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Abstract— Model free reinforcement learning suffers from
the high sampling complexity inherent to robotic manipulation
or locomotion tasks. Most successful approaches typically
use random sampling strategies which leads to slow policy
convergence. In this paper we present a novel approach for
efficient exploration that leverages previously learned tasks.
We exploit the fact that the same system is used across many
tasks and build a generative model for exploration based
on data from previously solved tasks to improve learning
new tasks. The approach also enables continuous learning of
improved exploration strategies as novel tasks are learned.
Extensive simulations on a robot manipulator performing a
variety of motion and contact interaction tasks demonstrate
the capabilities of the approach. In particular, our experiments
suggest that the exploration strategy can more than double
learning speed, especially when rewards are sparse. Moreover,
the algorithm is robust to task variations and parameter tuning,
making it beneficial for complex robotic problems.

I. INTRODUCTION

Deep reinforcement learning has attracted a lot of attention
for robotic applications where full robot models can be
difficult to identify, especially for contact dynamics, and
lead to computationally challenging planning and control
problems. In particular, it can be successful in producing
robust behaviors with ability to handle uncertainties in the
environment and quickly adapt to changes [1].

However, these algorithms suffer from several important
issues that can limit their applicability. The most salient
issue is related to sampling efficiency and exploration strate-
gies. Indeed, exploration strategies required to generate new
samples are often limited to simple noise models, which
can drastically increase the number of required samples
for policy convergence. This problem is especially acute
in robotics, due to difficulties in obtaining large amounts
of training data, discontinuities in the interactions with the
environment, as well as complex, multi-part, potentially
sparse reward functions. Quite often algorithms suffer from
local minimums and flat surfaces in the reward space. In this
work, we investigate a novel exploration strategy to alleviate
these issues by leveraging previously learned tasks to better
explore when learning novel ones.

One attempt to tackle the issue of exploration when
applying deep reinforcement learning in robotics problems
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has been made in [2], by proposing the application of cor-
related noise. Correlated noise, more specifically Ornstein-
Uhlenbeck (OU) process [3], is also used to improve explo-
ration in [4]. While this exploration strategy can in theory
explore the state space more rapidly, it tends to create very
high changes in the control sequence while it would be
preferable in robotic applications to have smoother motions
with proper velocity profiles.

Exploration in reinforcement learning has been explored in
more general settings. [5], for example, proposes exploration
in the space of the parameters of the policy instead of the
space of actions. Other approaches base exploration on some
measure of novelty while moving through the state space,
as is the case in research on intrinsic motivation [6], [7],
[8]. These approaches mostly try to explore novel regions
of the state space, but do not necessarily use knowledge
from previously learned tasks. In this paper, we take a
complementary approach where we leverage these previous
tasks to generate better exploration strategies for novel ones.

Transfer learning, which seeks to exploit knowledge from
previously learned tasks to accelerate learning new tasks is
also relevant to our problem. In [9], authors propose learning
a ”distilled” policy from several tasks capturing the common
behavior among them and constraining the individual policies
to be close to it. The exploration process we learn bears
some resemblance to this shared policy, the key difference
being that in continuous action spaces, which is the setup
we investigate, having such distribution only be dependent
on the current state does not prove informative enough as we
explain in detail in Section II-A. In [10], low level control on
a locomotion system is learned and used to solve high level
tasks. However, it requires that this type of separation exist
as well as enough knowledge about it to be able to design
a two-level structure with capability of learning it. Auxiliary
tasks can also be used to improve learning when rewards
are sparse, as in [11], however this requires an ad-hoc setup
to define these tasks and how they should be interleaved
with the main task to be learned. Our approach does not
setup auxiliary tasks but still assumes that a set of tasks
of increasing complexity is available. Our work also bears
some connection to research on motion primitives [12], [13].
While we do not explicitly try to directly extract any motion
primitive, the exploration process we learn can be thought
of as generating basic action primitives.

In this work, we present a novel exploration strategy
for deep reinforcement learning. We propose to learn a
generative model of basic action primitives capturing the
motion patterns seen in previously learned tasks. Exten-
sive experiments on a set of simulated motion and contact
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interaction tasks for a robot manipulator demonstrate the
capabilities of the approach. In particular, our approach
shows significant learning speed-up compared to other state
of the art algorithms, especially for tasks with sparse reward.
We also show that the algorithm is robust to parameter
changes and task variations, reducing the need for parameter
tuning.

II. PROPOSED APPROACH

Our goal in this work is to use the knowledge we gain in
solving several tasks with a given robot to facilitate learning
new tasks for the same robot. In all the tasks we discuss
in the paper we use the same robot and vary the tasks
and the environments, with increasing complexity. More
specifically, we want a method that uses good behaviors
learned from previous tasks to help the exploration process
when learning a new task. Our idea is to learn a function
that generates random behaviors that resemble behaviors seen
in previous tasks. In the following, we first describe our
approach to build a model that generates random behaviors
that retain similar characteristics as the behaviors learned in
the previous tasks.

A. Learning the exploration model

We start by presenting a simple example illustrating the
requirements for our approach and the difficulties inherent to
learning good exploration strategies from previous tasks. In
particular, we want to explain why longer trajectories need to
be taken into account to learn proper exploration strategies.
We consider a point mass moving in the plane with a fixed
velocity magnitude. The control input consists in choosing a
direction of motion, independently at each state. The desired
task is to reach a desired location (B) from a randomly
selected starting point in the plane (A) as shown in Figure
1(a).

We collect successful policies πi for many instances of
such tasks (i.e. for different goal positions). We then choose
an arbitrary state s and evaluate the actions that all the
different policies would take at that state ai = πi(s) (Figure
1(b)). Considering that for each policy, the random goal
positions can be distributed anywhere around the chosen state
s, we can expect that given enough policies, we will be able
to find a policy that would move in any chosen direction.
Therefore, if we were to calculate a combined distribution
πc over the action space arising from all the policies:

πc(a | s) ≈
∑
i

πi(a | s), (1)

we would likely find a uniform distribution (i.e. no
preferred direction of motion) which would be completely
uninformative (Figure 1(c)). This illustrates that we cannot
naively combine previous actions at a given state because the
resulting distribution is likely to be of little interest to create
sensible exploratory motions.

However, if we condition such distribution on a longer
history of preceding states s1:t, then there will exist only
a few policies with a similar state history when arriving at

the state (Figure 1(d)) and it is likely that their subsequent
actions would be very similar. The combined probability
distribution over actions:

πc(a | s1:t) ≈
∑
i

p(s1:t | πi)πi(a | s1:t), (2)

where p(s1:t | πi) is the weighting factor equal to the
probability of the policy πi resulting in a state trajectory s1:t,
will be much more focused (Figure 1(e)). Taking consecutive
samples from such a distribution would now result in a
behavior with the characteristics of the original policies and
would be significantly more useful for what we are trying to
achieve.

We propose in the following to learn a combined proba-
bility distribution of a diverse set of policies conditioned on
trajectories (or sequences) of preceding states. To represent
this learned exploration model (LEP), we use a recurrent
network, more specifically a Long Short Term Memory
(LSTM, [14]) network. We start by collecting trajectories
{(s1:T , a1:T )i} from all the available policies. We note here
that we only need trajectories and not the full policies
for training the model, so our approach could work even
if that is all we have access to (for example as a result
of doing trajectory optimization [15], [16] or learning by
demonstration [17]).

Importantly, we do not train our model on the full length
of the collected trajectories, as we are interested in general
basic characteristics of good behaviors, not behaviors that
solve specific tasks. On longer time scales the characteristic
associated to solving a specific task would become dominant,
leading our network to overfit to solutions to individual tasks.
Because of that we limit trajectory samples to a shorter
timescale h and randomly sample sections of the trajectories
of length h to build the training dataset.

The function approximated by the LEP network takes as
input a history of robot states and outputs a distribution
over the corresponding sequence of actions. We use diagonal
Gaussian distribution as the output and train the network to
maximize the log likelihood of the action sequences given
the corresponding states (in the same way as in, for example,
[18]).

B. Reinforcement learning with an exploration function

We now describe how the exploration model can be
included in a reinforcement learning algorithm. In our exper-
iments, we use Deep Deterministic Policy Gradient (DDPG,
[4]), but any off-policy algorithm with independent noise
could be used instead. DDPG is an actor-critic method that
simultaneously learns a state-action value function Q(s, a)
and a deterministic policy π(s) that optimizes it:

π(s) = argmax
a

Q(s, a) (3)

By keeping a constant estimate of the action with the
largest Q value for each state it avoids the problem that
arises in continuous action spaces, where calculating this
value online requires solving an optimization problem.
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Fig. 1: Point mass example illustrating our approach (cf. Section II-A for details): (a) Task: moving from one point to another;
(b) Policy trajectories conditioned on the selected state; (c) Combined action distribution conditioned on the selected state;
(d) Policy trajectories conditioned on a state history; (e) Combined action distribution conditioned on a state history.

The full algorithm consists of interchanging steps of:
1) Gathering data by executing the current policy in the

environment with an added output of an external noise
process N :

at = π(st) + ε

ε ∼ N
(4)

2) Taking random samples from the gathered data and
updating the value of the Q function using the Bellman
equation and the policy π corresponding to the gradient
of the current Q function estimate with respect to the
action.

As we have seen, DDPG explores the spaces by adding
exploration noise to an existing deterministic policy (Equa-
tion 4). We replace the exploration noise in DDPG with the
output of the LEP (a generative model for motions with good
properties). With that, the action that is taken at each time
step during training is equal to the sum of current output of
the deterministic policy and a sample from the exploration
model:

at = π(st) + εLEP (5)

We reset the internal state of the LSTM network to its
initial value every h steps, matching the sequence length it
has been trained on. Thereby, the action distribution of the
exploration is conditioned on the past t mod h states, where
t is the current time step:

εLEP ∼ pLEP (a | str:t),
tr = t− t mod h

(6)

Apart from this, we keep all the other aspects of the
training exactly as they are in [4], including not reducing
the exploration noise as the training progresses.

Remark 1: Note that while our model might produce
sensible behaviors for the system there is no guarantee that
the sum with output of the current policy will do the same.
However, this simple approach works very well in practice.
The DDPG policy is initialized to produce output values
close to zero at the beginning of the training. Because of
that, the initial samples in our case will for the most part
be pure samples from the generative exploration model. As

Task 1 Task 2 Task 3 Task 4

Fig. 2: Illustration of the four tasks tested in the experiments.

the policy changes during learning this might no longer be
the case, but as we will later see in our experiments, the
algorithm shows no trouble finely converging to the desired
behavior.

C. Continuous learning

One more aspect of our approach is its ability to be
continuously applied, enabling solving of more and more
complex tasks each time. As we have stated, we can use
data from any source in training of the exploration model.
This also includes policies resulting from applications of
some previously trained exploration model of the same type.
This way we can train the model on the data available to
us initially, use it to learn on a new task, add the data from
these new policies to our training set and then repeat the
process. We can keep doing this as many times as necessary
to get to a point where we can solve some complex task we
are interested in.

III. EXPERIMENTAL SETUP

In this section we describe the experimental setup used to
evaluate the performance of the approach.

A. Environment

We test the algorithm on a simulated KUKA LWR, a 7-
DoF robotic arm. We choose tasks of increasing complexity
and in particular tasks involving contact interactions with
a table. All our experiments are implemented using the
Bullet physics simulator. We keep the state and action spaces
same across all the tasks. The state space consist of joint
position, joint velocities and measured 3D contact forces at



the end-effector, for a total of 17 dimensions. The action
space consists of torques applied to each joint, which is 7
control dimensions. We also add gravity compensation to the
torque command as it is automatically added by the on-board
controllers on the real KUKA LWR robot.

B. Motion and contact interaction tasks

Each of our different tasks is characterized completely by
the defined reward function (and the presence or absence
of the table in the environment, which we add in tasks
with interaction aspects). We test four types of tasks of
increasing complexity: a reaching task, a contact task, a
periodic motion and a periodic motion while interacting with
the table. We describe the tasks and the cost functions in
detail in the following. Note that our cost functions are
rather straightforward and do not specially seek to facilitate
learning.

1) Task 1: Reaching a desired target: This task consists of
getting the end-effector to a desired position and orientation
in space. The reward function consists of two parts: the
distance to the goal and the orientation error. In this task,
the desired orientation always points straight down and we
only vary the desired goal position.

2) Task 2: Stationary force application: The goal of this
task is to apply a desired normal force on a desired location
on the table. The reward function in this case will consists of
three parts, the same two costs used in Task 1 for the position
and orientation of the end-effector and a cost measuring
the error between the desired and measured normal contact
forces and adding a constant bonus term whenever the end-
effector is in contact with the table to incentivize contact
behaviors. Note that the contact cost is sparse as most robot
configurations lead to no contacts.

3) Task 3: Periodic motion along a closed curve: Here
we require the end-effector to move along a given circular
path in space (while keeping a specified orientation). The
reward function has three parts, based on position, velocity
and orientation of the end-effector. The reward is based on
the distance to the circle (as opposed to a fixed target location
as in Task 1) and desired velocity based on the tangential
velocity vector that the end-effector should have on the point
on the circle currently closest to it. The orientation reward
is kept the same as in previous tasks.

4) Task 4: Periodic motion with contact force regulation:
Combining aspects of all the previous tasks, here the goal
is to move along a given circular trajectory on the surface
of the table while applying a constant normal force to it.
Reward function is a combination of the trajectory reward
given in Task 3 and the force reward used in Task 2.

C. Defining success during learning

It is not sufficient to find a high reward policy, we also
need to check that the robot is indeed achieving the desired
task. For each task, we empirically define a reward value for
which we consider the task solved. In order to find this value,
we analyzed many instances of the behavior on the task. We
determine the value such that all behaviors with higher scores

perform all the aspects of the task in a satisfactory way. For
example, in Task 4, we make sure that policies performing
only three out of the four aspects of the behavior we desire
(moving along the trajectory without making contact with
the table, applying force while being stationary on a single
point on a trajectory, etc.) never reach this threshold for the
cumulative reward.

IV. RESULTS

We now present the results of our simulations. In particu-
lar, we demonstrate how tasks involving complex contact
interactions can be learned efficiently with our approach.
We also systematically compare the results with other state
of the art reinforcement learning algorithms and test the
robustness of the approach to random initialization. In all
of our experiment, we compare our method with the normal
DDPG algorithm and with an on-policy reinforcement algo-
rithm, Proximal Policy Optimization (PPO) [19]. For both
these algorithms, we use the implementations from OpenAI
Baselines [20].

A. Same task type for training and testing

First, we evaluate how our method performs when it is
trained on the same type of tasks it is later tested on. We
investigate this behavior with the reaching task (Task 1),
which is the simplest of all tasks. To generate the initial
policies to train the exploration model we use PPO. The
reason to use this algorithm instead of DDPG is that the
vanilla DDPG (e.g. without a good exploration strategy)
did not produce policies as good as PPO for this simple
experiment. All subsequent training and improvement of the
exploration model are done using data generated by our
approach on previous tasks. We use 100 policies trained on
instances of the task with varying goal positions for this
initial data collection.

We generate new instances of the same task with different
goal locations and compare the performance of our approach
(DDPG + LEP) with DDPG and PPO. We explore vari-
ous noise setups for DDPG (Gaussian noise and Ornstein-
Uhlenbeck processes, with a range of values for the vari-
ance), as well as different subsequence lengths for training
of the LEP. We present results for the best configuration for
each algorithm averaged over 6 different goal positions in
Figure 3.

We notice that all the algorithms converge to a good
behavior (above the gray line), which is expected for this
simple task. PPO, being an on-policy algorithm, converges
noticeably slower than the other two. While standard DDPG
implementation and the one using our exploration process
both converge relatively quickly, the average for our ap-
proach reaches the desired task value more than two times
faster than the one using standard noise and has a visibly
higher percentage of satisfactory solutions at the end. While
for this task the comparison can be biased as our RNN was
trained on other instances of the same task (i.e. other desired
positions), it is important to notice that our approach does
not exhibit bias towards goal positions seen in the training
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Fig. 3: Learning results of the best performing policies for
Task 1: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges more than twice faster than the other algorithms
(vertical dashed lines).
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Fig. 4: Learning results of the best performing policies for
Task 2: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges more than twice faster than DDPG (vertical dashed
lines), PPO is not able to find a solution.

set and manages to converge to the desired target with as
good or better accuracy than the other two methods.

B. Application to a new task and dealing with sparse reward

Next, we investigate how our approach performs on a
previously unseen task. We are also interested in how the
approach deals with a sparse reward signal. We first use Task
2 with the same exploration process trained in the previous
experiment, using data from policies reaching random points
in space. We expect that our exploration model contains
more informative motions for the end-effector resulting in
a speedup in learning despite the very different nature of
the tasks the RNN was trained on. Indeed, this task contains
a reaching component which was seen before and a contact
regulation component that was not seen in Task 1. As before,
we compare our approach with regular DDPG and PPO. The
results, again averaged over 6 different task instances, are
shown in Figure 4.

Unlike the previous set of experiments, in this task PPO
is not capable of finding a policy that achieves the desired
behavior. The reward information about force interaction
in this case is very sparse and is only present when the
end-effector is in contact with the table. Even though the
position part of the reward guides the policy to such states,
a broader exploration is then required to find rewarding types
of interaction. PPO, lacking this, fails to find solutions for the
task and optimizes only for the position and orientation parts
of the reward. The other two approaches both converge to
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Fig. 5: Learning results of the best performing policies for
Task 3: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges slightly slower that the normal DDPG (vertical
dashed lines), PPO is not able to find a solution.

satisfactory behaviors, but again our methods does so more
than twice as fast as the normal DDPG algorithm.

We repeat this experiment with Task 3 requiring a motion
along a closed curve in free space. This task requires a
periodic motion, which is inherently different than reaching
motions in terms of expected position and velocity profiles.
It is therefore an inherently more difficult task for our explo-
ration model, but one with a non-sparse reward, providing
guiding information throughout the state space. Here we
vary the circle radius and center for each new task instance.
Results, in this case averaged over 18 different instances, are
shown in Figure 5.

Our approach and DDPG take a significantly longer time
to converge than in the previous tasks. While PPO never
reaches the threshold for which we consider that the appro-
priate behavior is achieved, its final behavior is not very far
from being acceptable. We notice that all three algorithms
converge similarly, with the normal DDPG being initially
slower. This experiment suggests that for tasks that require
very different movement profiles than the movements our
exploration model was trained on, our exploration method
will not necessarily significantly improve convergence, yet it
is still not detrimental to the learning process, which is an
important aspect to afford generalization to other tasks.

From these two experiments we can see that, as expected,
the advantage for using our approach comes when the reward
information is sparse and simple exploration is no longer
sufficient, however the required basic movement profiles
need to share similar characteristics in order to benefit from
a significant speedup.

C. Complex interaction task and continuous learning

In the last experiment, we would like to demonstrate
other important aspects of our approach: that it can scale
to significantly more complex tasks and that the exploration
model can be extended with previously learned motions,
allowing continuous learning of richer exploration strategies
as we discussed in Section II-C. To do so, we update our
exploration model by training it with a combination of data
from Task 2 and Task 3. We collect 100 policies from each
of the two tasks.

For testing we use Task 4, which requires concurrent force
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Fig. 6: Learning results of the best performing policies for
Task 4. (Top) average cumulative reward (bold lines) and
variance (shaded area) across all task instances. (Bottom)
Final reward distribution.
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Fig. 7: Robustness to parametrization results for Task 4.
(Top) average cumulative reward (bold lines) and variance
(shaded area) across all task instances and all parametriza-
tions. (Bottom) Final reward distribution.

regulation and motion along a circular path on the table and
contains aspects from all previously encountered tasks. It
means that we could decompose the task as a combination
of all previous three tasks (Task 1 to reach the table, and
Task 2 and 3 to perform the motion on the table). First, we
compare our approach with other algorithms in the same way
as before. We still use the best performing parametrizations
of each algorithm to compare the results and in this case
use 50 different task instances for the comparison (Figure
6). With the table interaction aspect again present, PPO
fails to find satisfactory solutions. Both standard DDPG
and the one using our exploration process do converge,
but with our method doing so almost twice as fast. In
addition to the learning curves, Figure 6 also shows the full

distributions of the cumulative rewards for the policies for
all three algorithms at the end of learning. This figure clearly
suggests that our approach both has a higher percentage
of satisfactory solutions as well as practically no policies
with really bad scores. This is in contrast with PPO which
finds mostly poorly performing policies and DDPG that has
a more elongated distribution of results: for certain task
instances it finds solutions but fails to do so for others. These
results additionally support that our approach can speed-
up learning but more importantly, it suggests that learning
performance becomes more consistent and repeatable across
task instances.

D. Robustness

Finally, we would like to demonstrate robustness and the
lack of need for tuning parameters in our approach. This
is especially important because oftentimes reinforcement
learning algorithms are very sensitive to parameter tuning
and the same experiments with random initial conditions for
the system can lead to very different results [21].

In all previous experiments, we presented results using the
best parametrization for each algorithm (between different
noise parameters for standard DDPG and different subse-
quence lengths used for training the LEP). Now we present
results for learning Task 4 for all the parametrization we
tested, without making any such choices. The results are
presented in Figure 7. The difference between each algorithm
is very clear. The results for our method are only slightly
worse than those we presented for the best parameter con-
figuration, demonstrating its robustness to parametrization.
The average policy performance at the end of the training
especially is only slightly affected. Without any tuning our
method still produces a majority of satisfactory policies for
this complex task. That is not the case with either standard
DDPG or PPO. DDPG becomes significantly worse in this
evaluation, with the average not reaching satisfactory value
at the completion of the training. PPO was already not
performing the tasks with the best parametrization. These
results support the idea that our exploration strategy can not
only speed-up learning, but also improve the robustness of
the algorithms to parameter tuning, which can be a significant
gain when deploying such algorithms on novel tasks and
robots.

V. DISCUSSION

The goal of learning the exploration process is to make the
behaviors needed to solve a new task more likely to occur
during exploration. This is done in an effort to speed up
learning, as well as to achieve complex behaviors that might
otherwise be missed. In the absence of exploration capable
of doing so, we are usually forced to add guiding terms to
reward functions to lead the policies in desired direction dur-
ing training. Such terms not only require additional tuning,
but are also not representative of actual aspects we would
like to achieve. As tasks become more and more complex,
with many-part reward functions, the process of adding this
guiding information becomes untenable. This is why we aim



to relieve some of this effort by having a good exploration
process, freeing up the reward function to just encode the
task at hand.

Some of the main questions to be considered when using
an approach like the one we present in this work are related
to ways in which data from one task can be useful in solving
a different one. Here, that is reflected in the choices we make
in selecting data to train the exploration process, as well as
more generally how we structure a curriculum of tasks with
a goal of generating more and more complex behaviors on
the system.

First, it is worth pointing out that using all the data we
have access to, even if it is extensive and varied, might not
necessarily be a bad idea. Barring issues with the model not
being able to fit the data correctly, the only downside would
be that our model encodes a wider distribution, covering
behaviors that might not be directly useful for the current
task. In that case, some of the exploratory behavior might
not be relevant, but that should not prevent us from gaining
benefits from the rest of it.

In the same way having too much data might not cause
issues, lacking data for some part of the behavior needed
to solve the task might not be detrimental either. Using
an exploration model trained only on behavior needed for
one aspect of the task will not necessarily prevent us from
learning how to solve all the other aspects as well. For
example, as can be seen in Figure 4, using an exploration
process trained only using free space motions causes no
issues in learning on a task where force also needs to be
applied. What is more, learning is significantly faster on the
new task than it is with the standard methods.

Taking the two previous points into account we still want
to make the best choices we can in building an exploration
process with a goal of solving a new task. For achieving
that we should take a look at what kind of motion and
interaction behavior is expected in the new task and choose
already known tasks exhibiting some parts of that behavior.
The goal being to decompose the task into as many elements
that are already contained in some of the known policies.
The same idea applies when building an entire curriculum
of tasks to solve on a system, where we should start from
the ones easiest to solve and slowly add new aspects as we
progress in generating more and more complex behaviors.

VI. CONCLUSION

In this paper, we presented a novel approach to learn an
exploration process for reinforcement learning using previ-
ously learned tasks. The system is built such that as novel
tasks are learned, the exploration model can be improved and
facilitate learning more complex tasks. This is particularly
useful for robotics problems where such hierarchy of tasks
(from simple to complex) naturally arises. In our future
work we intend to demonstrate the learned policies on a real
robot and extend the approach to more complex manipulation
tasks.
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