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Dynamic Input for Deep Reinforcement Learning
in Autonomous Driving
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Abstract—In many real-world decision making problems,
reaching an optimal decision requires taking into account a
variable number of objects around the agent. Autonomous
driving is a domain in which this is especially relevant, since
the number of cars surrounding the agent varies considerably
over time and affects the optimal action to be taken. Classical
methods that process object lists can deal with this requirement.
However, to take advantage of recent high-performing methods
based on deep reinforcement learning in modular pipelines, spe-
cial architectures are necessary. For these, a number of options
exist, but a thorough comparison of the different possibilities
is missing. In this paper, we elaborate limitations of fully-
connected neural networks and other established approaches
like convolutional and recurrent neural networks in the context
of reinforcement learning problems that have to deal with
variable sized inputs. We employ the structure of Deep Sets in
off-policy reinforcement learning for high-level decision making,
highlight their capabilities to alleviate these limitations, and
show that Deep Sets not only yield the best overall performance
but also offer better generalization to unseen situations than the
other approaches.

I. INTRODUCTION

Many autonomous driving systems are built upon a mod-
ular pipeline consisting of perception, localization, mapping,
high-level decision making and motion planning. The per-
ception component extracts a list of surrounding objects and
traffic participants like vehicles, pedestrians and bicycles.
The number of objects that are relevant for the later decision
making process can be highly dynamic, in both highway
and urban scenarios. Classical rule-based decision-making
systems can process these lists directly, but are limited due
to their fragility in light of ambiguous and noisy sensor
data. Deep Reinforcement Learning (DRL) methods offer an
attractive alternative for learning decision policies from data
automatically and have shown great potential in a number
of domains [1], [2], [3], [4]. Promising results were also
shown for learning driving policies from raw sensor data [5].
However, end-to-end methods can suffer from a lack of
interpretability and can be difficult to train. These issues
can be alleviated by learning from low-dimensional state
features extracted by a perception module. To take advantage
of DRL methods in scenarios with dynamic input lengths,
though, special architectural components are necessary as
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Fig. 1. Limitations of fixed input representations consisting of (a) the 2-

nearest surrounding vehicles, where vehicles 3 and 4 are not visible (b) a
relational grid with Ajyers; = 1 considered side lanes. Cars considered by
the input representation are shown in white, invisible cars in red and the
agent in blue.

part of the learning system. Several neural network based
options allow processing of variable-sized input, as detailed
below. However, it is not clear which of these is superior in
context of a DRL algorithm, enabling high performance and
generalization to various scenarios.

Prior research mostly relied on fixed sized inputs [6], [7],
[8], [9] or occupancy grid representations [10], [11] for value
or policy estimation. However, fixed sized inputs limit the
number of considered vehicles, for example to the n-nearest
vehicles. Figure 1 (a) shows a scenario where this kind of
representation is not enough to make the optimal lane change
decision, since the agent does not represent the n + 1 and
n + 2 closest cars even though they are within sensor range.
A more advanced fixed sized representation [6], [7] considers
a relational grid of Aye,q leaders and Apeping followers in
Alaeral Side lanes around the agent. As Figure 1 (b) shows,
this can still be insufficient for optimal decision making,
since the white car on the incoming Ay, + 1 right lane is
not within the maximum of considered lanes, and therefore
has no influence on the decision making process.

Using occupancy grids in combination with convolutional
neural networks (CNN) imposes a trade-off between com-
putational workload and expressiveness. Whilst smaller ar-
chitectures acting on low-resolution grids as an input are
efficient from a computational perspective, they may be too
imprecise to represent the environment correctly. Whereas
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for high-resolution grids, most computations can be poten-
tially redundant due to the sparsity of grid maps. In addition,
a grid is limited to its initially defined size. Objects off the
grid cannot be represented and are therefore not considered
in decision making.

A third way to deal with variable input sequences are
recurrent neural networks (RNNs). Even though the temporal
context might be important for predictions w.r.t. a single or
a group of objects, the order in which the objects are fed
into the value function or policy estimator should not be
relevant for a fixed time step — i.e., the input should be
permutation invariant. Combined with an attention mech-
anism, a recurrent network can be used to create a set
representation which is permutation invariant w.r.t. the input
elements [12], which we subsequently call Set2Set. However,
RNNS tend to be difficult to train [13], e.g. due to vanishing
and exploding gradients, which can be a problem in highly
stochastic environments.

Lastly, Deep Sets can be employed to process inputs of
varying size [14]. The Deep Set architecture was used for
point cloud classification and anomaly detection [14], as well
as in a sim-to-real DQN-setting for a robot sorting task [15].

In this paper, we suggest to use Deep Sets for deep
reinforcement learning as a flexible and permutation invariant
architecture to handle a variable number of surrounding
vehicles that influence the decision making process for
lane-change maneuvers. We additionally propose to use
the Set2Set architecture as both baseline and another new
approach to deal with a variable input size in reinforcement
learning. Our main contributions are the formalization of
the DeepSet-Q and Set2Set-Q algorithms, and the extensive
evaluation of DeepSet-Q, comparing it to various other
approaches to handle dynamic inputs, and showing that Deep
Sets outperform related approaches in the application of
high-level decision making in autonomous lane changes,
while generalizing better to unseen situations.

II. METHOD

In reinforcement learning, an agent acts in an environment
by applying action a; ~ m, following policy 7, in state sy,
gets into some state s;y; ~ M, according to model M,
and receives a reward 7; in each discrete time step t. The
agent has to adjust its policy 7 to maximize the discounted
long-term return R(s;) = >~ _, 7" ~“try, where v € [0, 1]
is the discount factor. We focus on the case, where we find
the optimal policy based on model-free Q-learning [16].
The Q-function Q™ (s¢,a;) = Eq,,_,~x[1(s¢)|as] represents
the value of an action a; and following 7 thereafter. From
the optimal action-value function QQ*, we can then easily
extract the optimal policy by maximization.

A. DeepSet-Q

In the DeepSet-Q approach, we train a neural net-
work Qps(-,-|09Ps), parameterized by 0%9PS, to esti-
mate the action-value function via DQN [1] for state
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Fig. 2. Scheme of DeepSet-Q. The modules ¢, p and @ are fully-connected
neural networks and P is a permutation invariant pooling operation. Vectors
mt and m“““c are dynamic and static feature representations at time step ¢,
q is the actlon—value output.

s¢ = (XP" 239i) and action a,. The state consists of a dy-
namic input X;*" = [z}, .., 2" ""|T with a variable number'
of vectors |0< j<seqlen and a static input vector z§?tc,

The Q-network @Qps consists of three main parts,
(¢, p, Q). The input layers are built of two neural networks
¢ and p, which are components of the Deep Sets. The

representation of the input set is computed by:
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which makes the Q-function permutation invariant w.r.t.
its input [14]. An overview of the Q-function is shown
in Figure 2. Instead of taking the sum, other permuta-
tion invariant pooling functions, such as the max, can be
used. Static feature representations i can be fed directly
to the @-module. The final Q-values are then given by
Qps(se,ar) = Q([U(XD™), a5 a,), where [-,-] denotes
concatenation. The Q-function is trained on minibatches
sampled from a replay buffer R, which contains transitions
collected by some policy 7. We then minimize the loss
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with targets y;, = r; + ymax, Qpg(si+1,a), where
(Siy @iy Sit1,7:)|o<i<p 1 a randomly sampled minibatch
from the replay buffer. The target network is a slowly updated
copy of the Q-network. In every time step, the parameters of
the target network 9@rs are moved towards the parameters
of the Q-network by step-length 7, i.e. 09ps  T9rs 4
(1 — 7)0%9Ps. For a detailed description, see Algorithm 1.
To overcome the problem of overestimation, we further
apply a variant of Double-Q-learning which is based on two
independent network pairs, so as to use the minimum of the
predictions for target calculation [17].

QDS Sis az))2 ,

B. Set2Set-Q

Another approach to deal with a variable number of input
elements is to replace Qps and target network Qg by
recurrent network architectures Qg2 and Q4. Here, the
input layer of the Q-network consists of the recurrent module

'In the application of autonomous driving, the sequence length is equal
to the number of vehicles in sensor range.



Algorithm 1: DeepSet-Q

Algorithm 2: Set2Set-Q

1 initialize QDS = (¢? P Q) and QIDS = (¢/a p/7 Q/)
2 set replay buffer R
3 for optimization step o=1,2,... do
4 | get minibatch (s, a;, (X5, 232%), r;) from R
5 foreach transition do
6 foreach object x] in X do
d (@42) = o (2,
8 end
9 Pir1=1p" Z( §+1)j
J
10 yi =i +ymax, Q' (pi 1, T, a)
11 end
12 perform a gradient step on loss:
1 2
b Z (@ps(si,ai) — vi)
3
13 update target network by:
§9s  799Ps 4 (1- 7)9Q335
14 end

1 initialize Qg25 = (LSTM, Q) and Q555 = (LSTM', Q')
2 set replay buffer R
3 for optimization step o=1,2,... do
4 | get minibatch (s;, a;, (X{Y), 2399), r;) from R
5 foreach transition do
6 reset hidden state of LSTM’ and ¢
7 for iteration k=1,2,..., K do
8 qr = LSTM' (¢} _,)
9 foreach object alin X2 do
10 | ejr=al @
11 end
_ explejr)
12 Qjk >, el”p(em,k)
13 ﬂk = Z Oéj,kngrl
J
14 a, = lax, Bx]
15 end
16 y; =1 +ymax, Q' (¢, xitj‘_ﬁf, a)
17 end
18 perform gradient step and update target network as
in Algorithm 1
19 end

Fig. 3. Unrolled scheme of Set2Set-Q. Dynamic feature representations
Xfy" = [x%, ..,a:ieq len]—r are fed via a permutation invariant attention
mechanism oy, to the LSTM in K iterations and accumulated in gj;. Vector

mfs““ic is the static feature representation at time step ¢. g is the action-value

output.

proposed in [12], which uses an aggregation in a hidden
state of a long-term short-term memory (LSTM) [18] as a
pooling operation for the input elements. Combined with
their proposed attention mechanism, the aggregation of the
input set is permutation invariant. The Q-network consists
of two main parts (LSTM, Q). An overview is shown in
Figure 3. The LSTM is updated K times, where k denotes the
iteration index. It evolves a state ¢; with ¢, = LSTM(q}_,),
which is formed by a concatenation ¢; = [gx, 0] of a
query vector ¢ with the readout vector 8 = > y oszCz:j.
The readout vector is computed over all input set elements
zd € XY multiplied by an attention factor o (27, q;). The
resulting state representation of the dynamic objects g7 is
concatenated with static feature representation 2% and fed
into the (Q-module. For details, see Algorithm 2.

III. EXPERIMENTAL SETUP

We apply the Deep Set and Set2Set input representations
in the reinforcement learning setting for high-level decision
making in autonomous driving.

A. Application to Autonomous Driving

In order to model this task as a MDP, we first define state
space, action space and reward function.

1) State Space: For the agent itself, subsequently called
ego vehicle, we use the absolute velocity ves, € R>¢ and
whether lanes to the left and right of the agent are available
or not. For all vehicles j within the scope of an input
representation and within the maximum sensor range dpax,
we consider the following features:

o the relative distance dr; = (pj — Pego)/dmax € R,
where peg,, p; are longitudinal positions in a curvilinear
coordinate system of the lane,

« the relative velocity dv; = % € R, where ¢ < 1
and ego, v; denote absolute velocities,

« and the relative lane? dl; = lj — lego € N where 1}, lego

are lane indices.

2) Action Space: The action space consists of a discrete
set of possible actions A = {keep lane, perform left
lane-change, perform right lane-change}. The actions
are high-level decisions of the agent in lateral direction.
Acceleration towards reaching the desired velocity is
controlled by a low-level execution layer. Collision
avoidance and maintaining safe distance to the preceding

2e.g. dl. = —1 for vehicle ¢ which is one lane to the left of the agent.
This feature is not needed for the fixed input and occupancy grids.



vehicle are handled by an integrated safety module,
analogously to [11], [19]. In our case the agent simply
keeps the lane, if the chosen action is not safe.

3) Reward Function: For a desired velocity of the agent

Vdesireds We define the reward function® 7 : S x A +— R as:
|Ueg0 - Udesired'
r(s,a) =1—- ———— —pp,
Vdesired

where pj. is a penalty for choosing a lane change action.
In our experiments, we use p. = 0.01 if action a is a lane
change and 0 otherwise. The weight was chosen empirically
in preliminary experiments.

B. Input Representations

In this section, we describe how to transform the given
state information to three different input representations.
In total, we trained and evaluated four DQN agents with
different input modules. For all approaches, including the
baselines, we optimized the hyperparameters extensively. A
detailed overview of the configuration spaces can be found
in the appendix.

1) Relational Grid (Fixed Input): As fixed input
representation, we use a relational grid with neighborhood
Auhead = Abehind = Alateral = 2, Which results in a maximum
of 20 surrounding cars*. For non-existent cars in the grid
we use default value dv = 0, as well as dr = 1 for leaders
and dr = —1 for followers. These values correspond to a
vehicle with same speed at maximum sensor range, having
no influence on the decisions of the agent. In total, the state
consists of 43 input features.

2) Occupancy Grid: A two-dimensional occupancy grid
depicts the scene around the ego vehicle from a bird’s eye
perspective as an input. We use a grid size® of 80 x 5, where
the ego vehicle is represented in the middle. We therefore
observe 5 highway lanes. All cells in the grid occupied by
a surrounding vehicle j are assigned values 1+ dv; and the
cells occupied by the ego vehicle dve,, = 1. Free cells are
assigned zeros.

3) Set Input: The input for DeepSet-Q and Set2Set-Q
consists of a variable length list of feature vectors. If no
vehicles are in sensor range, the forward pass of ¢ is omitted
for the Deep Sets and a vector of zeros is fed to p. In the
Set2Set model, the forward passes of the LSTM are skipped
and ¢J is set to zero.

3In favor of simplicity, we omit considering more factors such as jerk or
cooperativeness.

4In preliminary experiments we further investigated a relational grid with
Auhead = Abehind = Alateral = 3, resulting in 42 considered vehicles.
However, the results showed very high variance. Additionally, we omitted
experiments with 6 vehicles because of the limitations shown in Figure 1.

SWe also evaluated a grid size of 160 x 5. In our experiments, however,
the larger grid led to a worse performance after the same number of gradient
steps.

Fig. 4. Birdview of the 3-lane highway scenario in SUMO. The ego vehicle
is shown in blue. All other vehicles are shown in red.
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Fig. 5. The vertical bars denote the distribution of transitions for a given
number of vehicles in sensor range, shown for scenarios with 30 to 90
vehicles on three lanes. The darker, the higher the frequency. Lines represent
the mean number of vehicles in sensor range for three lanes (solid) and five
lanes (dashed).

C. SUMO Simulator

For experiments, we used the open-source SUMO traffic
simulation framework [20], as shown in Figure 4. Training
and evaluation scenarios were performed on a simulated
1000 m circular highway with three lanes. The vehicles were
randomly positioned passenger cars with different driving
behaviors to resemble realistic highway traffic as much as
possible. We set the sensor range to 80 m in front and behind
the ego vehicle. Details for the simulation environment and
driving behaviors are shown in appendix, Table III.

D. Training Setup

The data was collected in SUMO simulation scenarios. We
trained our agents offline on two separate datasets:

o Dataset 1: 500.000 transition samples with an arbitrary
number of surrounding vehicles in each transition.

o Dataset 2: 500.000 transition samples with at most
six surrounding vehicles. This dataset was sampled
proportional to the original data distribution.

The datasets were collected by a data-collection agent
in traffic scenarios with a random number of n € [30,60]
vehicles. The data-collection agent had the SUMO safety
module integrated and performed a random lane change to
the left or right whenever possible.

E. Evaluation Setup

Since high-level decision making for lane changes on
highways is a very stochastic task — the behaviour and mutual
influence of the other drivers is highly unpredictable — we
evaluated our agents on a variety of different scenarios, to
smooth out the high variance. We generated both three-
and five-lane scenarios, varying in the number of vehicles
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(a) Mean performance and standard deviation over 10 training runs on Dataset 1. (b) Mean performance and standard deviation over 10 training

Scenario 30 50 70 90
Fixed Input 201.59 (£ 7.23) 163.17 (£ 8.17) 134.47 (£ 5.45) 121.21 (£ 4.83)
CNN 203.2 (& 4.15) 164.54 (£ 3.2) 136.41 (£ 2.15) 1239 (= 1.7)
Set2Set 164.99 (£ 27.17)  134.15 (£ 20.61) 11543 (& 11.22)  109.98 (& 8.85)
Deep Sets 215.51 (£ 1.58) 177.01 (£ 2.35) 143.93 (+ 3.52) 126.7 (£ 4.14)

TABLE I
MEAN PERFORMANCE AND STANDARD DEVIATION OF THE APPROACHES TRAINED ON SAMPLES WITH ALL VEHICLES (DATASET 1).

Scenario 30 50 70 90
Fixed Input  187.26 (+ 10.33) 148.33 (£ 8.0) 120.83 (£ 6.64) 113.4 (£ 54)
Set2Set 150.06 (£ 21.55) 122.09 (+ 16.64) 108.56 (£ 9.43) 103.56 (& 6.15)
CNN 179.6 (£ 19.18) 141.21 (£ 13.93) 116.89 (£ 9.59) 106.57 (£ 5.41)
Deep Sets 213.91 (£ 2.02) 171.46 (+ 7.17) 136.11 (+ 5.99) 117.05 (& 6.69)

TABLE II
MEAN PERFORMANCE AND STANDARD DEVIATION OF THE APPROACHES TRAINED ON SAMPLES WITH UP TO 6 VEHICLES (DATASET 2).

n € {30+i-5|0 < ¢ < 12}. For each fixed n, we evaluated 20
scenarios with different a priori randomly sampled positions
and driving behaviours for each vehicle. In total, each agent
was evaluated on the same 260 scenarios per fixed lane
setting. The distribution of surrounding vehicles for the
evaluation scenarios is shown for three and five lanes in
Figure 5.

F. Comparative Analysis

DeepSet-Q and Set2Set-Q were compared to a fully-
connected neural network using the fixed relational grid input
and a convolutional neural network using the occupancy grid.
All dynamic input architectures are shown in the appendix,
Table V. Additionally, we compared a naive agent with
no lane changes and a rule-based controller, that uses the
SUMO lane change model LC2013 with parameters shown
in appendix. Each network was trained with a batch size
of 64. For optimization of all architectures, we used Adam

[21] with a learning rate of 10~%. The target networks were
updated with 7 = 10~%. Rectified Linear Units (ReLu) were
used in all hidden layers of all architectures. The input
layers of the network architectures were optimized using
Random Search with the same fixed budget for the different
approaches. We preferred Random Search over Grid Search
because less computational budget is needed to find models
with better performance [22]. The final dense layers of the Q-
module were optimized once for the fixed input architecture
and kept for all other architectures. For the CNN architecture,
we used an all-convolutional network [23]. The configuration
spaces for the Random Search are shown in the appendix,
Table IV.

IV. RESULTS

As can be seen in Figure 6a, the Deep Set architecture
yields the best performance and lowest variance across
traffic scenarios in comparison to rule-based agents and
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(a) Mean performance and standard deviation for agents trained on scenarios with three lanes and evaluated on scenarios with five lanes. (b) Mean

performance and standard deviation for DeepSet-Q agents, evaluated on noisy perception with two different noise levels.

reinforcement learning agents using Set2Set, fully-connected
or convolutional neural networks as input modules. For all
results, see Table I. A video can be found at https://
youtu.be/mRQgHeAGk2g. The differences between the
approaches get smaller as more vehicles are on the track
due to general maneuvering limitations in dense traffic.

To investigate the generalization capabilities of all meth-
ods we trained additionally on Dataset 2, containing only
transitions of at most six surrounding vehicles. As depicted
in Figure 5, this is only a small fraction of possible traffic
situations. The evaluation results for the truncated dataset are
presented in Figure 6b. CNNs have difficulties generalizing
to unseen situations and suffer from larger variance in
comparison to training on Dataset 1. In contrast, Deep Sets
are able to mostly keep the performance even when trained
on the truncated dataset, showing only a small increase in
variance. The results can be found in Table II.

Results of generalization to a differing number of lanes
can be seen in Figure 7a. The plot shows the relative change
in performance after increasing the number of lanes from
three to five. In these situations, the CNN cannot necessarily
represent the outermost lane if the agent is to the full
left or right. We hypothesize this the reason for the worse
performance in comparison to the Deep Sets for scenarios
with a lot of vehicles on the track. In these situations also
the outermost lanes can be of high importance due to the
crowded traffic, but more analysis is needed to fully elucidate
these differences.

As an initial evaluation of transferability of the DeepSet-Q
agent to real-world applications, we added Gaussian noise to
the relative distance dr and relative velocity dv of all vehicles
within sensor range, assuming that the relative lane can be
assigned accurately. The results for two different noise levels
are depicted in Figure 7b. Our agents show little performance
decrease and seem to be robust against reasonable noise
levels.

V. CONCLUSION

In this paper, we evaluated the DeepSet-Q architecture on
the problem of high-level decision making in autonomous
lane change maneuvers and put the results into context of
current research. Deep Sets were able to outperform convo-
Iutional neural networks and recurrent attention approaches
and demonstrated better generalization to unseen scenarios.
Even though recent results present a connection between the
bottleneck of embedding ¢(-) and the maximum set size [24],
we showed that Deep Sets can offer a both scalable and well-
performing alternative to established approaches in the area
of dynamic inputs.

Going forward, we believe there lies great potential in
extending the architecture to multiple types of objects, such
as pedestrians and cyclists, traffic lights or indicators for
ending lanes. Further, the temporal context for traffic partici-
pants could be incorporated by including recurrent units in ¢.
Finally, the evaluation of the architecture on a real physical
system yields an important direction for future work.

VI. ACKNOWLEDGMENT

We would like to thank Manuel Watter for fruitful discus-
sions concerning dynamic input representations.

VII. APPENDIX
A. SUMO Configuration

SUMO was used with a time step length of 0.5 s and a lane
change duration of 2s. The action step length for the rein-
forcement learning agent is 2 s. Acceleration and deceleration
of all vehicles are 2.6 m/s? and 4.5 m/s?. The minimum gap
is 2m, the desired time headway to 7 = 0.5s. As lane change
controller, we use LC2013 with IcKeepRight = 0.0. All car
lengths are 4.5 m.

Table III shows the driving behaviors used to create a
realistic traffic flow. Driving behaviors can be influenced
by the maximum speed, the eagerness for performing lane


https://youtu.be/mRQgHeAGk2g
https://youtu.be/mRQgHeAGk2g

Driver Type maxSpeed  lcSpeedGain  lcCooperative
Ego Driver 24 - -
Driver Type 1 24 +u 7 0.0
Driver Type 2 12 +u % 1.0
Driver Type 3 18 +u % 0.8
Driver Type 4 21 +u % 0.4
TABLE III

SUMO PARAMETERS FOR DIFFERENT DRIVER TYPES, WHERE
w~ U(=5,5) AND i ~ 1(10, 20).

changes to gain speed and the willingness to cooperate.
For evaluation scenarios, we sampled a priori 100 different
drivers uniformly from Type 1-4.

B. Hyperparameter Optimization

All architectures were optimized by Random Search. The
corresponding configuration spaces are shown in Table IV.
We sampled 20 configurations, where we jointly optimized
parameters and architecture layouts.

Architecture Parameter Configuration Space
Fixed Dense(-) 50, 100, 200
num layers 2,3
Deep Set ¢: num layers 1,2,3
¢: hidden/output dim 5,20,100
p: num layers 1,2,3
p: hidden/output dim 5,20, 100
Set2Set LSTM: num layers 1,2
Dense(+) 32,64, 100
iterations T 5,20, 40
CNN CONYV: num layers ,3
kernel sizes ([7,3,2],[2,1])
strides (12,1],2,1])
filters 8,16, 32
TABLE IV

CONFIGURATION SPACES CONSIDERED IN RANDOM SEARCH FOR THE
DEEP SET ARCHITECTURE AND ALL BASELINES.

C. Network Architectures

The hyperparameter-optimized architectures used in Sec-
tion IV are shown in Table V.

CNN
Input(B x 80 x 5)

|
16 x Conv2D(3 x 1)
32 x Conv2D(3 x 1)

Set2Set | Deep Sets

Input(B X seq len X 3)

LSTM(6) ¢: Dense(20), Dense(80)
Dense(32) | p: Dense(80), Dense(20)

concat(-, Input(B X 3))
Dense(100)
Dense(100)

Linear(3)

TABLE V
NETWORK ARCHITECTURES. THE CNN USES STRIDES OF (2 X 1) AND
ZERO PADDING. FOR THE RELATIONAL GRID (NOT SHOWN),
INPUT(B X 43) IS FED DIRECTLY TO THE DENSE(100) LAYERS.

Algorithm 3: DeepSet-PPO

1 initialize Tps = (&, p, ) and THL = (¢°1, p°ld, 7o)
2 initialize Vpg
3 for optimization step 0=1,2,... do
4 run policy w%‘}s for e episodesA
5 compute advantage estimates A
6 for iteration k=1,2,..., K do
7 train Vpgs
_ mps(at|st)
s Ry = i talsn)
9 RSYP = clip(Ry, 1 —€,1+ €)
10 optimize surrogate:
LELP(gos) — E, [min (thglt7 RsLIPAt)}
11 end
12 end
D. PPO

In preliminary experiments, we employed the Deep Set
input in Proximal Policy Optimization (PPO) [25]. For de-
tails, see Algorithm 3. However, due to the higher demand for
training and the non-trivial application to autonomous driving
tasks of on-policy algorithms, we switched to off-policy
Q-learning. The performance of DeepSet-PPO is depicted
in Figure 8.
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Fig. 8. Mean performance and standard deviation over 7 training runs of
DeepSet-PPO, compared to off-policy DeepSet-Q.

The discount factor v was set to 0.9, since convergence
to a satisfying policy needed too many updates, otherwise.
We used the Clipped Surrogate Objective, with clipping
threshold e = 0.2. Value-function and policy were optimized
by Adam with a learning rate of 5-10~*. The Monte Carlo
rollout had a horizon of 20. The batch size was set to 64.
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