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Towards Generalizing Sensorimotor Control Across Weather Conditions

Qadeer Khan!?*  Patrick Wenzel 2

Abstract— The ability of deep learning models to generalize
well across different scenarios depends primarily on the quality
and quantity of annotated data. Labeling large amounts of data
for all possible scenarios that a model may encounter would not
be feasible; if even possible. We propose a framework to deal
with limited labeled training data and demonstrate it on the
application of vision-based vehicle control. We show how limited
steering angle data available for only one condition can be
transferred to multiple different weather scenarios. This is done
by leveraging unlabeled images in a teacher-student learning
paradigm complemented with an image-to-image translation
network. The translation network transfers the images to a new
domain, whereas the teacher provides soft supervised targets to
train the student on this domain. Furthermore, we demonstrate
how utilization of auxiliary networks can reduce the size of a
model at inference time, without affecting the accuracy. The
experiments show that our approach generalizes well across
multiple different weather conditions using only ground truth
labels from one domain.

I. INTRODUCTION

The ubiquity of a tremendous amount of processing power
in contemporary computing units has proliferated the usage
of deep learning-based approaches in control applications. In
particular, supervised deep learning methods have made great
strides in sensorimotor control, whether it be for autonomous
driving [1], robot perception [2], or manipulation tasks [3],
[4], [5]. However, the performance of such models is heavily
dependent on the availability of ground truth labels. To have
the best generalization capability, one should annotate data
for all possible scenarios. Nonetheless, obtaining labels of
high quality is a tedious, time consuming, and error-prone
process.

We propose to instead utilize the information available
for one domain and transfer it to a different one without
human supervision as shown in Figure [I] This is particularly
helpful for many robotic applications wherein a robotic
system trained in one environment should generalize across
different environments without human intervention. For ex-
ample in simultaneous localization and mapping (SLAM),
it is very important that the algorithm is robust to differ-
ent lighting conditions [6]. In the context of autonomous
driving, transferring knowledge from simulation to the real
world or between different weather conditions is of high
relevance. Recently, [7], [8], [9] have attempted to tackle
these problems by dividing the task of vehicle control
into different modules, where each module specialized in
extracting features from a particular domain. In these works,
semantic labels are used as an intermediate representation for
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Fig. 1: Teacher-student training for generalizing sensorimotor
control across weather conditions. Top: The teacher network,
trained on ground truth data collected on sunny weather is
capable of predicting the correct steering angle when tested
on this condition. Middle: However, the teacher fails to
predict the correct steering when tested on an input image
from a different domain (rainy weather). Bottom: With
our proposed framework, the student network trained with
supervised information from the teacher network is capable
of predicting the correct steering for the rainy weather.
This is done without any additional ground truth labels or
semantic information.
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transferring knowledge between different domains. However,
obtaining these semantic labels requires human effort which
is time-consuming, expensive, and error-prone [9]. In this
work, we instead propose to use a teacher-student learning-
based approach to generalize sensorimotor control across
weather conditions without the need for extra annotations,
e.g., semantic segmentation labels.
To this end, we make the following contributions:

o We demonstrate how knowledge of ground truth data
for steering angles can be transferred from one weather
scenario to multiple different weather conditions. This
is achieved without the additional requirement of having
semantic labels. We make use of an image-to-image
translation network to transfer the images between dif-
ferent domains while preserving information necessary
for taking a driving decision.

e We show how the proposed method can also utilize
images without ground truth steering commands to train
the models using a teacher-student framework. The
teacher provides relevant supervised information regard-
ing the unlabeled images to train the features of the



student. Hence, we can eliminate the need for an expert
driver for data collection across diverse conditions.

o If the sample data with ground truth labels is limited,
then the teacher and student models may tend to overfit.
To overcome this, we propose using weighted auxiliary
networks connected to the intermediate layers of these
models. During inference, the model size can be reduced
by eliminating auxiliary layers with low weights without
reducing accuracy.

In the following sections, we first review related work.
We then present the details of our method, followed by an
analysis of our model’s performance. Finally, we discuss
various parts of our model.

II. RELATED WORK

Vision-based autonomous driving approaches have been
studied extensively in an academic and industrial setting [10].
A plenty of real world [11], [12], [13] as well as syn-
thetic [14], [15], [16], [17] datasets for autonomous driving
research have become available. In recent years, neural
network approaches have significantly advanced the state-
of-the-art in computer vision tasks. Especially, end-to-end
learning for sensorimotor control has recently gained a lot of
interest in the vision and robotics community. In this context,
different approaches to autonomous driving are studied:
modular pipelines [18], imitation learning [19], conditional
imitation learning [20], and direct perception [21].
Embodied agent evaluation. Most available datasets [11],
[12] cannot be used for evaluating online driving perfor-
mance due to their static nature. The evaluation of driving
models on realistic data is challenging and often not feasible.
Therefore, a lot of interest has emerged in building photo-
realistic simulators [22], [23], [24] to analyze those models.
However, despite having access to simulation engines, there
is currently no universally accepted benchmark to evaluate
vision-based control agents. Therefore, our experimental
setup is a step towards a field where it is still not quite
established how to evaluate and measure the performance of
the models [25], [26].

Unpaired image-to-image translation networks. Unsuper-
vised image-to-image translation techniques are rapidly mak-
ing progress in generating high-fidelity images across various
domains [27], [28], [29], [30]. Our framework is agnostic
to any particular method. Hence, continual improvements in
these networks can be easily integrated into our framework
by replacing a previous network.

Transfer learning via semantic modularity. Several works
used semantic labels of the scene as an intermediate repre-
sentation for transferring knowledge between domains. In the
context of autonomous driving, the authors of [7] proposed
to map the driving policy utilizing semantic segmentation
to a local trajectory plan to be able to transfer between
simulation and real-world data. Furthermore, for making
a reinforcement model trained in a virtual environment
workable in the real world, the authors of [8] utilize the
intermediate semantic representation as well to translate
virtual to real images. However, there is still little work

on generalizing driving models across weathers. The work
by [9] showed how to transfer knowledge between different
weather conditions using a semantic map of the scene. In
contrast, in this paper, we demonstrate the possibility of
transferring the knowledge between weathers even without
semantic labels.

Knowledge distillation. Originally, knowledge distilla-
tion [31] was used for network compression (student network
is smaller than the teacher while maintaining the accuracy).
However, the authors of [32] focus on extracting knowledge
from a trained (teacher) network and guide another (student)
network in an individual training process. Furthermore, [33]
used a slightly modified version of knowledge distillation
for the task of pedestrian detection. In this work, we use a
teacher-student architecture, but rather to leverage unlabeled
data for sensorimotor control.

III. SENSORIMOTOR CONTROL ACROSS WEATHERS

In this section, we introduce a computational framework
for transferring knowledge of ground truth labels from one
weather condition to multiple different scenarios without
any semantic labels and additional human labeling effort.
Figure 2] gives a high-level overview of the framework.

A. Teacher End-to-End Training

In this step, the teacher model is trained end-to-end in a
supervised manner to predict the steering command of the
vehicle from the raw RGB images generated by the camera
placed at the front of the ego-vehicle. The training data is
collected by an expert driver only once for that particular
weather scenario. We refer to the images recorded under
the weather condition under which this data was collected
as belonging to domain Dy. Note that the teacher model
is itself divided into a Feature Extraction Module (FEM),
Fy and a control module, Cjy. The raw image (belonging to
Dy) is passed through Fj to retrieve a lower-dimensional
feature representation. This feature representation is in turn
fed to the Cyy which predicts the steering angle. A depiction
of the model is shown in Figure E} The FEM, Fj is a
sequential combination of 4 units where each unit comprises
a convolutional, pooling, and activation layer. The output of
unit 4 is flattened to a size of 800, which is in turn fed as an
input to the module, Cj. The control module, Cj is a series
of fully connected layers and outputs the steering command.
Auxiliary network. It might be the case that the amount
of images with labels is limited or the model is too large
for the task at hand. Hence, the model may tend to overfit.
Therefore, during training, to mitigate the effect of overfit-
ting, Fy additionally uses auxiliary networks connected to its
intermediate layers [34]. Each of the auxiliary networks has
a control module, Cy with shared weights. The projection
layers, P;, P> and P; project the feature maps of the
intermediate layers to the dimension of Cy i.e. 800. The
overall output of the teacher model is the weighted sum of the
outputs of the auxiliary networks. The loss is also described
by a weighted combination of the individual losses of the 4
auxiliary networks. The loss for each of the control modules
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Fig. 2: This figure gives a high level overview of the 3
steps for transferring knowledge between two domains Dy
and D; for the purpose of sensorimotor control. Ground
truth steering data for only a limited number of images
from domain Dy is available. Details of the framework are
provided in Section [IT]}

DOMAIN D1

STEERING
COMMAND

DOMAIN D1

is the mean squared error (MSE) between the ground truth
label provided by the expert and that predicted by Cy. The
overall loss is a weighted sum of the losses from each of the
4 control modules.

4
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where «;, and £; are the weighting and the error for the
auxiliary network, obtained from the intermediate unit 7 of
the FEM Fj. The error functions are calculated as follows:
1
Li=+ > (= 0y),

Jj=1

where y; is the ground truth steering angle obtained from
the expert driver for a sample j and N denotes the number
of total samples. O;; is the output of the control module
corresponding to the ¢th auxiliary network for the jth sample.
The weights «; are themselves learned by a separate
weight network. The auxiliary network that has the greatest
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Fig. 3: The figure depicts the general architecture of the
model comprised of the FEM and the auxiliary control
modules.

contribution towards the overall output would also have the
highest relative weight. This is important in case of limited
data, wherein not all layers may be essential to train the
model. In such a case the weights of the shallower auxiliary
networks would be higher in comparison to the deeper
auxiliary networks. Hence, a significant contribution towards
the overall prediction would come from these shallow layers,
thereby making the deeper layers effectively dormant. An
extreme case would be when the labeled data is so small
that even the first layer is enough to give a correct model
prediction. In such a case, only oy = 1 and all other
a; =0, fort=2,3,4.

B. Knowledge Transfer

As described in step 2 of Figure 2] knowledge of ground
truth labels from domain Dy is transferred to domain D,
using a teacher-student architecture. The output of the aux-
iliary networks acts as the teacher to provide supervised
information to train the student.

We use the FEM, Iy and control module, Cy (combined,
referred to as teacher) trained on images belonging to domain
Dy, for which ground-truth steering labels are available, to
transfer knowledge to a different combination of FEM, F}
and control module, C (referred to as student) for domain
D, for which we have access to only unlabeled images. The
subsequent procedure is detailed in the following steps:

1) Image Iy belonging to domain Dy is passed through
an image-translation-network to generate image Iy
belonging to domain Dy in a manner that only the
semantic information is preserved but the weather
condition is modified. [27], [29], [30] describe methods
for training a translation network in an unsupervised
manner using generative adversarial networks (GANS).
We use [27] for our experiments. A positive implica-
tion of using these networks is that they preserve the
semantics of the scene and hence the steering angle



label would also be the same.

2) Hard loss: If Iy happens to have a ground truth
(hard) label then the weights of the student network
are updated with these labels and the loss is referred
to as the hard loss. Soft loss: Otherwise, a forward
pass can also be done by passing I, through the
teacher. Meanwhile, the corresponding image I; is
passed through the student network. The output of the
teacher can then used as a soft target for updating the
weights of the student via the soft loss. The overall
loss is the weighted average of the soft and hard losses.
The weights indicate the relative importance given to
the soft targets in relation to the ground truth labels.

Note that the student network can be fed not only images
from domain D; but rather multiple domains including
domain Dy. Hence, the student network would not only be
capable of predicting the steering for multiple domains but
would act as a regularizer for better generalization (See P1
in Section [V]).

C. Substitution

This refers to step 3 described in Figure |2| At inference
time, the teacher network can be substituted with the student
network to predict the correct steering command on images
from all domains which the student encountered during
training.

IV. EXPERIMENTS

In this section, we evaluate our approach on the CARLA
simulator [24] version 0.8.2. It provides a total of 15 different
weather conditions (labeled from O to 14) for two towns,
Townl and Town2, respectively.

A. Evaluation Metrics

Finding appropriate evaluation metrics is rather challeng-
ing for navigation and driving tasks. There is no unique
way to quantify these tasks. The authors of [25] discuss
different problem statements for embodied navigation and
present based on these discussions evaluation metrics for
some standard scenarios. In [26], a more extensive study on
evaluation metrics for vision-based driving models is carried
out. In particular, they analyzed the difference between
online and offline evaluation metrics for driving tasks. The
preliminary results showed that driving models can have
similar mean squared error (MSE) but drastically different
driving performance. As a result of this, it is not straight
forward to trivially link offline to online performance due to
a low correlation between them. Nevertheless, the authors
of [26] found that among offline metrics not requiring
additional parameters, the mean absolute error between the
driving commands and that predicted ones yields the highest
correlation with online driving performance.

In addition to using this offline metric, we evaluate the
online performance of the models when executing multiple
and diverse turnings around corners, since it is a much
more challenging task in comparison with simply moving
in a straight line. The online performance is tested on the

CARLA simulator across all the 15 weather conditions. For
each weather condition, we evaluate the models for multiple
different turns. In all experiments, the starting positions of
the vehicle is just before the curve. The duration of the turn
is fixed to 120 frames because it covers the entire curvature
of the turn. We report the percentage of time the car remains
within the driving lane as a measure of success.

B. Dataset

For collecting ground truth training data, we navigate
through the city using the autopilot mode. To demonstrate the
superiority of our method, we collect a limited sample size
of 6500 images for weather condition 0 of which only 3200
are labeled with ground truth steering commands. Using
our proposed method we aim to transfer knowledge to the
remaining 14 weather scenarios. Also, note that none of the
6500 images have any semantic labels.

The 3200 sample images with ground truth data are only
available for Town2, whereas all the offline and online eval-
vations are performed on Townl. To focus the attention on
the effectiveness of our approach and preserve compatibility
with prior work [1], [13], [26], the models are trained to
predict the steering angle of the car while keeping the throttle
fixed. The steering angles in CARLA are normalized to
values between -1 and 1. The corresponding degrees for
these normalized values depends on the vehicle being used.
The default vehicle which we use for our experiments has a
maximum steering angle of 70°.

C. Models

The offline and online performance of the models de-
scribed in this section are given in Figure ] and Table [I|
respectively. Figure [4| shows the plot of the mean absolute
error between the actual steering command and that predicted
by all of the models. Table [I] contains the percentage for
which the ego-vehicle remains within the driving lane while
making turning maneuvers executed by the models across
the 15 weather scenarios.

Oracle: Steering labels for all weathers. Here we have
assumed that we have access to the ground truth steering
commands across all the 15 different weather conditions for
Townl. Since we are also evaluating the models on Townl
across all the weather conditions, we find in both the offline
and online evaluation metrics that this model achieves the
highest accuracy and hence it could serve as an upper bound
for evaluating the other models along with our approach.

Model [9]: Steering and semantic labels for weather 0.
Here we adopt the approach of [9], wherein the semantic
labels of the images are additionally available for the 3200
labeled samples on weather 0. This additional information is
used to first train what we refer to as the feature extraction
module (FEM) in a supervised manner. The FEM module, in
this case, is trained as an encoder-decoder architecture. The
encoder encodes the input image into a lower-dimensional
latent vector, while the decoder reconstructs the semantic
map of the image from the latent vector. The latent vector is
then used to train the control module from the ground truth



steering labels. The FEM and control modules are hence
trained independently and without any auxiliary networks.
This FEM trained on the semantics of weather 0 is used as a
teacher to train the student which is capable of producing the
semantics of all the other 14 weather conditions. The authors
of [9] used the method of [27] and provide 10 separate
networks for translating from weather 0 to weathers 2, 3, 4,
6,8,9, 10, 11, 12, and 13, respectively. The translated images
for each of the 10 weather conditions along with weather 0
are fed in equal proportion to train the student. We would
particularly like to evaluate our method which does not have
access to any semantic labels against this model. In addition
to this, we also evaluate the performance of this method on
the model provided by the paper, which was trained with
more than 30000 samples from both Town! and Town2. The
performance of this model on Townl/ is far superior since
it was trained on much greater data and also had access to
ground truth data from Townl.

Teacher: Steering angles for weather 0. This model is
trained using only the available labeled data for weather O in
an end-to-end manner. This model has a poor performance
for the unseen weather conditions, particularly for conditions
3-14, which are considerably different in visual appearance
compared to weather 0. Nevertheless, despite the poor per-
formance this model can be used as a teacher to train the
student for predicting the correct steering angles for weather
conditions 1-14 for which no ground truth data exists. This
approach is described in the next model. Also, note that the
unlabeled data remains unutilized here.

QOurs: Steering angles for weather 0. This model is
trained using the method described in Section wherein
knowledge is transferred from the teacher network trained on
images and ground truth steering commands from weather 0
to the student network which is capable of handling images
from all weathers 0-14. For a fair comparison against the
model trained with semantic labels (Model [9], described
earlier) we use the same data and generative models to
translate even the unlabeled images to weathers 2, 3, 4, 6, 8§,
9, 10, 11, 12, and 13, respectively. These generated images
can then be fed to the student model for predicting the correct
steering angles for all the 15 weather conditions.

V. DISCUSSION

In this section, we discuss some critical insights on the
experimental observations we obtained while evaluating the
models. Here are some points we found worthwhile to
provide some commentary based on the results provided in
Figure [4] and Table
P1 - Better regularization: It is interesting to observe
that the teacher model, trained only on the available 3200
labeled samples from Town2 on weather 0 has a worse
offline performance for Townl on weather 0 in comparison
to our method. This seems to imply that our approach
which has been trained on multiple kinds of weather has
better generalization capabilities and can even outperform
its teacher when evaluated in a different town. Hence, an
additional positive consequence of training the student with
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Fig. 4: This plot shows the mean absolute error between the
actual steering angle and that predicted by the 5 different
models (see subsection on data collected across the
15 different weather conditions on Townl. Lower is better.

generated images from multiple diverse domains is that it
acts as a regularizer tending to prevent overfitting to one
specific domain.

P2 - Semantic inconsistency: Note that Model [9] which in
addition to having the same data and labels as our approach
has also access to ground truth semantic labels. Yet, its
performance is significantly poor. Upon investigation, we
found that due to the limited number of semantic labels,
the FEM trained as an encoder-decoder architecture seemed
to be overfitting to the available data. Hence, when tested
on unseen environments, the semantic segmentation output
of the module breaks. The latent vector representing these
broken semantics is then fed to the control module, which
is incapable of predicting the correct steering command.
Figure [5] shows some sample images with the correspond-
ing semantic segmentation outputs which are considerably
different from the true semantics of the scene.

P3 - Modular training constraints: Furthermore, the mod-
ular approach of Model [9] wherein the FEM and control
module are trained independently as opposed to an end-to-
end model served to be a bottleneck in being able to learn
the features universally. Also, an assumption to train the
control module well is that the FEM would work perfectly
well, which is not the case. Hence, the overall error of the
modular pipeline would be an accumulation of the errors of
the independent FEMs and control modules. We found that
if we also shift the training of our approach to a modular
one then performance deteriorates. This can be done in our
approach by updating only the weights of the FEM of the
student from the output features of the FEM of the teacher.
P4 - Auxiliary weights: To prevent overfitting of the models,
trained on limited data we used a weighted sum of the
outputs of the auxiliary layers. The weights themselves were
learned as part of the training. Once training of our student
model was complete, we found that more than 97 % of the
weight was held by the first auxiliary network. This seemed
to imply that only the first unit of the FEM is enough for



Weather Conditions

Method Trained on | 0 [ 1 [ 2 [ 3 [ 4 [5 [ 6 [ 7 |8 [ 9 [ 10 [ 11 [ 12 [ 13 [ 14 [[ overall |
Oracle Townl 99.79 | 99.90 | 100 97.40 | 98.96 | 99.27 | 98.13 | 98.85 | 98.27 | 99.90 | 99.27 | 96.35 | 93.85 | 93.96 | 96.35 98.02
Model [9] Townl &2 99.06 | 93.44 | 98.85 | 98.75 | 97.92 | 98.23 | 97.60 | 96.56 | 91.15 | 96.04 | 97.29 | 95.00 | 94.69 | 82.08 | 9541 95.47
Model [9] Town2 68.33 | 67.71 50.00 | 71.77 | 67.40 | 64.38 | 63.85 | 63.65 | 61.88 | 71.35 | 51.35 | 67.50 | 58.33 | 61.67 | 66.98 63.74
Teacher Town2 92.19 | 9240 | 82.12 | 4438 | 51.77 | 73.65 | 32.50 | 61.56 | 49.48 | 80.10 | 60.63 | 48.54 | 35.20 | 34.27 | 50.52 59.29
Ours Town2 93.96 | 95.21 81.25 | 99.90 | 100 94.17 | 90.42 | 79.69 | 77.19 | 86.77 | 84.58 | 65.63 | 68.54 | 58.44 | 80.73 83.77
[ Ours (Auxiliary network 1) || Town2 | 93.96 | 93.44 | 80.73 [ 9240 | 100 | 99.60 | 9042 | 80.10 | 77.19 | 8750 | 91.98 | 67.40 | 66.25 | 57.29 | 8L.15 || 83.97 ]

TABLE I: This table shows the percentage for which the ego-vehicle remains within the driving lane while executing a turn
for the models across the 15 different weather scenarios on Townl. Higher is better.

Default

Fig. 5: This plot shows three sample images (column 1)
with the corresponding semantic segmentation output by the
model (column 2) for 3 different weathers. The segmentation
produced by the model does not reflect the actual semantic
characteristics of the scene (column 3).

predicting the steering command. Hence the remaining unit
layers are not providing any additional information for the
model. So we evaluated our model based on the output
of the first auxiliary network rather than on the weighted
sum of the 4 auxiliary networks. The online evaluation of
this approach is given in Table [I| against the row labeled
Ours (Auxiliary network 1). It is interesting to note that this
approach is comparable in its performance with the original
one. Therefore, at test time we can prune the network to a
smaller size by making predictions only based on the first
auxiliary network and removing the remaining 3 auxiliary
networks. This would result in less computation and faster
inference.

P5 - Online vs. offline evaluation: Figure [6|shows an offline
evaluation of the two variations of our method described in
the previous point across the 15 weather conditions. Note
that apart from weather 0, 1, and 2, the two curves are
indistinguishable from one another. However, the online eval-
uation results do not correspond with this observation. For
weathers 3, 5, 7, and 9-14 the online performance is different
despite having the same offline metric. This confirms the
intuition presented in [25] and the problems associated with
evaluating embodied agents in offline scenarios. The topic
of finding a correlation between offline evaluation metrics
and online performance has therefore recently started to
receive positive traction. It is therefore important to come
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Fig. 6: This plot shows the mean absolute error between the
ground truth steering label and that predicted by the two
models. The blue curve is the weighted sum of all the 4
auxiliary networks of our model. The line depicts
the output of only the first auxiliary network of our model.

up with a universal metric for evaluating various algorithms
across the same benchmark. Due to the non-existence of such
benchmarks, we created our own for the evaluation of the
different approaches.

P6 - Activation maps: To understand the behavior of
the model, which also works with only the first auxiliary
network, we took the sum of the activation maps of the first
unit of the FEM of the student and displayed it as a heatmap
as shown in Figure [/| for a sample of 2 images. We see that
the activation maps are most prominent in regions where
there are lane markings, sidewalks, cars, or barriers. Knowing
these cues seems to be enough for the network to take an
appropriate driving decision in most of the cases. Therefore,
the higher-level features determined by the preliminary layers
of the model are already enough to detect these objects of
interest.

VI. CONCLUSION

In this work, we showed how a teacher-student learning-
based approach can leverage limited labeled data for trans-
ferring knowledge between multiple different domains. Our
approach, specifically designed to work for sensorimotor
control tasks, learns to accurately predict the steering angle
under a wide range of conditions. Experimental results
showed the effectiveness of the proposed method, even
without having access to semantic labels as an intermediate
representation between weather conditions. This framework



Fig. 7: This figure shows the sum of the activation maps
displayed as a heatmap of the first unit of the FEM of the
student model for a sample taken from 2 different weather
conditions. The activation maps are more prominent in
regions where there are lane markings, sidewalks boundaries,
other vehicles, or barriers.

may be extendable to other application areas for which a
certain domain has ground truth data and shares a common
characteristic with other domains for which no labels are
available.
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