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Abstract— This paper studies the problem of distributed
computation of higher order Voronoi partition over a bounded
region by a group of robots with both range-limited visibility
sensors and communication devices. We model the sensing
and communication capabilities by discs with limited radius.
Motivated by the concept of dominating region in higher-order
Voronoi partition, we propose a detecting ray based algorithm,
which computes the boundary points of the dominating region
of a robot in an omnidirectional manner, with local position
information of its neighbors within the communication range.
Simulations are provided to demonstrate the performance of
our proposed algorithm by using a thirteen-robot group.

I. INTRODUCTION

In the last two decades, a significant amount of interest
has been raised in the research field of networked systems,
see [1] for a recent overview. Among the various research
directions, multi-robot coverage control is a particular prob-
lem of interest, which aims to coordinate a group of mobile
robots with sensors (e.g. cameras) to provide coverage over
a large region for better performance and efficiency than a
single complex robot [2], [3], [4], [5], [6].

In the problem setting of coverage control, it is usually
required that the algorithms are executed in a distributed
manner. By distributed manner, we mean a robot is allowed
to exchange information only with its neighbors, rather than
all other robots in the network, to determine its coverage
area or control input. We note that the Voronoi diagram [7]
is a typical technique for computing the coverage region in
the related coverage control literature [8], [9], [10], [11],
[12]. The requirement of implementing the algorithm in a
distributed manner gives rise to a new challenge, which aims
to extend the commonly-used centralized Voronoi partition
algorithm to a distributed algorithm. Some existing effort has
been presented in [13], [14], [15], [16], [17] to address this
challenge. However, they all concern the 1-order Voronoi
partition.

In 1-order Voronoi partition, each robot is allocated to
cover a convex area (Voronoi cell) whose shape is determined
in part by position information from its neighboring agents,
i.e. one robot dominates one cell. In higher-order Voronoi
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partition (or k-order Voronoi partition), the idea can be
summarized as k (k ≥ 2) robots dominates one single
cell. We note that there lacks contribution to the problem
of distributed computation of higher-order Voronoi partition,
since its inner geometry relationship is highly nontrivial, for
which the techniques developed in 1-order Voronoi partition
are not applicable. To the best of our knowledge, the work
in [18] is the only work that deals with the problem of
distributed computation of higher-order Voronoi partition, in
which the idea is to find the intersections of the dominating
region of neighboring robots in the higher-order sense.

Our work is motivated by [18], in which we further
introduce range constraints into consideration for both visi-
bility sensors and communication devices equipped on robot.
This definitely complicates the problem due to the following
challenges: 1) the definition of dominating region introduced
in [18] can not be directly applied since it may be restricted
by the sensing range; 2) in a range-free, k-order Voronoi
partition, any point within the covered region can be dom-
inated by k robots. However, when considering the range
limitation, there are more options. A point can be dominated
by k robots, or k − 1 robots, . . ., or 1 robot, or even not
dominated by any robot. To address the above challenges,
in this paper, we develop a detecting ray based algorithm to
compute each boundary point in an omnidirectional manner
with respect to each robot.

The rest of this paper is structured as follows: Section II
introduces the concepts and definitions of 1-order Voronoi
partition, k-order Voronoi partition, dominating region in k-
order Voronoi partition, models of sensing and communica-
tion discs and provides a formal definition of the problem.
Section III presents the algorithm and the formal analysis.
Simulations are provided in Section IV and the paper is
concluded in Section V.

II. PRELIMINARIES AND BACKGROUND

A. Order 1 Voronoi partition

Suppose there is a 2-D bounded area A ⊂ R2 with n
robots dispersed in this area. The set of n robots is defined
as N = {1, 2, ..., n}. Let pi ∈ R2 denote the position of
robot i. The locations of n robots are represented by P =
(p1, . . . , pn). An arbitrary point in A is denoted as q. The
1-order Voronoi partition V (P ) = (v1, . . . , vn) of area A is
defined as follows:

vi = {q ∈ A| ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i} (1)

The set of regions v1, . . . , vn is called the Voronoi diagram
for the generators 1, . . . , n. Each Voronoi cell vi represents
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Fig. 1: Order k Voronoi partition for k = 1,2,3,4. (a) 1-order
(b) 2-order (c) 3-order (d) 4-order

a enclosed region dominated by the i-th robot within which
any point q inside vi is closer to the robot i in terms of
the Euclidean distance. Note that each 1-order Voronoi cell
is convex. If the Voronoi cells of robot i and robot j are
adjacent (vi and vj share a common boundary comprising
an interval of nonzero length), the robot i and the robot j
are defined as Voronoi neighbors. An example of 1-order
Voronoi partition is shown in Fig. 1 (a).

B. Order k Voronoi partition

Suppose that S is a subset of N and there are k elements
in S . The definition of an order k Voronoi partition is given
below:

VS = {q|∀v ∈ S,∀ω ∈ N \ S, ‖q − pv‖ < ‖q − pω‖, |S| = k},
(2)

where N \ S denotes the relative complement set of S with
respect to N . For any point q in VS , q is closer to a robot in
S than to any other robots not in S but in N . Generator of
each cell in order 1 Voronoi partition changes to generator
set S in k-order Voronoi partition and each Voronoi cell VS
is also convex. And it is worth pointing out that not every
S ∈ N necessarily defines a cell in the partition. We provide
three examples to show 2-order, 3-order and 4-order Voronoi
partitions in Fig. 1 (b) (c) (d), respectively.

C. Dominating region of robot i in a k-order Voronoi parti-
tion

The concept termed dominating region of robot i (intro-
duced in [18]) in a k-order Voronoi partition serves as a
basis of our algorithm. Across this paper, we term Dk

i as the

dominating region of robot i in a k-order Voronoi partition.
The mathematical definition of Dk

i is stated as:

Dk
i = {q ∈ A||Rk

i (q)| 6 k − 1}, (3)

where

Rk
i (q) = {j ∈ N |‖q − pj‖ 6 ‖q − pi‖, i 6= j}. (4)

The intuitive explanation of Dk
i can be described as follows:

A point q ∈ A is said to belong to Dk
i if and only if there

exist at most k − 1 other generators such that their distance
to q is less than ‖q − pi‖.

By observing (1) and (3), it is straightforward to conclude
that Dk

i and Vi shares the same definition in 1-order Voronoi
partition. In k-order Voronoi partition, Dk

i can be regarded
as the union of the Voronoi cells for which robot i is one
generator of this cell.

We take 2-order Voronoi partition as an example to further
clarify the dominating region. As shown in the Fig. 1(b),
the region enclosed by green solid line (resp. red) is the
dominating region of the green highlight robot (resp. red
highlight robot). The hatched area by green dominating
region and red dominating region is the Voronoi cell defined
by the red robot and green robot. i.e., the points in the
hatched area are closer to these two highlighted robots than
any other robots.

D. Sensing and communication models

In real-world applications, robots are usually equipped
with omnidirectional visibility sensors, such as cameras
or laser radars. The sensing model of an omnidirectional
visibility sensor is usually described by a disc with radius
R, centered at robot’s position (we assume all robots share
a homogeneous sensing radius R in this paper). We follow
the definition of visibility disc in [19], which is presented as
follows:

Definition 1: The visibility disc Ci of a robot is defined
as the set of points q being in distance less than or equal to
the sensing radius of the i-th robot, i.e.:

Ci := {q ∈ A|‖q − pi‖ ≤ R}.
Our distributed algorithm requires the robots to receive

the position information from its neighbors within their
communication ranges. In this paper, we assume that the
communication range is twice as much that of the robot’s
sensing range R, i.e., 2R. Thus we have the following
definition.

Definition 2: The definition of the neighbors of robot i
within its communication range is denoted as

Ni := {j ∈ N | ‖pi − pj‖ ≤ 2R, j 6= i}.

E. Problem formulation

Suppose a bounded region A ⊂ R2 with n robots
dispersed. We assume all robots are stationary. We further
assume that the sensing model of each robot is described by
Definition 1 and the communication range is the double of
the sensing range. All robots have a preliminary knowledge



Fig. 2: The dominating region in order 2 Voronoi partition
of robot i with limited sensing range. The robots are denoted
by stars. The dashed line is the dominating region of ni in
order 2 Voronoi partition without range limitation. The green
circle indicates the sensing range. The blue solid line is the
final boundary of the dominating region Dk

i .

of boundaries of the region A, i.e. the boundaries of region
also determine the coverage region.

The objective of our algorithm is to let robot i compute its
own dominating region Dk

i in the sense of order k Voronoi
partition within its sensing range (an graph illustration of
Dk

i is shown in Fig. 4), by using the position information
received from its neighbors in set Ni.

III. THE ALGORITHM AND ITS ANALYSIS

The idea of our proposed distributed algorithm on com-
puting the k-order Voronoi partition can be divided into two
steps: 1) for each robot i, determines its dominating region
Dk

i in terms of a selected group of neighbors within its
communication range, meanwhile with respect to the robot’s
sensing range; 2) number the Voronoi cell by computing the
intersection of the dominating regions of the neighboring
robots. We now present and illustrate our proposed algorithm
to distributedly compute the dominating region Dk

i .
The implementation of the algorithm is stated in the

Algorithm 1 block.
To compute the dominating region Dk

i , robot i needs to
firstly identify its neighbor set Ni (defined in Definition 2)
within its communication range and number them from small
to large according to their distances to pi. If Ni is an empty
set, it is obvious that the dominating region Dk

i of robot i
is equal to its visibility disc Ci, since there does not exist
intersections between the visibility discs of robot i and other
robots in the area A. Furthermore, if the neighbor set Ni is
not empty and its size is less than k, the dominating region
Dk

i of robot i is equal to its visibility disc Ci. Otherwise
the following process is applied to find the boundary points.
The neighbor set identification process is illustrated in Fig.
3.

After the identification of the neighboring set, we turn to
explain the detecting ray based algorithm to compute the
boundary points of the dominating region Dk

i . The bound-
aries of Dk

i are denoted as Bk
i . Our idea is to compute the

Algorithm 1: A distributed algorithm for computing
dominating region Dk

i

Input:the position information pi of each robot i ∈ N ;
robot’s sensing range R, communication range 2R

Output:Dominating region of robot i
foreach j ∈ N \ i do

Ni ← {j| ‖pj − pi‖ 6 2R}
Numbering j ∈Ni from small to large according to
its distance to pi, pki is the position of robots in Ni,
where k means the k-th nearest neighbour of robot
i, also means the order of the Voronoi partition we
would like to compute.

end
if ‖Ni‖ < k then

Bk
i ← {q|‖q − pi‖ = R}

Go to step 0
end
foreach d ∈ A, s.t.‖pd − pi‖ = ‖pi−pk

i ‖
2 do

γ =
‖pi−pk

i ‖
2 , bound ← False

while γ 6 R do
Rk

i ← empty
q ← {(γ, pd)| ‖q − pi‖ = γ, q ∈ −−→pipd }
foreach nj ∈ Ni do
Rk

i ← {nj ∈ Ni| ‖pji − q‖ < ‖pi − q‖}
end
if |Rk

i | > k then
Bk

i ← {q| ‖q − pi‖ = λ, q ∈ −−→pipd},
bound ← True,
break

else
γ = γ + λ

end
end
if bound = False then

Bk
i ← {q|q = (R, d)}

end
end
Use Bk

i to define Dk
i (step 0)

boundaries (Bk
i ) of the dominating region Dk

i distributedly.
The starting point of the detecting ray is pi, the other point
that jointly define the detecting ray with the starting point,
is an arbitrary point d on an initial circle centered at pi
with the radius γ0. In the following, we use the symbols−→
pid and Ci to represent the detecting ray and the initial
circle, respectively. Now we use the following proposition
to illustrate the selection criteria for the magnitude of the
radius γ0 of the initial circle.

Proposition 1: Assume that robot i has at least k neigh-
bors within its communication range. For any point d with
the position pd on the ray

−→
pid, if the distance ‖pi − pd‖

between the robot i and d, is less than or equal to ‖pi−pk
i ‖

2 ,
where pki is the position of the k-th nearest neighbor of robot



Fig. 3: The identification of neighbor set Ni. The visibility
range and the communication range of robot i are denoted by
the green and blue circles, respectively. The robots marked
in magenta are identified not the neighbours of robot i.

i, the point d is dominated by robot i.
Proof: We number the robots in robot i’s neighbor set

Ni according to the magnitude of their distances to robot i,
from small to large. We use pki to denote the k-th nearest
neighbor, whose distances to robot i is ‖pi − pki ‖. What we
want to prove is that all the points on the circle centered at pi
with radius ‖pi−pk

i ‖
2 are dominated by robot i. For notation

simplicity, we still use d to represent an arbitrary point on
this circle. By observing the definition of the dominating
region Dk

i in (3), we know that we can judge if point d
belongs to Dk

i by counting the number of robots in the set
Rk

i (d), defined in (4). Since point d is on the circle centered
at pi with radius ‖pi−pk

i ‖
2 , we have that the distance ‖pd−pki ‖

between the point d and the k-th nearest neighbor is equal to
or larger than ‖pi−pk

i ‖
2 . For those neighbors whose distances

to robot i is larger than ‖pi−pki ‖, we have that its distance to
d is always larger than ‖pi−pk

i ‖
2 . The above analysis indicates

the fact that the set Rk
i (d) contains at most k − 1 robots,

which in turn shows that d is always dominated by robot i.
Now we have that a point q on the ray

−→
pid, whose distance

γ = ‖q−pi‖ to robot i is equal to ‖pi−pk
i ‖

2 (k represents the
order of the partition), can be selected as the initial point of
the detecting process for each d. We note that the detecting
process aims to determine if a point q on

−→
pid with distance

γ to robot i, which is a boundary point of the dominating
region Dk

i . In the detecting process, the algorithm will check
the eligibility of each point on

−→
pid, whose distance γ to pi

is larger than ‖pi−pk
i ‖

2 , if it fits the termination conditions.
The termination conditions comprise of three parts: 1) the
point d reaches the boundaries of the closed region A; 2)
the point d reaches the boundaries of the visibility disc Ci;
and 3) the point d satisfies the condition Rk

i (q) ≥ k. The first
two termination conditions are straightforward to understand
thus we omit the explanations. The idea behind the third
termination condition directly arises from the definition of

Fig. 4: The initial circle. Any points within this circle should
be dominated by robot i.

the dominating region Dk
i in (3), for which if there exist at

least k other generators such that their distances to q is less
than ‖q − pi‖, then point q can be regarded as a boundary
point. The above detecting process determines a boundary
point in one direction, then we need to repeat this process in
an omnidirectional manner to compute the boundary set Bk

i

for each robot, which completes our Algorithm 1. Applying
Algorithm 1 for each robot, we will finally obtain a range-
limited, k-order Voronoi partition for region A.

A graph illustration of the above process is shown in Fig.
5.

Remark 1: The idea of Algorithm 1 can be concluded
as checking the points that outside the initial circle Ci to
determine if they are the boundary points of Rk

ni
. The

detecting ray actually serves as a ”direction” to help select
points. Thus the resolution of the points selection process
actually determines the accuracy of the boundaries of Rk

ni
.

In real implementations, the number of detecting rays and
the magnitude of λ (the step size proposed in Algorithm 1)
determines the resolution of the boundaries.

Remark 2: The sensing range constraints of the mobile
robots introduce an interesting property: not all regions in
area S are dominated by k sensor nodes. Moreover, we
note that the normal k-order Voronoi partition without range
constraints can be regarded as a special case of our algorithm,
for which we only need to select large enough sensing range
and communication range.

Remark 3: Our proposed algorithm is able to compute
n-order Voronoi partition with limited range in a distributed
manner, which can be directly applied in distributed coverage
tasks, e.g. [20].

IV. SIMULATION

In this section, we provide two simulation experiments to
illustrate the results of our algorithm in computing 2-order
and 3-order Voronoi partition with limited sensing range in
Fig. 6 and Fig. 7, respectively. For the simulation presented



Fig. 5: The detecting process. Green dashed circle is robot
i’s sensor range. Red dashed circle is direction ring of robot
i. Black dot represents the robot i. Star dot represent other
robots in Ni. The black dashed line is the ray −−→pipd. Red
point is the q who satisfies the stop criterion. The blue solid
line is part of the dominating region boundary.

in Fig. 6, we select the sensing range for each robot as
2.5. For the simulation presented in Fig. 7, the radius of
the sensing range is selected as 2.5. It can be directly
observed from the figures that not every point inside A can
be dominated by k robots.

Fig. 6: A 2-order Voronoi partition with limited sensing
range. The robots are represented by the stars. The red
numbers represent the indexes of the robots. The black
number indicates the dominating robots for a closed area.

We further present a special case in Fig. 8. The simulation
in Fig. 8 aims to compute a 3-order Voronoi partition.
However, because of the sensing range is quite small, no
point can be dominated by three robots simultaneously.

At last, we show the distributed implementation steps

Fig. 7: A 3-order Voronoi partition with limited sensing
range. The robots are represented by the stars. The red
numbers represent the indexes of the robots. The black
numbers indicate the dominating robots for a closed area.

Fig. 8: A 3-order Voronoi partition with a limited sensing
range. No point can be dominated by three robots simulta-
neously.

in Fig. 9. The four steps to distributedly partitioning the
bounded region are presented step by step.

V. CONCLUSION

In this paper, we proposed a distributed algorithm for
computing order k Voronoi partition with limited sensing
range in a multi-robot system. The sensing and communica-
tion capabilities are both modelled by discs. We propose a
detecting ray based algorithm, to determine the points outside
a initial circle to if they are the boundary points. Only local
position information of the robot’s neighbours are required
in the algorithm.
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Fig. 9: Dominating regions in computing process of Order
2 Voronoi partition for each robot. a) Robot 1 finishes
computation; b) Robot 2 finishes computation; c) Robot 3
finishes computation; and d) Robot 4 finishes computation
.

REFERENCES

[1] S. Knorn, Z. Chen, and R. H. Middleton, “Overview: Collective control
of multiagent systems,” IEEE Transactions on Control of Network
Systems, vol. 3, pp. 334–347, Dec 2016.

[2] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, pp. 243–255, April 2004.

[3] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots.,” in robotics: science and
systems, pp. 49–56, 2006.

[4] W. Li and C. G. Cassandras, “Distributed cooperative coverage control
of sensor networks,” in Proceedings of the 44th IEEE Conference on
Decision and Control, pp. 2542–2547, IEEE, 2005.

[5] M. Zhong and C. G. Cassandras, “Distributed coverage control and
data collection with mobile sensor networks,” IEEE Transactions on
Automatic Control, vol. 56, no. 10, pp. 2445–2455, 2011.

[6] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[7] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
applications and algorithms,” SIAM review, vol. 41, no. 4, pp. 637–
676, 1999.

[8] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with
distributed information,” IEEE Control Systems, vol. 27, no. 4, pp. 75–
88, 2007.

[9] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[10] Q. Liu, M. Ye, Z. Sun, J. Qin, and C. Yu, “Coverage control of unicycle
agents under constant speed constraints,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 2471 – 2476, 2017. 20th IFAC World Congress.

[11] C. Song and Y. Fan, “Coverage control for mobile sensor networks
with limited communication ranges on a circle,” Automatica, vol. 92,
pp. 155–161, 2018.

[12] R. Goralski, C. Gold, and M. Dakowicz, “Application of the kinetic
voronoi diagram to the real-time navigation of marine vessels,” in
International Conference on Computer Information Systems Industrial
Management Applications, 2007.

[13] W. Alsalih, K. Islam, Y. N. Rodrı́guez, and H. Xiao, “Distributed
voronoi diagram computation in wireless sensor networks.,” in SPAA,
p. 364, 2008.

[14] C. N. Hadjicostis and M. Cao, “Distributed algorithms for voronoi
diagrams and applications in ad-hoc networks,” Preprint, 2003.

[15] K. R. Guruprasad and P. Dasgupta, “Distributed voronoi partitioning
for multi-robot systems with limited range sensors,” in IEEE/RSJ
International Conference on Intelligent Robots Systems, 2012.

[16] B. A. Bash and P. J. Desnoyers, “Exact distributed voronoi cell com-
putation in sensor networks,” in Proceedings of the 6th international
conference on Information processing in sensor networks, pp. 236–
243, ACM, 2007.

[17] C. Qiu and H. Shen, “A delaunay-based coordinate-free mechanism
for full coverage in wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 4, pp. 828–839, 2014.

[18] F. Li, J. Luo, W. Wang, and Y. He, “Autonomous deployment for load
balancing -surface coverage in sensor networks,” Wireless Communi-
cations IEEE Transactions on, vol. 14, no. 1, pp. 279–293, 2015.

[19] Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control
for concave areas by a heterogeneous robotswarm with visibility
sensing constraints,” Automatica, vol. 53, pp. 195 – 207, 2015.

[20] B. Jiang, Z. Sun, B. D. Anderson, and C. Lageman, “Higher order
mobile coverage control with applications to clustering of discrete
sets,” Automatica, vol. 102, pp. 27–33, 2019.


