
Fast Trajectory Planning for Multiple Quadrotors
using Relative Safe Flight Corridor

Jungwon Park1 and H. Jin Kim1

Abstract— This paper presents a new trajectory planning
method for multiple quadrotors in obstacle-dense environments.
We suggest a relative safe flight corridor (RSFC) to model safe
region between a pair of agents, and it is used to generate linear
constraints for inter-collision avoidance by utilizing the convex
hull property of relative Bernstein polynomial. Our approach
employs a graph-based multi-agent pathfinding algorithm to
generate an initial trajectory, which is used to construct a safe
flight corridor (SFC) and RSFC. We express the trajectory as
a piecewise Bernstein polynomial and formulate the trajectory
planning problem into one quadratic programming problem
using linear constraints from SFC and RSFC. The proposed
method can compute collision-free trajectory for 16 agents
within a second and for 64 agents less than a minute, and
it is validated both through simulation and indoor flight test.

I. INTRODUCTION

Multi-agent systems consisting of micro aerial vehicles
(MAVs) are receiving attention from many industrial do-
mains due to their agility, mobility, and applicability. To
maximize their capabilities for various missions such as
cooperative surveillance [1] and transportation [2], it re-
quires to generate safe trajectories for multiple quadrotors
in a complex environment within a short time. However,
it has been challenging to efficiently formulate constraints
to avoid obstacles and other agents. Furthermore, deadlock
may happen if agents are packed in a narrow space. In
this paper, we focus on an efficient planning method in
terms of both cost and computation time which generates
safe, dynamically feasible trajectories in an obstacle-dense
environment without deadlock.

One popular approach to generate multi-agent trajectories
is a centralized optimization method In [3], constraints for
collision avoidance are reformulated in integer constraints for
mixed-integer quadratic programming (MIQP). However, it
requires over 500–1000 seconds to optimize the trajectory of
2–4 agents due to the computational complexity of the MIQP.
In [4], sequential convex programming (SCP) is proposed
to replace non-convex constraints with convex ones. SCP
shows good performance when planning a small number
of quadrotors, but it is intractable for a large team and
complex environment. The authors of [5] suggest nonlinear
programming (NLP) which combines sequential planning to
deal with nonlinear constraint directly. This use of sequential
planning method allows to achieve better scalability, but it

1Jungwon Park is with the Department of Mechanical and
Aerospace Engineering, Seoul National University, Seoul, South Korea
qwerty35@snu.ac.kr

1H. Jin Kim is with the Department of Mechanical and
Aerospace Engineering, Seoul National University, Seoul, South Korea
hjinkim@snu.ac.kr

Fig. 1: SFC (semi-transparent blue box) and RSFC (semi-
transparent green box) used for planning trajectories for two
agents (red and blue lines). The trajectory of agent 2 (blue
line) is generated within the intersection between SFC and
RSFC to avoid obstacles and inter-collision model between
two agents (red box)

has a limitation that no feasible solution can be found for a
crowded situation.

A decentralized method also has been considered to reduce
total planning time by distributing the computational load.
Approaches based on LQR-obstacle [6] and buffered Voronoi
cells [7] show that they can generate a collision-free path in
real time. However, such distributed methods are not able
to guarantee the completeness, no deadlock. In [8] and [9],
distributed model predictive control (DMPC) is proposed to
optimize the control input instead of a piecewise polynomial
path, but they do not consider obstacles.

In single quadrotor path planning, many researchers have
adopted a safe flight corridor (SFC) to model free space
in a map. SFC is composed of connected convex sets,
and it can be represented as linear inequality constraints
for obstacle avoidance in quadratic programming (QP) [10,
11, 12]. In [13], SFC is used to separate a safe region of
each agent in quadrotor swarm. By resizing SFC iteratively,
trajectories of quadrotor swarm can be refined separately
without inter-collision. This decoupled iterative optimization
method shows good scalability in a maze-like environment,
but it requires many iteration steps for the convergence of
the overall cost.

In this paper, we propose a new centralized multi-agent
path planning method that uses a relative safe flight corridor
(RSFC) to find a feasible trajectory without any sequential or
iterative process. Similar to SFC, RSFC utilizes a property

ar
X

iv
:1

90
9.

02
89

6v
1

 [
ee

ss
.S

Y
]

 6
 S

ep
 2

01
9

of Bernstein polynomial to convert non-convex inter-collision
avoidance constraints into linear ones as illustrated in Fig. 1,
and it does not need an additional resizing process to find the
feasible trajectory. Thus, our proposed method can optimize
a piecewise polynomial trajectory by using QP only once,
and it guarantees a feasible solution of QP does not cause
a collision and deadlock. Recently, distributed planning is
receiving much attention due to scalability, yet centralized
methods can still provide the quality solution by the efficient
formulation using RSFC.

Our main contributions can be summarized as follows.
• A collision avoidance constraint formulation method

using relative safe flight corridor is proposed, which
does not require sequential or iterative process.

• A fast trajectory optimization framework is presented
in an obstacle-dense environment, which guarantees
collision- and deadlock-free.

This paper is structured as follows. The problem statement
is presented in section II. In section III, we describe the
method of multi-agent trajectory planning using relative safe
flight corridor. Experimental results are presented in section
IV. Finally, section V contains conclusions.

II. PROBLEM STATEMENT

Consider a multi-agent robot system that consists of Nq
quadrotors. Each quadrotor is assumed to have different size
with radius r1, ..., rNq but has the same dynamic limit. We
assume that prior knowledge of the free space F and obstacle
O is given in 3D occupancy map and start, goal point of the
ith quadrotor is assigned as si, gi.

It has been shown that quadrotor dynamics is differentially
flat and trajectory can be represented in piecewise polyno-
mials with flat outputs in time t [14]. Thus,trajectory of ith

quadrotor, pi(t), can be represented in M -segment piecewise
polynomials.

In this paper, we aim to generate continuous, smooth
trajectory pi(t) for all i = 1, ..., Nq which minimizes the
integral of the square of the nth derivative and does not
collide with any obstacle and other agents.

III. METHOD

The overall structure of our proposed method is depicted
in Fig. 2. Our method consists of three steps. First, the
discrete path planner plans the initial trajectory using the
multi-agent pathfinding (MAPF) algorithm. Then safe flight
corridor (SFC) and relative safe flight corridor (RSFC) are
constructed based on the initial trajectory. Finally, SFC and
RSFC are converted into inequality constraints of quadratic
programming (QP) and we obtain the desired trajectory by
utilizing the convex hull property of Bernstein polynomial.
The detail of each part is described in the following subsec-
tions.

A. Initial Trajectory Planning

When planning the trajectory of a single quadrotor, many
researchers have divided the planning process into initial

trajectory planning and trajectory refinement, and such two-
step method is now being adopted in the multi-agent case
[15, 13]. Inspired by that, we first plan the discrete initial
trajectory by using a graph-based MAPF algorithm.

The initial trajectory of the ith quadrotor, piinit, is defined
as an array of waypoints that connect start and goal position
in a graph. In the MAPF, the cost function is defined as the
sum of each trajectory’s length.

There have been many researches about MAPF algorithm
such as HCA* [16], M* [17], conflict-based search (CBS)
[18]. Among them, we choose enhanced CBS (ECBS) [19]
as a discrete initial trajectory planner because it can find a
suboptimal solution in a short time and we can specify the
bound of the solution cost. In other words, it is guaranteed
that the cost of the trajectory is lower than cw· optimal cost,
where cw is a user-specified bounding factor.

To utilize the graph-based ECBS in our problem, discrete
planner translates 3D occupancy map into a 3D grid map.
After translation, ECBS computes a discrete initial trajectory
that connects start and goal points. If start and goal points are
not located on the 3D grid map, then we use the nearest grid
points to obtain trajectory and append the start/goal points
to both ends. Finally, to calculate relative trajectory between
two agents, we match the initial trajectory of all agents as
the same length lmax by appending each goal point at the
end of the trajectory, where lmax is the length of the longest
initial trajectory.

B. Safe Flight Corridor Construction

SFCs of the ith quadrotor, SFCi1, ..., SFC
i
Ms

, are defined
as convex sets that do not collide with obstacle and are
sequentially connected:
for m = 1, ...,Ms

SFCim ⊕ Ciobs ∈ F (1a)

and for m = 1, ...,Ms − 1

SFCim ∩ SFCim+1 6= ∅ (1b)

where ⊕ is the Minkovski sum and Ciobs is the obstacle-
collision model for the ith quadrotor, which is defined as a
sphere with radius ri representing safety clearance between
an obstacle and a quadrotor.

The trajectory of ith quadrotor is collision-free from ob-
stacle if for arbitrary t ∈ [0, T], there exists m ∈ {1, ...,Ms}
such that pi(t) ∈ SFCim, where T is the total flight time.

We construct SFC by the axis-search method. We initialize
corridors with a predefined size at each waypoint of the initial
trajectory. Then, except the corridors from the start and goal
points, we expand them in the previous waypoint direction
to connect two sequential convex sets. All waypoints except
start and goal points are aligned on the 3D grid map, thus we
can achieve the condition (1b) by this method. After that, we
expand each corridor in all the other axis-aligned directions
until it has a maximum possible free space. Finally, we delete
duplicated corridors.

Fig. 2: Overview of the proposed method. The proposed method can plan the trajectory in the 3D space, but in this example,
we plan the trajectory in 2D space for the convenience of explanation. We assigned the start positions for agent 1 (red)
and agent 2 (blue) at (0, -2), (0, -2), and goal positions at (0, 2), (2, 0). We convert 3D occupancy map into the 3D grid
map and compute discrete initial trajectory by using MAPF algorithm. SFC of each agent (red and blue boxes in SFC
construction) is constructed along waypoints of their initial trajectories to prevent obstacle collision. RSFC (green boxes
in RSFC construction) is used to confine a relative trajectory between two agents. Finally, SFC and RSFC are translated
into linear inequality constraints and QP solver generates the continuous smooth trajectory that satisfies SFC and RSFC
constraints.

C. Relative Safe Flight Corridor Construction

As SFC models a obstacle-free space as a convex set,
RSFC models a free space for evasive maneuver between
two agents. We define RSFCs between the ith and jth agents,
RSFCi,j1 , ..., RSFCi,jMr

, as convex sets that do not invade
the collision region between the ith and jth agents and are
sequentially connected: for m = 1, ...,Mr

RSFCi,jm ∩ C
i,j
inter = ∅ (2a)

and for m = 1, ...,Mr − 1

RSFCi,jm ∩RSFC
i,j
m+1 6= ∅ (2b)

where Ci,jinter is a inter-collision model between ith and jth

quadrotors which has a rectangular parallelepiped oriented
with the body frame of ith quadrotor. Note that Ci,jinter can
vary for each pair of agents, which mean that it can handle
different size of quadrotors. In our implementation, we assign
length and width of Ci,jinter as 2(ri + rj) and a height as
2cdw(r

i + rj) to consider downwash effect, where cdw is
downwash coefficient. The trajectory of jth quadrotor does
not collide with ith quadrotor if for arbitrary t ∈ [0, T], there
exists m ∈ {1, ...,Ms} such that pj(t)− pi(t) ∈ RSFCi,jm .

Construction of RSFC is described in Fig. 3. First, we con-
vert the initial trajectory into the relative initial trajectory for
each pair of agents (Fig. 3b). The relative initial trajectory of

ith and jth quadrotors, pi,jinit, can be obtained by subtracting
corresponding waypoints of two initial trajectories. Next, for
each waypoint in the relative path, we choose proper RSFC
from RSFC candidates. Using the quadrotors’ differential
flatness property, we design RSFC candidates to reduce the
number of decision variable at the optimization step. There
are six RSFC candidates in direction ±x,±y,±z, and each
candidate RSFCµ is defined as follows:

RSFCµ =

{
{p|p · nµ > ri + rj} if µ = ±x,±y
{p|p · nµ > cdw(r

i + rj)} if µ = ±z
(3)

where nµ is a unit vector in the direction µ ∈ {±x,±y,±z}.
For each waypoint pi,jinit[k] in pi,jinit, any RSFCµ can be
selected if µ satisfies the following condition:

pi,jinit[k] · nµ > 0 (4)

However, redundant RSFC transitions along the waypoints
may increase the number of polynomial segments and the
computation time. Figs. 3c and 3d show the example.
When we generate a smooth relative trajectory in RSFC,
we need to plan two segment polynomials to represent the
relative trajectory if there is one transition of RSFC (i.e.
RSFCi,j1 → RSFCi,j2) along the waypoints as shown
in Fig. 3c. However, if three transitions are involved (i.e.

(a) Initial trajectories of the
ith (red) and jth (blue)
quadrotors.

(b) Relative initial trajec-
tory of the jth quadrotor
with respect to the ith.

(c) RSFC generated. (d) Example of Redundant
RSFC transition.

Fig. 3: Construction process of RSFC. For the convenience of
explanation, it is depicted in 2D space. The initial trajectory
and the relative initial trajectory of two multirotors are shown
in Figs. 3a and 3b. The inter-collision model between two
agents are depicted as a red box and RSFC is constructed
along the waypoints of relative path avoiding the inter-
collision model. Redundant RSFC transitions may occur as
shown in Fig. 3d, so the greedy algorithm is used to minimize
the number of RSFC transitions and the result is shown in
Fig. 3c.

RSFCi,j1 → RSFCi,j2 → RSFCi,j3 → RSFCi,j4) as
shown in Fig. 3d, we have to plan two more polynomial
segments compared to the previous one. Thus, we use the
greedy algorithm (Alg. 1) to minimize the number of RSFC
transitions.

The algorithm receives piinit and pjinit as input and returns
RSFCi,j . It initializes RSFCi,j (line 3) as an empty array
and sµ as an array of all zero with length lmax (line 4-5).
After initialization, the algorithm verifies RSFC candidates
using (4) and saves the result in sµ (line 6-12). At the end of
the relative path, it finds an RSFC candidate that includes the
maximum number of waypoints and appends the candidate to
RSFCi,j (line 14-15). After that, it goes to the last waypoint
among the included ones (line 16). Then again it finds the
maximum including candidate until it reaches the start point
of relative path (line 17-20). Note that the new candidate
must not be located at the opposite side of the previous
candidate because quadrotors cannot jump through an empty
space between two opposite candidates (line 18).

Algorithm 1 RSFC construction

1: Input: piinit, p
j
init

2: lmax ← max(size(piinit), size(pjinit))
3: RSFCi,j ← ∅
4: for all µ ∈ {+x,+y,+z,−x,−y,−z} do
5: initialize sµ[lmax] to 0
6: for n← 1 to lmax do
7: for all µ ∈ {+x,+y,+z,−x,−y,−z} do
8: if (pjinit[n]− piinit[n]) · nµ > 0 then
9: if n = 1 then

10: sµ[n]← 1
11: else
12: sµ[n]← sµ[n− 1] + 1

13: n← lmax
14: µM ← argmaxµ(sµ[n])
15: RSFCi,j .push front(RSFCµM

)
16: n← n− sµM

[n]
17: while n > 0 do
18: µM ← argmaxµ6=−µM

(sµ[n])
19: RSFCi,j .push front(RSFCµM

)
20: n← n− sµM

[n]

21: return RSFCi,j

D. Time Segment Allocation

To formulate an optimization problem, we determine the
time segment of the piecewise polynomial trajectory and
allocate each SFC and RSFC to each polynomial segment.
Let pim(t) be the mth segment of pi(t) which is defined at
t ∈ [tim−1, t

i
m]. The time segment of the ith quadrotor tis is

defined as:
tis = [ti0, ..., t

i
M] (5)

In this paper, we set the trajectory of all agents to have
the same time segment ts because it is necessary for our
algorithm to utilize the convex hull property of Bernstein
basis polynomial. However, it can result in too many decision
variables, which can increase the computation time. Thus, the
following method is used to decrease the number of decision
variables.

To construct the time segment for all agents, we generate
partial time segments tsp from SFC and RSFC. Alg. 2 shows
the process of finding partial time segment. The algorithm
receives SFC or RSFC and initial or relative initial trajectory
as its input, and searches for the middle waypoint among
the intersection of two sequential convex sets (line 11-13).
After that, the algorithm records the index of this middle
waypoint to assign as the location at which the SFC or RSFC
transition occurs (line 14). In other words, mth SFC or RSFC
is allocated before the time (n+

⌊
count/2

⌋
)∗ tstep and m+

1th SFC or RSFC is allocated after time (n+
⌊
count/2

⌋
) ∗

tstep, where n+
⌊
count/2

⌋
is the index of middle waypoint

among the intersection of mth and m+ 1th convex sets. In
the SFC case, it is guaranteed that there exists a waypoint
in two sequential SFCs because we connect the waypoint

Algorithm 2 Finding partial time segment

1: Input: Initial or relative initial trajectory pinit,
2: Array of sequential convex sets C,
3: Time step tstep
4: tsp ← ∅
5: m← 1
6: for n← 1 to lmax do
7: if m ≥ size(C) then
8: break
9: if pinit[n] ∈ (C[m] ∩ C[m+ 1]) then

10: count← 1
11: while pinit[n+ count] ∈ (C[m] ∩ C[m+ 1])
12: and n+ count ≤ lmax do
13: count← count+ 1

14: tsp.push back(n+
⌊
count/2

⌋
∗ tstep)

15: n← n+
⌊
count/2

⌋
16: m← m+ 1
17: else if pinit[n] ∈ C[m+ 1] then
18: tsp.push back((n+ 0.5) ∗ tstep)
19: m← m+ 1

20: return tsp

with SFC by the axis-search method. However, in the RSFC
case, there may be no waypoint in an intersection between
two sequential RSFCs (line 17). In this case, we do not use
the integer index because it can make an infeasible constraint
when SFC and RSFC are changed simultaneously at the same
time. Instead, we use a heuristic method that gives a time
delay to RSFC transition to avoid the simultaneous change
of SFC and RSFC (line 18). It may increase the number of
the decision variables, but we can increase the success rate
of finding a feasible trajectory. This algorithm always returns
an array with a maximum size of 2lmax, so it is guaranteed
that the piecewise trajectory has a maximum of 2lmax − 1
segments.

After generating the partial time segments, we combine
all of them into one and sort them. We delete duplicated
elements and we generate the total time segment by append-
ing the start time and total flight time at each end of the
combined array. This method can reduce the size of the total
time segment by overlapping the elements of partial time
segment as much as possible.

We allocate SFC and RSFC to time segment by comparing
tsp with ts. For example, assume that ts is determined
as [0, 1, 2, 3] and tsp of SFC is [2]. Then we can guess
that SFCi1 is assigned for the first and second segments
of piecewise polynomials and SFCi2 is assigned for the
third segment. Let SFCi(m) and RSFCi(m) be convex sets
that are allocated to the mth polynomial segment. In this
example, SFC is allocated as SFCi(1) = SFCi(2) = SFCi1
and SFCi(3) = SFCi2.

E. Trajectory Optimization

In the optimization step, we plan the smooth polynomial
trajectory using SFC, RSFC and time segment ts, but it is

difficult to handle SFC and RSFC with standard polynomial
basis. Thus, we formulate the piecewise polynomial pi(t) of
all agents as a piecewise Bernstein polynomial.

Bernstein basis polynomials of degree N are defined as:

Bk,N (t) =

(
N

k

)
tk(1− t)k (6)

for t ∈ [0, 1] and k = 0, 1, ..., N , and Bernstein polynomial
is the linear combination of Berstein basis polynomials.

The mth segment of pi(t) can be represented in Berstein
polynomial as:

pim(t) = cim,0B0,n(τm) + ...+ cim,NB0,N (τm) (7)

where τm = t−tm−1

tm−tm−1
and cim = [cim,0, ..., c

i
m,N] is the

vector consisting of all control points of pim(t).
It is shown that a Bernstein polynomial has a convex hull

property [20], in other words, a Bernstein polynomial pi(t)
is confined within the convex hull of its control points cim.
In [10, 11, 12, 13], it has been used to confine pim(t) within
SFCi(m) by limiting control point cim within SFCi(m).

Here, this convex hull property can be used to confine the
relative polynomial trajectory. Assume that pi(t) and pj(t)
have the same time segment, then the mth segment of pi,jm
can be written as:

pi,jm (t) =

N∑
k=0

(cjm,k − c
i
m,k)B0,n(τm)

=

N∑
k=0

ci,jm,kB0,n(τm)

(8)

where ci,jm,k = cjm,k − cim,k for k = 0, ..., N is the control
point of pi,jm (t). We can observe that the relative Bernstein
polynomial is also a Bernstein polynomial. Therefore, by
the convex hull property, we can enforce quadrotors i, j
not to collide with each other by limiting all control points
ci,jm,k within RSFCim. In this way, we can generate the safe
trajectory by adjusting RSFC for each pair of agents.

Our decision vector c consists of all control points of
pim(t) for m = 1, ...,M and i = 1, ..., Nq:

c = [c11
T
, ..., c1M

T
, ..., c

Nq

1

T
, ..., c

Nq

M

T
]T (9)

where M is the total number of polynomial segments that
all agents share, and it is up to 2lmax as explained in section
III-D.

The cost function of polynomials is defined as follows:

J =

Nq∑
i=1

∑
µ∈{x,y,z}

∫ T

0

(
dnpiµ(t)

dtn
)2 (10)

where T is total flight time, and this can be represented into
a quadratic form. In this paper, we set n = 3, so that it
minimizes the integral of the square jerk of total trajectory.
It is a reasonable choice because we can minimize the input
aggressiveness of quadrotor [21].

The waypoint constraints for start, goal positions and con-
tinuity constraints for smooth trajectory can be reformulated

in linear equality constraints (Aeqc = beq). Therefore, our
trajectory generation problem is reformulated as quadratic
programming (QP) problem:

minimize cTQc

subject to Aeqc = beq

cim,k ∈ SFCi(m),∀i, k
cjm,k − c

i
m,k ∈ RSFC

i,j
(m),∀i, j > i, k

where Q is the Hessian cost matrix derived by concatenating
all Hessian cost function of individual agents with a block-
diagonal matrix form. The detailed formulation of equality
constraints can be found in [12]. Note that we need only one
QP to generate a smooth trajectory for all agents.

During optimization, we do not consider dynamic limits
because they can be infeasible constraints for QP. Instead,
we scale the time segment for all agents uniformly after
optimization, similar to [13].

IV. EXPERIMENTS

A. Implementation Details

We implement our proposed method in C++14. We use
the Octomap library [22] to represent the 3D occupancy
map and use the dynamicEDT3D library [23] to compute
distance between corridor and obstacle for SFC construction.
For trajectory optimization, CPLEX QP solver [24] is used
to solve (III-E).

We model the collision models of quadrotors with radius
r = 0.15m and downwash coefficient cdw = 2 based on the
specification of Crazyflie 2.0 in [13]. For initial trajectory
planning, the grid size of the 3D grid map is determined to
0.5 m in x, y-axis directions and 1 m in z-axis direction. We
set the degree of polynomials to N = 5 and give constraints
to be continuous up to acceleration. Fig. 4 shows the planning
result of 16 agents.

B. Computation Time Evaluation

We evaluate the computation time on a PC running Ubuntu
16.04. with Intel Core i7-7700 @ 3.60GHz CPU and 16G
RAM. Our experiment is conducted in 10 m × 10 m × 2.5
m space. We randomly deploy 30 trees of size 0.3 m × 0.3
m × 1–2.5 m. Start positions of quadrotors are uniformly
distributed in a boundary of the xy-plane in 1 m height, and
we assigned the goal points at the opposite to their start
position as shown in Fig. 4.

We conduct the experiments by randomly changing the
location of obstacles and measure the computation time of
each step. Table I shows the average computation time of 30
experiments. The proposed method takes about a second for
16 quadrotors and a minute for 64 quadrotors. Although it
uses the solver with O(n3) time complexity, the actual total
computation time is short enough.

C. Success Rate Analysis

In section III-D, we give the time delay at the RSFC
partial time segment to avoid infeasible constraints. To verify
that,we compared the two time allocation method, one is

time allocation with RSFC time delay and the other is time
allocation without the time delay by changing the line 18 of
Alg. 2 to n ∗ tstep. We plan the trajectory of 16 quadrotors
50 times to measure the success rate. We use the same
environment setting in section IV-B except quadrotor size.

Fig. 5 shows that the time allocation with RSFC time delay
has a higher probability to find a feasible solution. It also
shows a 100 percent success rate when quadrotor size is 0.15
m and 0.2 m. As expected, the success rate of both methods
decrease as the quadrotor size increase.

D. Flight Test

We demonstrate our algorithm with 6 Crazyflie 2.0 quadro-
tors in a 5 m x 7 m x 2.5 m space. Crazyswarm [25] is
used to follow the pre-computed trajectory, and Vicon motion
capture system is used to estimate the position of each agent
at 100 Hz. It takes 0.138 seconds to plan the trajectory
for all agents. Fig. 6 shows the snapshot of flight test and
the pre-computed trajectory. Full flight is presented in the
supplemental video.

V. CONCLUSIONS

In this paper, we propose a trajectory planning method
using RSFC to deal with the inter-collision problem in a
multi-MAV system. RSFC models the free space for inter-
collision avoidance into a convex set, and we show that it can
be converted into linear constraints by utilizing the convex
hull property of Bernstein polynomial. To generate trajectory
for multiple quadrotors, we adopt the ECBS algorithm to
obtain the initial trajectory in a 3D grid map. Then we
construct SFC and RSFC based on the initial trajectory, and
allocate them to each segment considering infeasible simul-
taneous transition. Finally, an optimization solver generates
a smooth trajectory that is collision-free and deadlock-free.
The proposed method can generate a safe trajectory for 64
agents in a minute, and flight test is executed to validate our
solution.

In future work, we plan to reduce the computational effort
of our work for online trajectory generation and we plan to
develop more precise time allocation method that guarantees
a feasible solution.

Fig. 4: Top-down view of 16 quadrotors in a 10 m × 10 m × 2.5 m random forest map. Goal points are opposite to start
positions.

TABLE I: Computation time by the number of quadrotors

Agents ECBS(cw=1.3) (s) SFC Construction (s) RSFC Construction (s) Traj. Optimization (s) Total Comp. Time (s)
4 0.034 0.039 1.68E-5 0.034 0.11
8 0.037 0.053 4.84E-5 0.139 0.23

16 0.048 0.081 1.70E-4 0.800 0.93
32 0.059 0.137 5.77E-4 6.65 6.86
64 0.167 0.256 2.14E-3 50.7 51.2

Fig. 5: Success rate of trajectory planning for 16 agents by
the time allocation method.

REFERENCES

[1] Martin Saska et al. “Swarm distribution and deploy-
ment for cooperative surveillance by micro-aerial ve-
hicles”. In: Journal of Intelligent & Robotic Systems
84.1-4 (2016), pp. 469–492.

[2] Hyoin Kim et al. “Motion planning with movement
primitives for cooperative aerial transportation in ob-
stacle environment”. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA).
IEEE. 2017, pp. 2328–2334.

[3] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar.
“Mixed-integer quadratic program trajectory genera-
tion for heterogeneous quadrotor teams”. In: Robotics
and Automation (ICRA), 2012 IEEE International
Conference on. IEEE. 2012, pp. 477–483.

[4] Federico Augugliaro, Angela P Schoellig, and Raf-
faello D’Andrea. “Generation of collision-free trajec-
tories for a quadrocopter fleet: A sequential convex
programming approach”. In: Intelligent Robots and

(a) Snapshots of flight test.

(b) Trajectory plan for flight test.

Fig. 6: Flight test with 6 quadrotors. Full flight is presented
in the supplemental video.

Systems (IROS), 2012 IEEE/RSJ International Con-
ference on. IEEE. 2012, pp. 1917–1922.

[5] D Reed Robinson et al. “An Efficient Algorithm
for Optimal Trajectory Generation for Heterogeneous
Multi-Agent Systems in Non-Convex Environments”.
In: IEEE Robotics and Automation Letters 3.2 (2018),
pp. 1215–1222.

[6] Daman Bareiss and Jur Van den Berg. “Reciprocal col-
lision avoidance for robots with linear dynamics using
lqr-obstacles”. In: Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE. 2013,
pp. 3847–3853.

[7] Dingjiang Zhou et al. “Fast, on-line collision avoid-
ance for dynamic vehicles using buffered voronoi
cells”. In: IEEE Robotics and Automation Letters 2.2
(2017), pp. 1047–1054.

[8] Li Dai et al. “Distributed MPC for formation of multi-
agent systems with collision avoidance and obstacle
avoidance”. In: Journal of the Franklin Institute 354.4
(2017), pp. 2068–2085.

[9] Peng Wang and Baocang Ding. “A synthesis approach
of distributed model predictive control for homoge-
neous multi-agent system with collision avoidance”.
In: International Journal of Control 87.1 (2014),
pp. 52–63.

[10] Sarah Tang and Vijay Kumar. “Safe and complete
trajectory generation for robot teams with higher-
order dynamics”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE. 2016, pp. 1894–1901.

[11] Sikang Liu et al. “Planning dynamically feasible tra-
jectories for quadrotors using safe flight corridors in
3-d complex environments”. In: IEEE Robotics and
Automation Letters 2.3 (2017), pp. 1688–1695.

[12] Fei Gao et al. “Online safe trajectory generation for
quadrotors using fast marching method and bernstein
basis polynomial”. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE.
2018, pp. 344–351.

[13] Wolfgang Hönig et al. “Trajectory planning for
quadrotor swarms”. In: IEEE Transactions on
Robotics 34.4 (2018), pp. 856–869.

[14] Daniel Mellinger and Vijay Kumar. “Minimum snap
trajectory generation and control for quadrotors”. In:
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on. IEEE. 2011, pp. 2520–2525.

[15] Yang Xu et al. “Concurrent Optimal Trajectory Plan-
ning for Indoor Quadrotor Formation Switching”.
In: Journal of Intelligent & Robotic Systems (2018),
pp. 1–18.

[16] David Silver. “Cooperative Pathfinding.” In: AIIDE
(2005), pp. 117–122.

[17] Glenn Wagner and Howie Choset. “M*: A complete
multirobot path planning algorithm with performance
bounds”. In: 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2011,
pp. 3260–3267.

[18] Guni Sharon et al. “Conflict-based search for optimal
multi-agent pathfinding”. In: Artificial Intelligence 219
(2015), pp. 40–66.

[19] Max Barer et al. “Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding
problem”. In: Seventh Annual Symposium on Combi-
natorial Search. 2014.

[20] Michael Zettler and Jürgen Garloff. “Robustness anal-
ysis of polynomials with polynomial parameter depen-
dency using Bernstein expansion”. In: IEEE Transac-
tions on Automatic Control 43.3 (1998), pp. 425–431.

[21] Mark W Mueller, Markus Hehn, and Raffaello
D’Andrea. “A computationally efficient motion prim-
itive for quadrocopter trajectory generation”. In: IEEE
Transactions on Robotics 31.6 (2015), pp. 1294–1310.

[22] Armin Hornung et al. “OctoMap: An efficient proba-
bilistic 3D mapping framework based on octrees”. In:
Autonomous robots 34.3 (2013), pp. 189–206.

[23] Boris Lau, Christoph Sprunk, and Wolfram Burgard.
“Efficient grid-based spatial representations for robot
navigation in dynamic environments”. In: Robotics
and Autonomous Systems 61.10 (2013), pp. 1116–
1130.

[24] ILOG CPLEX. 12.7. 0 User’s Manual. 2016.
[25] James A Preiss et al. “Crazyswarm: A large nano-

quadcopter swarm”. In: Robotics and Automation
(ICRA), 2017 IEEE International Conference on.
IEEE. 2017, pp. 3299–3304.

ACKNOWLEDGMENT

This material is based upon work supported by the Min-
istry of Trade, Industry & Energy(MOTIE, Korea) under
Industrial Technology Innovation Program. No.10067206,
‘Development of Disaster Response Robot System for Life-
saving and Supporting Fire Fighters at Complex Disaster
Environment’

This work was supported by the Robotics Core Technol-
ogy Development Project (10080301) funded by the Ministry
of Trade, Industry and Energy (MoTIE, Korea)

	I INTRODUCTION
	II PROBLEM STATEMENT
	III METHOD
	III-A Initial Trajectory Planning
	III-B Safe Flight Corridor Construction
	III-C Relative Safe Flight Corridor Construction
	III-D Time Segment Allocation
	III-E Trajectory Optimization

	IV EXPERIMENTS
	IV-A Implementation Details
	IV-B Computation Time Evaluation
	IV-C Success Rate Analysis
	IV-D Flight Test

	V CONCLUSIONS

