuracy.

VI. CONCLUSION

In conclusion, this paper presents a new and stable
correspondence-free extrinsic calibration approach. We apply
a consistent set finding method that can detect and extract
consistent sets from raw inputs, which significantly improves
the robustness against outliers and missing data. A matrix Lie
group based optimization algorithm is applied to estimate
mean for better accuracy. Experiments have been carried
out to evaluate the performance of the proposed method
and other state-of-the-art approaches in terms of accuracy,

stability, and runtime. The results show the superior per-
formance of the proposed approach over the comparison
approaches. Future work will be to speed up computation.
Improve the performance against noise via leveraging soft-
weighting scheme will also be considered.
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