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Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise
Features for Amodal 3D Object Detection

Zhixin Wang' and Kui Jia'

Abstract—In this work, we propose a novel method termed
Frustum ConvNet (F-ConvNet) for amodal 3D object detection
from point clouds. Given 2D region proposals in an RGB image,
our method first generates a sequence of frustums for each
region proposal, and uses the obtained frustums to group local
points. F-ConvNet aggregates point-wise features as frustum-
level feature vectors, and arrays these feature vectors as a
feature map for use of its subsequent component of fully con-
volutional network (FCN), which spatially fuses frustum-level
features and supports an end-to-end and continuous estimation
of oriented boxes in the 3D space. We also propose component
variants of F-ConvNet, including an FCN variant that extracts
multi-resolution frustum features, and a refined use of F-
ConvNet over a reduced 3D space. Careful ablation studies
verify the efficacy of these component variants. F-ConvNet
assumes no prior knowledge of the working 3D environment
and is thus dataset-agnostic. We present experiments on both
the indoor SUN-RGBD and outdoor KITTI datasets. F-ConvNet
outperforms all existing methods on SUN-RGBD, and at the
time of submission it outperforms all published works on the
KITTI benchmark. Code has been made available at: https:
//github.com/zhixinwang/frustum-convnet.

I. INTRODUCTION

Detection of object instances in 3D sensory data has
tremendous importance in many applications including au-
tonomous driving, robotic object manipulation, and aug-
mented reality. Among others, RGB-D images and LiDAR
point clouds are the most representative formats of 3D
sensory data. In practical problems, these data are usually
captured by viewing objects/scenes from a single perspective;
consequently, only partial surface depth of the observed
objects/scenes can be captured. The task of amodal 3D object
detection is thus to estimate oriented 3D bounding boxes
enclosing the full objects, given partial observations of object
surface. In this work, we focus on object detection from point
clouds, and assume the availability of accompanying RGB
images.

Due to the discrete, unordered, and possibly sparse nature
of point clouds, detecting object instances from them is chal-
lenging and requires learning techniques that are different
from the established ones [1]-[3] for object detection in
RGB images. In order to leverage the expertise in 2D object
detection, existing methods convert 3D point clouds either
into 2D images by view projection [4]-[6], or into regular
grids of voxels by quantization [7]-[10]. Although 2D object
detection can be readily applied to the converted images
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Fig. 1: Illustration for how a sequence of frustums are
generated for a region proposal in an RGB image.

or volumes, these methods suffer from loss of critical 3D
information in the projection or quantization process.

With the progress of point set deep learning [11], [12],
recent methods [13], [14] resort to learning features directly
from raw point clouds. For example, the seminal work of F-
PointNet [13] first finds local points corresponding to pixels
inside a 2D region proposal, and then uses PointNet [11] to
segment from these local points the foreground ones; the
amodal 3D box is finally estimated from the foreground
points. Performance of this method is limited due to the
reasons that (1) it is not of end-to-end learning to estimate
oriented boxes, and (2) final estimation relies on too few
foreground points which themselves are possibly segmented
wrongly. Methods of VoxelNet style [14]-[16] overcome
both of the above limitations by partitioning 3D point cloud
into a regular grid of equally spaced voxels; voxel-level
features are learned and extracted, again using methods
similar to PointNet [11], and are arrayed together to form fea-
ture maps that are processed subsequently by convolutional
(conv) layers; amodal 3D boxes are estimated in an end-to-
end fashion using spatially convolved voxel-level features.
For the other side of the coin, due to unawareness of objects,
sizes and positions of grid partitioning in VoxelNet [14]
methods do not take object boundaries into account, and
their settings usually assume prior knowledge of the 3D
environment (e.g., only one object in vertical space of the
KITTT dataset [17]), which, however, are not always suitable.

Motivated to address the limitations in [13], [14], we
propose in this paper a novel method of amodal 3D object
detection termed Frustum ConvNet (F-ConvNet). Similar to
[13], our method assumes the availability of 2D region
proposals in RGB images, which can be easily obtained
from off-the-shelf object detectors [1]-[3], and identifies
3D points corresponding to pixels inside each region pro-
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posal. Different from [13], our method generates for each
region proposal a sequence of (possibly overlapped) frus-
tums by sliding along the frustum axis ' (cf. Fig. 1 for
an illustration). These obtained frustums define groups of
local points. Given the sequence of frustums and point
association, our F-ConvNet starts with lower, parallel layer
streams of PointNet style to aggregate point-wise features as
a frustum-level feature vector; it then arrays at its early stage
these feature vectors of individual frustums as 2D feature
maps, and uses a subsequent fully convolutional network
(FCN) to down-sample and up-sample frustums such that
their features are fully fused across the frustum axis at a
higher frustum resolution. Together with a final detection
header, our proposed F-ConvNet supports an end-to-end and
continuous estimation of oriented 3D boxes, where we also
propose an FCN variant that extracts multi-resolution frustum
features. Given an initial estimation of 3D box, a final
refinement using the same F-ConvNet often improves the
performance further. We present careful ablation studies that
verify the efficacy of different components of F-ConvNet.
On the SUN-RGBD dataset [18], our method outperforms
all existing ones. On the KITTI benchmark [17], our method
outperforms all published works at the time of submission,
including those working on point clouds and those working
on a combination of point clouds and RGB images. We
summarize our contributions as follows.

« We propose a novel method termed Frustum ConvNet
(F-ConvNet) for amodal 3D object detection from point
clouds. We use a novel grouping mechanism — sliding
frustums to aggregate local point-wise features for use
of a subsequent FCN. Our proposed method supports
an end-to-end estimation of oriented boxes in the 3D
space that is determined by 2D region proposals.

o We propose component variants of F-ConvNet, includ-
ing an FCN variant that extracts multi-resolution frus-
tum features, and a refined use of F-ConvNet over a
reduced 3D space. Careful ablation studies verify the
efficacy of these components and variants.

o F-ConvNet assumes no prior knowledge of the working
3D environment, and is thus dataset-agnostic. On the in-
door SUN-RGBD dataset [18], F-ConvNet outperforms
all existing methods; on the outdoor dataset of KITTI
benchmark [17], it outperforms all published works at
the time of submission.

II. RELATED WORKS

In this section, we briefly review existing methods of
amodal 3D object detection. We organize our reviews into
two categories of technical approaches, namely those based
on conversion of 3D point clouds as images/volumes, and
those admitting operation directly on raw point clouds.

!For any image region, a square pyramid passing though the image region
can be specified by the viewing camera and the farthest plane that is
perpendicular to the optical axis of the camera. Starting from the image
plane, a frustum is formed by truncating the pyramid with a pair of parallel
planes perpendicular to the optical axis, which is also the frustum axis.

Methods based on data conversion MV3D [5] projects
LiDAR point clouds to bird eye view (BEV), and then
employs a Faster-RCNN [2] for 3D object detection. AVOD
[6] extends MV3D by aggregating the multi-modal features
to generate more reliable 3D object proposals. Some existing
methods also use depth images as converted data of point
clouds. Deng et al. [19] directly estimate 3D bounding boxes
from RGB-D images based on the Fast-RCNN framework
[1]. Luo et al. [20] explore the SSD pipeline [3] to fuse RGB
and depth images for 3D bounding box estimation. DSS [21]
encodes a depth image as a grid of 3D voxels by TSDF, and
uses 3D CNNss for classification and box estimation. PIXOR
[9] also encodes point clouds as grids of voxels. The above
methods based on data conversion can leverage the expertise
in mature 2D detection, but the projection or quantization
process would cause loss of critical information.

Methods working on raw point clouds We have reviewed in
introduction the seminal work of F-PointNet [13] that works
directly on raw point clouds but is not of end-to-end learning
to estimate oriented boxes since before that it has to do an
instance segmentation and T-Net alignment, and the methods
of VoxelNet style [14]-[16] that resolve this issue but with
the shortcoming of object unawareness in 3D point clouds.
We note that PointPillars [16] explores pillar shape instead of
voxel design to aggregate point-wise features. For multi-stage
methods [13], [22], [23], subsequent works of IPOD [22] and
PointRCNN [23] explore different proposal methods. Our
proposed F-ConvNet is motivated and designed to combine
the benefits of both worlds.

ITII. THE PROPOSED FRUSTUM CONVNET

In this section, we present our proposed Frustum ConvNet
(F-ConvNet) that supports end-to-end learning of amodal 3D
object detection. Design of F-ConvNet centers on the notion
of square frustum, and a sequence of frustums along the
same frustum axis connect a cloud of discrete, unordered
points with an FCN that enables oriented 3D box estimation
in a continuous 3D space. Fig.2 give an illustration. By
assuming the availability of 2D region proposals in RGB
images, we will first introduce our way of point association
with sequences of (possibly overlapped) frustums that are
obtained by sliding along frustum axes determined by 2D
region proposals, and compare with alternative ways of point
association/grouping. We will then present the architecture
of F-ConvNet, and specify how point-wise features inside
individual frustums are aggregated and re-formed as 2D
feature maps for a continuous frustum-level feature fusion
and 3D box estimation. We finally explain how an F-ConvNet
can be trained using losses borrowed from the literature of
2D object detection.

A. Associating Point Clouds with Sliding Frustums

Learning semantics from point clouds grounds on extrac-
tion of low-level geometric features that are defined over
local groups of neighboring points. Due to the discrete,
unordered nature of point cloud, there exists no oracle way
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Fig. 2: The whole framework of our F-ConvNet. We group points and extract features by PointNet from a sequence
of frustums, and for 3D box estimation, frustum-level features are re-formed as a 2D feature map for use of our fully
convolutional network (FCN) and detection header (CLS and REG). (a) The architecture of PointNet. (b) The architecture of
FCN used in Frustum ConvNet for KITTI dataset. Each convolutional layer is followed by Batch Normalization and ReLU
nonlinearity. Blue-colored bar in (b) represents the 2D feature map of arrayed frustum-level feature vectors.

to associate individual points into local groups. In the litera-
ture of point set classification/segmentation [12], [24], local
groupings are formed by searching nearest neighbors, with
seed points sampled from a point cloud using farthest point
sampling (FPS). FPS can efficiently cover a point cloud,
but it is unaware of object positions; consequently, grouping
based on FPS is not readily useful for tasks concerning
with detection of object instances from a point cloud. Rather
than sampling seed points for local groupings, methods of
VoxelNet style [14]-[16] define a regular grid of equally
spaced voxels in the 3D space, and points falling in same
voxels are grouped together. Although voxels may densely
cover the entire 3D space, their sizes and grid positions
do not take object boundaries into account. In addition,
their settings usually assume prior knowledge of the 3D
environment and the contained object categories (e.g., car
and pedestrian in the KITTI dataset [17]), which, however,
are not always available.

To address these limitations, we propose the following
scheme to group local points. We assume that an RGB
image is available accompanying the 3D point cloud, and
that 2D region proposals are also provided by off-the-shelf
object detectors [1]-[3]. A sequence of (possibly overlapped)
frustums can be obtained by sliding a pair of parallel planes
along the frustum axis with an equal stride, where the pair
of planes are also perpendicular to the frustum axis. We also
assume the optical axis of the camera is perpendicular to this
2D region, which suggests an initial adjustment of camera
coordinate system has already been performed, as shown in
Fig.3. We generate such a sequence of frustums for each 2D

region proposal, and we use thus obtained frustum sequences
to group points, i.e., points falling inside the same frustums
are grouped together. Assuming that 2D region proposals are
accurate enough, our frustums mainly contain foreground
points, and are aware of object boundaries. We note that
for each 2D region proposal, a single frustum of larger
size (defined by the image plane and the farthest plane) is
generated in [13] and all points falling inside this frustum are
grouped together; consequently, an initial stage of foreground
point segmentation has to be performed before amodal 3D
box estimation. In contrast, we generate for each region
proposal a sequence of frustums whose feature vectors are
arrayed as a feature map and used in a subsequent FCN for
an end-to-end estimation of oriented boxes in the continuous
3D space, as presented shortly.

B. The Architecture of Frustum ConvNet

Given a sequence of frustums generated from a region
proposal, the key design of an F-ConvNet is to aggregate at
its early stage point-wise features inside each frustum as a
frustum-level feature vector, and then array as a 2D feature
map these feature vectors of individual frustums for use of
a subsequent FCN, which, together with a detection header,
supports an end-to-end and continuous estimation of oriented
3D boxes. Fig. 2 gives the architecture. We present separate
components of the F-ConvNet as follows.

Frustum-level feature extraction via PointNet For a 2D
region proposal in an RGB image, assume a sequence of
T frustums of height u are generated by sliding along the
frustum axis with a stride s. For any one of them, assume it



Fig. 3: An illustration of our frustums (coded as differ-
ent colors) for point association and frustum-level feature
aggregation. A sequence of non-overlapped frustums are
shown here for simplicity. Actually, we set u = 2s in our
experiments. We show the top view on the right to denote
clearly the sliding stride s and height u of frustums.

contains M local points whose coordinates in the camera
coordinate system are denoted as {x; = (x;,y;,z:)}¥,. To
learn and extract point-wise features, we use PointNet [11]
in this work that stacks three fully-connected (FC) layers,
followed by a final layer that aggregates features of individ-
ual points as a frustum-level feature vector via element-wise
max pooling, as shown in Fig.2(a). We apply the PointNet to
each frustum, and thus the T duplicate PointNets, with shared
weights, form the lower, parallel streams of our F-ConvNet.
Instead of using {x;}’, as input of PointNet directly, we use
relative coordinates {X; = (%;, y‘i,zi)}f‘i , that are obtained by
subtracting each x; with the centroid ¢ of the frustum, i.e.,
X;=x;—cfori=1,...,M. We note that choices other than
PointNet are applicable as well, such as PointCNN [24].

Fully convolutional network Denote the extracted frustum-
level feature vectors as {f;}1 |, with f; € RY. We array these
L vectors to form a 2D feature map F of the size L x d,
which will be used as input of a subsequent FCN. As shown
in Fig.2(b), our FCN consists of blocks of conv layers, and
de-conv layers corresponding to each block. Convolution
in conv layers is applied across the frustum dimension by
using kernels of the size 3 x d. The final layer of each of
the conv blocks, except the first block, also down-samples
(halves) the 2D feature map at the frustum dimension by
using stride-2 convolution. Convolution and down-sampling
fuse features across frustums and produce at different conv
blocks virtual frustums of varying heights (along the frustum
axis direction). Given output feature map of each conv
block, a corresponding de-conv layer is used that up-samples
at the frustum dimension the feature map to a specified
(higher) resolution L; outputs of all de-conv layers are then
concatenated together along the feature dimension. Feature
concatenation from virtual frustums of varying sizes provides
a hierarchical granularity of frustum covering, which would
be useful to estimate 3D boxes of object instances whose
sizes are unknown and vary. In this work, we use an FCN of
4 conv blocks and 3 de-conv layers for KITTI, and an FCN of

Extracted frustum-level features from
frustum resolution (2s, 2u)

/2

e
Block2 Blocka

Down-sampling features from
frustum resolution (s, )
Fig. 4: Tllustration of our multi-resolution frustum feature in-
tegration. We show an example between Block2 and Block3.
We also use it in between Block3 and Block4, and between
Block4 and DeConv4. Including the first resolution, we have
in total four kinds of resolutions in KITTI dataset.

5 conv blocks and 4 de-conv layers for SUN-RGBD. Layer
specifics of these FCNs are given in the appendix.

A multi-resolution frustum feature integration variant
We already know that output feature maps of conv blocks
in FCN are of reduced resolutions by a power of 2 at the
frustum dimension. Take the one with the size of L/2 xd
as an example. For the same 2D region proposal, a new
sequence of 7 /2 frustums can be generated by sliding along
the frustum axis with a stride 2s. Applying PointNet to each
of the generated frustums and arraying the resulting feature
vectors produce a new feature map of the same size L/2 x d.
When frustum height is doubled as 2u, the new sequence
covers the same 3D space at a half coarser resolution, while
its feature map being compatible with its corresponding one
in FCN. We then concatenate along the feature dimension the
two feature maps of the same size, giving rise to a new one of
the size L/2 x 2d. A final conv layer is used to resize it back
as a feature map of size L/2 x d, so that it can be placed
back in FCN with no change of other FCN layers. Fig.4
illustrates the above procedure. The procedure can be used
for each down-sampled feature maps in FCN. We refer to
this scheme as a multi-resolution frustum feature integration
variant of F-ConvNet. Ablation studies in Section IV-B verify
its efficacy.

C. Detection Header and Training of Frustum ConvNet

On top of FCN is the detection header composed of two,
parallel conv layers, as shown in Fig.2. They are respectively
used as the classification and regression branches. The whole
F-ConvNet is trained using a multi-task fashion, similar to
those in 2D object detection [1]-[3].

Suppose we have K object categories. The classification
branch is trained to output a L x (K + 1) frustum-wise
probability map of object categories, plus the background
one. In this work, we use focal loss [25] for classification
branch to cope with imbalance of foreground and background
samples.

Ground truth of an oriented 3D bounding box is parame-
terized as {x2,y%,2¢,18, w8 h8, 08}, where {xf,y¢ 78} denote
coordinates of box center, {/$,w$ ,h8} denote three side
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Fig. 5: Normalization of point coordinates for final refine-
ment. Leftmost legend is the camera coordinate system.
Normalized coordinate systems are shown with each cuboid
box, where the origin of each system is located at each
cuboid center and its direction is aligned with our first
predicted box.

lengths of the box, and 64 denotes the yaw angle that means
the in-plane rotation perpendicular to the gravity direction.
We discretize the range [—7, ) of yaw angles into N bins,
and define for each frustum KN anchor boxes, i.e., N ones
per foreground category. For any one of them parameterized
as {x2,y%,22,1° w* h? 0%}, we use centroid of the frustum
as {x2,y%,7%}, compute from training samples the category-
wise averages of the three side lengths as {I*,w* h?}, and
set 8 as one of the bin centers of yaw angles. This gives
the following offset formulas:

Ax =xf —xg, Ay = yE -y, Az =28 — 2,

I8 — e wh—wt S
P Ay T
AO = 6% — 6°.
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Regression loss for the center is based on the Euclidean
distance and smooth /1 regression loss for offsets of size and
angle. Besides, we also use a corner loss [13] to regularize
box regression of all parameters. Together with the focal
loss for classification branch, the whole F-ConvNet is trained
using a total of three losses.

D. Final Refinement

We have assumed for now that the 2D region proposals
are accurate enough. In practice, region proposals provided
by object detectors do not bound object instances precisely.
As a remedy, we propose a refinement that applies the same
F-ConvNet architecture to points falling inside the oriented
3D boxes that we have just estimated. Specifically, we first
expand each estimated box by a specified factor — we set
the factor as 1.2 in this work, and normalize points inside
the expanded box by translation and rotation, as shown in
Fig. 5. These normalized points are used as input of a second
F-ConvNet for a final refinement. Ablation studies show that
this refinement resolves well the issue caused by inaccurate
2D object proposals.

IV. EXPERIMENTS
A. Datasets and Implementation Details

KITTI The KITTT dataset [17] contains 7,481 training pairs
and 7,518 testing pairs of RGB images and point clouds of
three object categories (i.e., Car, Pedestrian, and Cyclist).
For each category, detection results are evaluated based on
three levels of difficulty (i.e., easy, moderate, and hard).
We train two separate F-ConvNets respectively for Car
and Pedestrian/Cyclist. Since ground truth of the test set
is unavailable, we follow existing works [5] and split the
original training set into the new training and validation ones
respectively of 3,712 and 3,769 samples. We conduct our
ablation experiments using this splitting, and our final results
on the KITTI test set are obtained by server submission. We
use the official 3D IoU evaluation metrics of 0.7, 0.5, and 0.5
respectively for the categories of Car, Cyclist, and Pedestrian.

SUN-RGBD The SUN-RGBD dataset [18] contains 10,355
RGB-D images (5,285 training ones and 5,050 testing ones)
of 10 object categories. We convert the depth images as point
clouds for use of our method. Results are evaluated on the
10 categories under 0.25 3D IoU threshold. For this dataset,
we do not use the final refinement of our method.

Implementation details Our use of 2D object detectors is
as follows. For the KITTI validation dataset, we use the
2d detection results provided by F-PointNet [13]. For the
KITTI test dataset, we use RRC [26] for the car category and
MSCNN [27] for the pedestrians and cyclist categories. We
directly use the release models provided by these methods.
As for SUN-RGBD, we train Faster-RCNN [2] with the
backbone network of ResNet-50 [28]. We do data augmen-
tation to the obtained 2D region proposals by translation
and scaling during training. We randomly sample from 3D
points corresponding to each region proposal to have a fixed
number 1,024 for KITTI and 2,048 for SUN-RGBD. For
final refinement, we use a fixed number of 512. We also do
random flipping and shifting to these points, similar to [13].

To prepare positive and negative training samples, we
shrink ground-truth boxes by a ratio of 0.5, and count
anchor boxes whose centers fall in the shrunken ground-
truth boxes as foreground ones, count the others as back-
ground. We ignore the anchor boxes whose centers fall
between the shrunken boxes and ground-truth boxes. We
train F-ConvNets with a mini-batch size 32 on one GPU.
We use ADAM optimizer with weight decay of 0.0001.
Learning rates start from 0.001 and decay by a factor of
10 every 20 epoch of the total 50 epoches. We consider
a depth range of [0,70] meters in KITTI and that of [0, 8]
in SUN-RGBD. For KITTI, we use 4 frustum resolutions
of u=1[0.5,1.0,2.0,4.0] and s = [0.25,0.5,1.0,2.0] for the
car category, with d = [128,128,256,512], L = 280, and
L =140, and 4 frustum resolutions of u = [0.2,0.4,0.8,1.6]
and s = [0.1,0.2,0.4,0.8] for the pedestrian and cyclist
categories, with d = [128,128,256,512], L =700, and L =
350. For SUN-RGBD, we use 5 frustum resolutions of
u=10.2,0.4,0.8,1.6,3.2] and s =[0.1,0.2,0.4,0.8,1.6], with
d = [128,128,256,512,512], L = 80, and L = 40.



Method Easy  Moderate  Hard
MV3D [5] 71.29 62.68 56.56
VoxelNet [14] 81.97 65.46 62.85
F-PointNet [13] | 83.76 70.92 63.65
AVOD-FPN [6] 84.41 74.44 68.65
ContFusion [10] 86.32 73.25 67.81
IPOD [22] 84.1 76.4 75.3
PointRCNN [23] | 88.88 78.63 77.38
Ours 89.02 78.80 77.09

TABLE I: 3D object detection AP (%) on KITTI val set.
Method Easy = Moderate  Hard
MV3D [5] 86.55 78.10 76.67
VoxelNet [14] 89.60 84.81 78.57
F-PointNet [13] | 88.16 84.92 76.44
ContFusion [10] | 95.44 87.34 82.43
IPOD [22] 88.3 86.4 84.6
Ours 90.23 88.79 86.84

TABLE II: BEV detection AP (%) on KITTI val set.

At evaluation time, we only keep predicted foreground
samples and apply an NMS module with a 3D IoU threshold
of 0.1 to reduce redundancy. The final 3D detection scores
are computed by adding 2D detection scores and predicted
3D bounding box scores.

B. Ablation Studies

In this section, we verify components and variants of our
proposed F-ConvNet by conducting ablation studies on the
train/val split of KITTI. We follow the convention and use the
car category that contains the most training examples. Before
individual studies, we first report in Tab.I and Tab.Il our
results of 3D detection and BEV detection on the validation
set. For the most important “Moderate” column, our method
outperforms existing ones on both of the two tasks.

Influence of 2D region proposal Our method relies on
accuracy of 2D region proposals. To investigate how much
it affects the performance, we use three 2D object detectors
with increased practical performance, namely a baseline
Faster-RCNN [2] with a backbone network of ResNet-50
[28], a detector provided by [13], and an oracle one of
ground-truth 2D boxes. Results in Tab.III confirm that better
performance of 2D detection positively affects our method.

2D Detection 3D Detection
Easy Moderate Hard Easy = Moderate  Hard
96.19 87.51 77.41 85.19 74.05 64.77
96.48 90.31 87.63 | 86.51 76.57 68.17
100.00 100.00 100.00 | 87.68 85.47 78.19

TABLE III: Influence of 2D region proposal. Each line
corresponds to results from a different 2D object detector.

Effect of frustum feature extractor We use PointNet [11]
to extract and aggregate point-wise features as frustum-level
feature vectors. Other choices such as PointCNN [24] are
applicable as well. To compare, we replace the element-
wise max pooling in PointNet by the X-Conv operation
in PointCNN for feature aggregation. Tab.IV shows that
PointCNN is also a possible choice of frustum feature
extractor; however, its performance is not necessarily better
than the simple PointNet. We use one resolution for this
experiment.

Easy = Moderate  Hard
PointNet | 84.09 75.32 67.45
PointCNN | 81.91 73.83 66.37

TABLE IV: Comparison between frustum feature extractors.

Effect of the multi-resolution frustum feature integration
variant To investigate the effect of this variant, we plug in
various resolution combinations into F-ConvNet. Results in
Tab.V confirm the efficacy.

(0.5,1.0) (1.0,2.0) (2.0,4.0) | Easy = Moderate  Hard
84.09 75.32 67.45

v 84.19 74.88 66.95

v 85.41 75.63 67.44

v 86.12 76.04 67.97

v v 86.21 76.12 67.96

v v 86.69 76.30 68.02

v v v 86.51 76.57 68.17

TABLE V: Investigation of the multi-resolution frustum
feature integration variant. We show different combinations
of pair (s,u), where s denotes sliding stride of frustums and
u for height of frustums.

Effect of focal loss and final refinement We use focal loss
[25] to cope with imbalance of foreground and background
training samples. We also propose a final refinement step to
cope with less accurate 2D region proposals. The effects of
these two components are clearly demonstrated in Tab.VI.

Easy  Moderate  Hard

w/o FL and w/o RF | 83.78 74.05 65.96
w/o RF 86.51 76.57 68.17

Ours 89.02 78.80 77.09

TABLE VI: Effects of focal loss (FL) and final refinement
(RF).

C. Comparisons with the State of the Art

The KITTI Results Tab.VII shows the performance of
our method on the KITTI test set, which is obtained by
server submission. Our method outperforms all existing
published works, and at the time of submission it ranks 4"
on the KITTI leaderboard. We also show performance of
our method on 3D object localization in Tab. VIII. For this
detection task, the 3D bounding boxes are projected to bird-
eye view plane and IoU is evaluated on oriented 2D boxes.
Representative results of our method are visualized in Fig.6.

The SUN-RGBD Results We also apply our proposed F-
ConvNet to the indoor environment of SUN-RGBD. Our
results in Tab.IX are better than those of all existing methods,
showing the general usefulness of our proposed method.

V. CONCLUSION

We have presented a novel method of Frustum ConvNet
(F-ConvNet) for amodal 3D object detection in an end-to-
end and continuous fashion. The proposed method is dataset-
agnostic and demonstrates state-of-the-art performance on
both the indoor SUN-RGBD and outdoor KITTI datasets.
The method is useful for many applications such as au-
tonomous driving and robotic object manipulation. In future



Method Cars Pedestrians Cyclists
Easy  Moderate Hard | Easy  Moderate Hard | Easy  Moderate  Hard
MV3D [5] 71.09 62.35 55.12 - - - - - -
VoxelNet [14] 77.47 65.11 57.73 | 39.48 33.69 31.51 | 61.22 48.36 44.37
F-PointNet [13] | 81.20 70.29 62.19 | 51.21 44.89 40.23 | 71.96 56.77 50.39
AVOD-FPN [6] | 81.94 71.88 66.38 | 50.80 42.81 40.88 | 64.00 52.18 46.61
SECOND [15] 83.13 73.66 66.20 | 51.07 42.56 37.29 | 70.51 53.85 46.90
IPOD [22] 79.75 72.57 66.33 | 56.92 44.68 42.39 | 71.40 53.46 48.34
PointPillars [16] | 79.05 74.99 68.30 | 52.08 43.53 4149 | 75.78 59.07 52.92
PointRCNN [23] | 85.94 75.76 68.32 | 49.43 41.78 38.63 | 73.93 59.60 53.59

Ours 85.88 76.51 68.08 | 52.37 45.61 41.49 | 79.58 64.68 57.03
TABLE VII: 3D object detection AP (%) on KITTTI test set.
Method Cars Pedestrians Cyclists
Easy  Moderate Hard | Easy  Moderate Hard | Easy  Moderate  Hard
MV3D [5] 86.02 76.90 68.49

VoxelNet [14] 71.47 65.11 57.73 | 39.48 33.69 31.51 | 61.22 48.36 44.37
F-PointNet [13] | 88.70 84.00 75.33 | 58.09 50.22 47.57 | 75.38 61.96 54.68
AVOD-FPN [6] 88.53 83.79 7790 | 58.75 51.05 47.54 | 68.06 57.48 50.77
SECOND [15] 88.07 79.37 7795 | 55.10 46.27 4476 | 73.67 56.04 48.78
IPOD [22] 86.93 83.98 77.85 | 60.83 51.24 45.40 | 77.10 58.92 51.01
PointPillars [16] | 88.35 86.10 79.83 | 58.66 50.23 47.19 | 79.14 62.25 56.00
PointRCNN [23] | 89.47 85.68 79.10 | 55.92 47.53 44.67 | 81.52 66.77 60.78
Ours 89.69 83.08 74.56 | 58.90 50.48 46.72 | 82.59 68.62 60.62

TABLE VIII: 3D object localization AP (BEV) (%) on KITTTI test set.
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Fig. 6: Qualitative results on the KITTI test set. Best view in color with zoom-in. Different color bounding boxes denote
different categories, with green for car, orange for pedestrian, and yellow for cyclist.

Method bathtub bed bookshelf  chair desk  dresser  nightstand soft table  toilet | mean
DSS [21] 442 78.8 11.9 61.2 20.5 6.4 15.4 535 50.3 78.9 42.1
COG [29] 58.26 63.67 31.80 62.17  45.19 15.47 27.36 51.02 5129 70.07 | 47.63

2Ddriven3D [30] 43.45 64.48 31.40 4827 2793 2592 41.92 5039 37.02 80.40 | 45.12
PointFusion [31] 37.26 68.57 37.69 55.09 17.16  23.95 32.33 5383 31.03 83.80 | 4538
Ren et al. [32] 76.2 73.2 329 60.5 345 13.5 30.4 60.4 554 73.7 51.0

F-PointNet [13] 433 81.1 333 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0
Ours 61.32 83.19 36.46 6440 29.67 3510 58.42 66.61 5334 86.99 | 57.55

TABLE IX: 3D object detection AP (%) on the SUN-RGBD test set (IoU 0.25).

research, we will investigate more seamless ways of integrat- ACKNOWLEDGMENT
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TABLE X: Layer

Name Kernel size/Filter no./Striding/Padding

Block1 3x128 /128 /71 /1
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Block4 3x512/512/1/ 1
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Deconv4 4x512/256/4/0
Merge_conv2 1x256 /128 /170
Merge_conv3 1x512/256/1/0
Merge_conv4 1x1024 /512/1/0

specifics of the FCN component of F-

ConvNet for KITTI.
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